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Walking impairment impacts nearly 66% of stroke survivors and is a rising cause of morbidity worldwide. Despite conventional

post-stroke rehabilitative care, the majority of stroke survivors experience continued limitations in their walking speed, temporo-

spatial dynamics and walking capacity. Hence, novel and comprehensive approaches are needed to improve the trajectory of walk-

ing recovery in stroke survivors. Herein, we test the safety, feasibility and preliminary efficacy of two approaches for post-stroke

walking recovery: backward locomotor treadmill training and transcutaneous spinal direct current stimulation. In this double-

blinded study, 30 chronic stroke survivors (>6 months post-stroke) with mild-severe residual walking impairment underwent six

30-min sessions (three sessions/week) of backward locomotor treadmill training, with concurrent anodal (N¼19) or sham transcu-

taneous spinal direct current stimulation (N¼ 11) over the thoracolumbar spine, in a 2:1 stratified randomized fashion. The pri-

mary outcomes were: per cent participant completion, safety and tolerability of these two approaches. In addition, we collected

data on training-related changes in overground walking speed, cadence, stride length (baseline, daily, 24-h post-intervention,

2 weeks post-intervention) and walking capacity (baseline, 24-h post-intervention, 2 weeks post-intervention), as secondary ex-

ploratory aims testing the preliminary efficacy of these interventions. Eighty-seven per cent (N¼ 26) of randomized participants

completed the study protocol. The majority of the study attrition involved participants with severe baseline walking impairment.

There were no serious adverse events in either the backward locomotor treadmill training or transcutaneous spinal direct current

stimulation approaches. Also, both groups experienced a clinically meaningful improvement in walking speed immediately post-

intervention that persisted at the 2-week follow-up. However, in contrast to our working hypothesis, anodal-transcutaneous spinal

direct current stimulation did not enhance the degree of improvement in walking speed and capacity, relative to backward loco-

motor treadmill training þ sham, in our sample. Backward locomotor treadmill training and transcutaneous spinal direct current

stimulation are safe and feasible approaches for walking recovery in chronic stroke survivors. Definitive efficacy studies are needed

to validate our findings on backward locomotor treadmill training-related changes in walking performance. The results raise inter-

esting questions about mechanisms of locomotor learning in stroke, and well-powered transcutaneous spinal direct current stimula-

tion dosing studies are needed to understand better its potential role as a neuromodulatory adjunct for walking rehabilitation.
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Introduction
Walking impairment after a stroke is primarily due to the

loss of adequate lower extremity function and is a signifi-

cant cause of disability, with nearly two-thirds of stroke

survivors having significant limitations in walking

(Dobkin, 2005). This impairment results in an increased

risk for falls, fractures and a progressive decline in mobil-

ity (Duncan et al., 2011; Langhorne et al., 2011). With

the increasing survival rate after stroke, walking impair-

ment is becoming an even greater public health issue.

Hence, novel neurorehabilitative approaches are needed

to improve the potential and trajectory of walking recov-

ery after stroke. This study explores non-body weight

supported backward locomotion treadmill training

(BLTT) as a novel rehabilitation approach, and investi-

gates transcutaneous spinal direct current stimulation

(tsDCS) as an adjunct for walking rehabilitation in

stroke.

Backward walking

The network control of forward and backward walking

in humans remains an area of high interest. While the

precise relationship of these networks is not fully under-

stood (Winter et al., 1989; Choi and Bastian, 2007;

Jansen et al., 2012; Musienko et al., 2012; Hoogkamer

et al., 2014), recent physiologic and rehabilitation studies

suggest that forward and backward locomotor networks,

while independent, may interact such that backward

training could improve performance with forward loco-

motion (Yang et al., 2005; Hao and Chen, 2011;

Michaelsen et al., 2014; El-Basatiny and Abdel-Aziem,

2015; Foster et al., 2016; Rose et al., 2018). For ex-

ample, kinematic studies, performed in neurologically in-

tact individuals, suggest that backward walking training

improves forward walking ability to a greater extent than

forward walking training alone, because backward walk-

ing training incorporates supplementary core and lower

extremity muscle groups which are less active during for-

ward walking (Winter et al., 1989; Grasso et al., 1998;

Bła _zkiewicz, 2013). Also, backward walking has been

suggested to improve walking symmetry by targeting the

maladaptive flexor-synergy gait pattern associated with

central nervous system injury (Thorstensson, 1986;

Winter et al., 1989; Duysens et al., 2013; Rose et al.,

2018). Since backward walking relies more heavily on

proprioception and sensorineural integration, to know

where the foot is in space, backwards training could also

theoretically improve walking stability and balance over

time (Hao and Chen, 2011; Fritz et al., 2013; Ordway

et al., 2016; Rose et al., 2018).

