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Main text
Ubiquitin specific protease 18 (USP18) is a major
negative regulator of the type 1 interferon (IFN) path-
way. In a recent publication we showed that USP18 is
a key molecule imposing microglial quiescence specif-
ically in the white matter [7]. USP18 is a negative
regulator of the type 1 interferon (IFN) pathway [9].
Microglia lacking Uspl8 exhibited constitutive activa-
tion of type I IFN signaling pathways resulting in
markedly elevated expression of multiple interferon-
stimulated genes (ISGs) [7]. Additionally, UspI8-defi-
cient brains exhibited clusters of microglia in the
white matter that strongly resembled the neuropatho-
logical state in several human microgliopathies. Human
diseases in which microgliopathies play a primary role
comprise Nasu-Hakola disease [14], hereditary diffuse
leukoencephalopathy with spheroids (HDLS) [15] and
Pseudo-TORCH syndrome (PTS), including Aicardi—Gou-
tieres syndrome [12]. One might speculate that activated
microglia in the white matter induce white matter abnor-
malities with functional consequences. However, there
were no cells which had taken up myelin in young adult
mice as seen by luxol fast blue—PAS (LFB-PAS) histology
(unpublished data). Myelin uptake by other cells, like mac-
rophages, would have been indicative of myelin damage.
That is why we now characterized conditional myeloid-
specific Usp18 deficient mice in more detail.

We know that Uspl8 transcripts are highly expressed
in unstimulated white matter microglia with only negli-
gible expression levels in other CNS cells [7]. In a
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previous study, we have confirmed by PCR analysis that
Cx3cr1“:Usp18™" mice have an Uspl8 deletion in
microglia but not in neuroectodermal cells of the CNS.
These mice displayed a significant increase of Ibal*
microglia cell numbers in several white matter regions
including the corpus callosum as young adult mice [7].
This microgliosis persisted with increasing age and was
detectable even in 4- and 8-month old mice (Fig. la, b).
Usp18-deficient microglia exhibit constitutive expression
of IFN target genes and fail to downregulate IFN-
induced genes because the termination of type I IEN sig-
naling is severely impaired. This became evident by the
increase in ISG15 positive cells in the corpus callosum
(Fig. 1a, b) and the elevated phosphorylation of STAT1 in
Usp18-deficient microglia when compared to Usp18™"
mice (Fig. 1c). We next investigated animals at later ages
than before by immunostainings against lysosome-
associated membrane protein-2 (LAMP2) as a marker of
phagocytosis [4]. We found increased LAMP2 positive sig-
nals in microglia, which were localized in the corpus callo-
sum of Cx3crl““Usp18™" mice at an age of 4 months
(Fig. 2a, b) and 8 months (Fig. 2c, d). To analyze white
matter integrity, we performed high-resolution (11.7 T)
diffusion tensor imaging (DTI). We calculated the frac-
tional anisotropy (FA) values, permitting an exploration of
the orientation coherence of axons in this fiber bundle.
We found that the FA values were reduced in the corpus
callosum, the internal and external capsule of Cx3cri Cre,
Usp18™" mice (cf. Usp18™" controls), suggesting dimin-
ished structural integrity of the white matter in 4- and 8-
month old animals (Fig. 2e). Additionally, we found in-
creased numbers of cells that had incorporated myelin
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Fig. 1 Microgliosis in corpus callosum of Cx3cr1<%Usp18™" mice. a, b Histology of corpus callosum in the cerebrum of adult Usp18™" and
C3cr1Usp18™ mice at 4 (@) and 8 months of age (b). Primary antibodies against Ibal and 1SG15 were used. To quantify the number of Ibal* or
1SG15" cells at least six mice per genotype and 5 sections per mouse from two independent experiments were counted. Quantification of cells is
shown next to the respective histological images. Significant differences were determined by an unpaired t-test or Mann-Whitney U-test and marked
with asterisks (***P < 0.001 versus control littermates). Bars represent means + SEM. Scale bars = 25 pym, 50 um, 100 um. ¢ Immunohistochemistry for
phosphorylated STATT (pSTATT, red), CD11b (green) and DAPI (blue) in the corpus callosum of 8- month old Usp78ﬂ/ﬁ and Cx3cr7c’e:Usp78ﬂ/ﬂ mice. Scale
bar: 20 um. Quantification of pSTAT1*CD11b™" cells is shown next to the respective histological images. Each symbol represents one mouse. Error bars
represent SEM. Significant differences are determined by an unpaired t-test and marked with asterisks (**P < 0.001)
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Fig. 2 USP18-deficient microglia reduces structural integrity in corpus callosum. a Immunofluorescent histochemistry for Ibal (red), Lamp2 (green) and DAPI
(blue) in the corpus callosum of 4 months and 8 months (c) old Usp18”" and Cx3cr1“®Usp18™ mice. Scale bar: 20 um. Quantification of Ibal* and percentage
of Iba1*Lamp2* cells is shown next to the respective histological images (b, d). Each symbol represents on mouse. Error bars represent se.m. Significant
differences are determined by an unpaired t-test and marked with asterisks (**P < 001, ***P < 0.001). e DTl was performed on 4 and 8 months old Usp78fyﬂ and
O3cr17eUsp18™ mice to measure the FA of the corpus callosum. Tensor images were collectively acquired in several horizontal planes from + 2.0 to —40 mm
from the bregma, with an interplane distance of 0.5 mm (UsplSﬂ/ "h=6 Cx3cr7c’€:U5p78ﬂ/ " 1 = 4). Heat maps of the FA values showing the average (of all
Usp18™ and G3er19Usp18™ animals) of one plane from each group (from anterior to posterior). Warm colors indicate fiber tracts with strong diffusion
coherence. For both age groups the FA values were significantly reduced in G3cr1“Usp18™ mice in comparison to Usp18”" mice. Approximate locations of
the regions of interest (ROIs) are indicated. Data are means + SEM. (*P < 0.05, **P < 001, **P < 0001, ns.= non-significant). Statistical significance was
determined using multiple t tests corrected for multiple comparisons using the Holm-Sidak method with a = 0.05. f Histological analysis by luxol fast blue-PAS
(LFB-PAS) in 8-month-old Usp18”mice and Cx3cr1™Usp18™ littermates. Representative of n =6 Usp18™ and n = 7 C3cr1“Usp18™" mice. Circles represent
individual mice. Unpaired two-tailed t-test
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and thereby indicate damage to the myelin sheaths
(Fig. 2f). Together, these findings point to a reduction
in myelination or even to a loss of fibers in
Cx3cr1“:Usp18™" mice [2, 17].