Backward locomotion treadmill
training

Our training approach in this study differs from typical

overground backward walking because the entirety of the

training is performed on a non-body weight supported

treadmill which facilitates high repetition of practice

while enabling real-time control of training speed.

Moreover, the absence of body weight support provides

even a greater challenge because it forces participants to
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bear more weight on their paretic limb (Wernig and

Wernig, 2010). In addition, the presence of sensors

underneath the belt enables for collection of temporospa-

tial data comparable over sessions (Yeon-Gyu and Jung-

Wan, 2016; Zachary et al., 2017).

Past studies have demonstrated that BLTT is feasible in

young, and neurologically intact adults; however, its

safety and feasibility have not been tested in chronic

stroke survivors. A few physiological considerations could

make BLTT particularly challenging in this population.

For example, stroke commonly impacts chronologically

older individuals, which is associated with a decline in

gait speed, joint range of motion and spatiotemporal abil-

ity (Stacy et al., 2007). Moreover, functional neuroimag-

ing studies have reported an increased tendency for

prefrontal compensatory recruitment during normal walk-

ing in this population (Kurz et al., 2012; Chatterjee

et al., 2019). In addition, backward walking is character-

istically more physically demanding than walking forward

(Flynn et al., 1994; Terblanche et al., 2005) and requires

movement patterns that tend to be particularly difficult

after stroke (i.e. knee flexion and ankle dorsiflexion with

hip extension) (Nilsson et al., 2001). Hence, it is possible

that BLTT may be too cerebrally and physically demand-

ing for chronic stroke survivors to complete. Therefore,

the primary objective of this study was to investigate the

safety and feasibility of BLTT, while in parallel obtaining

preliminary outcome data for training-related effects

BLTT on overground walking in the chronic stroke

population.

Direct current stimulation

The secondary objective of this study was to explore if

the concurrent application of a direct current stimulation

over the thoracolumbar region of the spinal cord could

enhance training-related changes.

Over the last 25 years, direct current stimulation has

gained traction as a promising non-invasive neuromodula-

tory tool for stroke neurorehabilitation (Stagg et al.,

2009; Schlaug and Cohen, 2010; Kang et al., 2016).

Early studies in the young, elderly, and stroke popula-

tions have suggested that its application over the scalp

(tDCS), for multiple sessions, may enhance the effects of

training by facilitating the acquisition rate and retention

of the learned task (Reis et al., 2009; Antal et al., 2010;

Fritsch et al., 2010; Kadosh et al., 2010; Dayan et al.,

2013; Snowball et al., 2013). However, reports on the ef-

fect of tDCS with lower extremity or locomotor training

have been less encouraging (Madhavan and Stinear,

2010; Geroin et al., 2011; Geiger et al., 2017). Some

have suggested that the inefficacy of tDCS to modulate

lower extremity and walking recovery may be a result of

the inefficient distribution of direct current to reach critic-

al regions involved in human locomotion, such as the

lower extremity region of the motor cortex, subcortical

locomotor regions and spinal cord (Jeffery et al., 2007;

Jones et al., 2016). Hence, an alternative approach to

modulate the central locomotor network termed ‘transcu-

taneous spinal direct current stimulation (tsDCS)’ has

been suggested (Priori et al., 2014).

Supported by electrical current modelling (Parazzini

et al., 2014; Fregni et al., 2015; Fiocchi et al., 2016;

Kuck et al., 2017), preclinical (Zaghloul, 2014, 2016;

Weiguo et al., 2015), neurophysiologic (Cogiamanian

et al., 2012; Priori et al., 2014) and neuroimaging studies

(Schweizer et al., 2017), a growing body of literature

suggests that tsDCS can modulate activity at multiple lev-

els of the central nervous system, including the segmental

spinal cord (Winkler et al., 2010; Lamy et al., 2012;

Hubli et al., 2013), ascending lemniscal and nociceptive

pathways (Cogiamanian et al., 2008; Cogiamanian et al.,

2011; Truini et al., 2011), as well as cortical regions

(Bocci et al., 2014, 2015a, b, c; Marangolo et al., 2017;

Schweizer et al., 2017). In addition, a recent proof-of-

concept study from our group, in young and neurologic-

ally intact individuals, found that anodal tsDCS applied

over the lower thoracic region (T-11) concurrently with

BLTT, increased the acquisition rate and retention of

backward walking speed up to 2 weeks post-training

(Awosika et al., 2019). Therefore, this study explores if

tsDCS could comparably enhance the effect of BLTT on

forward walking in chronic stroke survivors.

Based on the completion rates of past stroke recovery

trials from our group (Kluding et al., 2013; Boyne et al.,

2016; Harvey et al., 2018), we anticipated that 30

patients could be enrolled and randomized within

24 months, and predicted that greater than 70% of those

participants would complete the study. In line with past

neuromodulation studies using direct current stimulation

(Antal et al., 2017), we anticipated that tsDCS would be

well-tolerated. Lastly, while this study was not powered

to detect a significance between the two groups (BLTT þ
sham tsDCS vs. BLTT þ anodal tsDCS), we hypothesized

that anodal tsDCS would demonstrate a trend towards

greater improved walking performance.

Materials and methods

Participants

This study was conducted at the University of Cincinnati

Neurorecovery Lab from 5 September 2017, to 4

February 2019. Community-dwelling individuals between

18 and 80 years of age, with mild to severe gait impair-

ment due to chronic stroke (>6 months), either ischaemic

or haemorrhagic were recruited for this study. Prior to

group randomization, study participants had to demon-

strate the ability to: provide consent (Mini-Mental State

Exam Score >23), ambulate without a walker and main-

tain �0.13 m/s speed on the treadmill while walking

backwards for 6 min. They were additionally asked to ab-

stain from both formal physiotherapy and botulinum

BLTTand tsDCS in stroke BRAIN COMMUNICATIONS 2020: Page 3 of 14 | 3



toxin treatments at least 2 weeks prior to enrolment and

for the duration of training and follow-up. The exclusion

criteria ruled-out individuals with an unstable cardiopul-

monary status which may preclude participation in a

moderate-high intensity exercise programme, severe lower

extremity spasticity (modified Ashworth >2/4), significant

language barrier which might prevent the participant

from following instructions during training and testing,

and untreated depression [>10 on the Patient Health

Questionnaire (PHQ9)].

Study design

Potential study participants were screened until the enrol-

ment goal of 30 randomized participants was reached.

Participants meeting the inclusion and exclusion criteria

were randomized in a 1:2 stratified fashion to either

sham (N¼ 11) or anodal tsDCS (N¼ 19), respectively—

based on baseline 10-m walk test (10MWT) speed, prior

to BLTT initiation, on Day 2 (D2) of the study

(Table 1). This stratification ratio was used to maximize

the number of participants receiving anodal tsDCS, in an

effort to reduce the variance in the estimated treatment

effect. Group allotment was performed by an independent

research coordinator, removed from training and out-

comes testing. In addition, the patient, therapists and out-

come assessors were blinded to the group allocation.

Impairment classification

To determine the impact of baseline walking impairment

level on BLTT completion and outcome, participants

were categorized into mild, moderate or severe walking

impairment using the self-selected 10MWT (self-selected)

at screening (D1), where �0.8–1.2 m/s was classified as

mild, �0.4 to <0.8 m/s as moderate and <0.4 m/s as se-

vere (Perry et al., 1995).

Intervention

Backward locomotion treadmill training

Screening (D1). All study participants underwent 6 min of

BLTT on screening day (D1) for orientation and to screen

out individuals who were not able to achieve �0.13 m/s on

the treadmill—the minimum belt speed needed to demon-

strate adequate neuromotor capacity for participating in

aerobic training (Macko et al., 2005; Ivey et al., 2008). For

safety, participants were connected to a non-body weight

supported safety harness, with their backs facing the head

of the treadmill (Fig. 1A). Participants were permitted to

hold-on to one handrail for support. The belt speed was

started at slowest possible speed (�0.04 m/s) and increased,

based on the participant’s level of comfort, during the 6

min (Supplementary Table 1). A physical therapist

remained next to the participant’s paretic side to provide

assistance during backward leg extension, as needed. A se-

cond therapist was available during unique instances when

a participant needed assistance on the non-paretic side

(Supplementary Table 2).

Training (D2–D7). Participants who completed the �0.13 m/s

inclusion threshold advanced to the first day of training

(D2) (Fig. 1B). The training consisted of four 6-min

blocks. The self-selected treadmill speed, established on

D1, was used as the starting speed on the first block of

D2. Likewise, for D3–D7, the training treadmill speed

Table 1 Baseline demographic and gait variables per intervention group

BLTT 1 sham tsDCS (n 5 11) BLTT 1anodal tsDCS (n 5 19) P-value

Demographic variables

Age (years) 54.74 6 10.9 58.55 6 7.61 0.269

Stroke age (months) 62.25 6 72.0 62.22 6 66.3 0.999

Gender

Male 6 (55%) 10 (53%) 0.917

Female 5 (45%) 9 (47%)

Hemiplegic side

Right 7 (64%) 11 (58%) 0.750

Left 4 (36%) 8 (42%)

Stroke type

Ischaemic 9 (82%) 15 (79%) 0.845

Haemorrhagic 2 (18%) 4 (21%)