Deterioration of white matter tracts, affecting brain struc-
tural (SC) and functional connectivity (FC) is often paral-
leled by behavioral declines [3, 6, 8]. We therefore tested
Cx3cr1“":Usp18™" mice and Uspl8™" littermate controls
in different behavioral paradigms. While mice lacking
Uspl8 in microglia performed normal in the odor avoid-
ance test at 4 months of age (Fig. 3a), 8-month old
Cx3cr1“Usp18™" mice showed severely impaired olfac-
tion (Fig. 3d). Similarly, learning and recognition memory
was fully intact at 4 months of age (Fig. 3b) but decreased
when Cx3cr1“Usp18™" mice were 8-month old com-
pared to age-matched Usp18™" control mice (Fig. 3e).
Rotarod performance, which measures motor coordination
and motor learning, was also significantly impaired in 8-
month old Cx3cr1“":Usp18™" mice (Fig. 3f) with no defi-
cits in 4 months old mice (Fig. 3c). In addition to the indi-
cated mouse model we investigated brainstem tissue
samples from three PTS patients with loss-of-function re-
cessive mutations of USPI18 [12]. Immunohistochemistry
showed increased STAT1 phosphorylation in microglia of
PTS patients when compared to age-matched control tissue
(Fig. 4a). In patients’ material there were also more

(2019) 7:106

Page 4 of 6

microglial cells, which engulfed cells positive for Nogo-A
(Fig. 4b), which represents an oligodendroglial marker [11].

The data presented here indicate that in myeloid-
specific Usp18 knockout animals, microglia in the white
matter were not only activated, but also caused advan-
cing damage to this structure with subsequent behav-
ioral impairment of the animals. USPI8-deficiency in
humans belongs to a group of genetic disorders that are
collectively termed type I interferonopathies. These dis-
orders are first characterized by the persistent up-
regulation of type I interferon signaling [16]. There have
been at least seven possible cellular mechanisms de-
scribed, which result in sustained activation of interferon
signaling [16]. One of them, PTS, is a group of not so
well-defined genetic diseases, which can originate from
USP18 deficiency. We found that microglia in PTS pa-
tients displayed not only enhanced type I IEN signaling,
but also close contact to oligodendroglia. A direct inter-
action might indicate that activated microglia, as sug-
gested by their focally elevated cell density together with
altered morphological properties inflict damage to oligo-
dendroglia. This strongly resembles the white matter
damage observed in Cx3crl““:Uspl8™" mice. Type I
interferon can be regarded as a neurotoxin if its levels
are not tightly controlled. Accordingly, experiments
undertaken in mice demonstrate that overexpression of
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Fig. 3 Gradual behavioral impairment in Cx3cr1<%Usp18”" mice. a, d Olfactory avoidance test. The time animals spent away from the odorant
zone was recorded. b, e Novel object recognition. The time a mouse spent investigating a familiar (f) or novel (N) object was recorded. The
object interaction ratio was defined as the difference in exploration time for the novel object divided by the exploration time for the familiar
object. ¢, f) Rotarod. Graphed is the latency to fall off the rod during accelerating speed (4-40 r.p.m). For all three tests, performance of Usp18™"
and Cx3cr1“&Usp18™™ animals was compared when they had reached 4 and 8 months of age. Asterisks indicate significant differences (*P < 0.05,
**P <001 and **P <0.001, n.s. = not significant)
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Fig. 4 Microgliosis in white matter of Pseudo-TORCH patients. a Histology of white matter in Pseudo-TORCH patients (n = 3) and age-matched
controls (n = 3) (b). Primary antibodies were used against Ibal, pStat1 and Nogo-A. Quantification of cells is shown next to the respective
histological images. Significant differences were determined by an unpaired t-test or Mann-Whitney U-test and marked with asterisks (***P < 0.001
versus controls). Bars represent means + s.e.m. Scale bars =50 um, 100 um

interferon in the CNS results in neuropathology rem-
iniscent of that seen in certain type I interferonopa-
thies [1, 10]. In the case of PTS, but also in the case
of type I IFN overexpression, damage to the white
matter seems to be prevalent [5, 12]. It is still unclear
what the type I IFN source is in the context of inter-
feronopathies. Likewise it is enigmatic which signals
are responsible for microglia activation in the white
matter. The escalating spiral of white matter damage
might be initiated by type I IFN that is induced in
microglia via stimulator of interferon genes (STING),
and this IFN likely influences the microglial pheno-
type in an autocrine and paracrine fashion [13].

The white matter specificity of the USP18 effect on
microglia is of particular interest and further develop-
ments in this area may have implications for an entire
range of neurological disorders in which there is a pre-
ponderance of white matter pathology.
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