Behavioural-Cognitive Scales

Patient Health Questionnaire (PHQ9) 3.909 6 4.53 3.053 6 2.93 0.534

Mini-Mental Status Exam 28.27 6 1.85 27.88 6 2.87 0.690

Gait variables

10-m walking speed (fast)-m/s 1.105 6 0.31 0.982 6 0.53 0.490

Cadence (steps/min) 124.2 6 26.9 104.9 6 31.6 0.101

Stride length (cm) 118.8 6 25.5 118.9 6 44.0 0.995

Gait impairment severity

Mild 3 (27%) 4 (21%) 0.712

Moderate 7 (64%) 10 (53%) 0.564

Severe 1 (9%) 5 (26%) 0.268
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used on the fourth block of the preceding day was used

as the starting speed for the subsequent session. In com-

munication with the participant, the therapist continuous-

ly adjusted the speed to maintain a sustainable challenge.

To reduce fatigue, all participants received 2-min seated

rest breaks between each of the 4, 6-min training blocks,

totalling �30 min. Six of the 30 study participants needed

physical assistance over the 6 days of training (minimal

to maximal). For safety and to ensure adequate effort (at

least 50% of the predicted maximal heart rate), a Polar

H7 (POLARVR , USA) heart rate monitor was worn at all

times during training (see Supplementary Table 3).

Participants were also offered chocolate milk after train-

ing to reduce training-associated muscle soreness

(Pritchett and Pritchett, 2012).

Transcutaneous spinal direct current stimulation

TsDCS (2.5 mA, 30 min) was delivered, during BLTT,

from a battery-driven programmable direct current stimu-

lator (Soterix, USA) connected to surface electrodes (sa-

line-soaked synthetic sponge of 7� 5 cm, and 0.6 cm

depth). Prior to the initiation of training, the anode/sham

electrode was centred on the T-11 spinous process of the

thoracic spine with the major axis parallel to the spinal

cord, a second electrode was placed over the right shoul-

der, aligned with previous studies demonstrating

modulation of segmental spinal reflex excitability with

this montage (Vergari et al., 2008; Truini et al., 2011;

Lamy et al., 2012). The second electrode was placed over

the right shoulder (Fig. 1C). A tsDCS lumbar body strap

(Soterix, USA) was used to secure electrode positioning in

place. Computerized modelling of this electrode montage

and stimulation parameters estimates a current density of

0.071 mA/cm2, delivering a total charge density of 85.7

mC/cm2 (Cogiamanian et al., 2008), which is well within

safety levels. The direct current stimulator was pro-

grammed to ramp up current to 2.5 mA over a 30-s

period and similarly ramped down at the end of the

stimulation. Sham tsDCS was achieved by delivering a

2.5-mA current over a period of 30 s at the beginning

and end of the stimulation period.

Outcomes measures

Safety, feasibility and tolerability

A tolerability, activity and safety questionnaire

(Supplementary Fig. 1) was completed by the patient at

the first post-training follow-up (D8). Information regard-

ing study enrolment, attrition and adverse events were

documented throughout the study. The primary outcome

was the proportion of participants who completed the

BLTT study. Completion was defined as finishing the

Figure 1 Training schematic. Study participants underwent six (D2–D7), 30-min sessions of non-bodyweight supported BLTT, with

concurrent sham or anodal tsDCS, applied over T-11/12 (red rectangle) and cathode electrode placed over the right shoulder (black rectangle).

BLTTand tsDCS in stroke BRAIN COMMUNICATIONS 2020: Page 5 of 14 | 5

https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa045#supplementary-data
https://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcaa045#supplementary-data


entirety of the training protocol (180 min) and returning

for the two follow-up visit days [24-h post-training Day

6 (D8), and 2-week post-training Day 6 (D9)].

10-m walk test

Community ambulation is correlated with gait speed

(Perry et al., 1995), and changes in gait speed that result

in a transition to a higher category of ambulation classifi-

cation are associated with improved function and quality

of life. Therefore, 10MWT is the gold standard measure

of post-stroke walking function that reflects overall mo-

bility (Lord et al., 2004; Schmid et al., 2007) and health

status (Studenski et al., 2003). Training-related changes

in gait speed were assessed with the 10MWT. This test

was administered at screening, before each BLTT session

(D2–D7), and at follow-up (D8–D9). Participants were

instructed to walk as fast as possible, with or without an

assistive device (single pint cane or quad cane), with three

attempts. The fastest of the three trials was used in the

analysis. To limit the influence of D1 orientation train-

ing-effect on outcomes, the 10MWT speed for D2 was

set as the baseline.

Gait dynamics

Temporal (cadence) and spatial dynamics (D stride length)

were acquired using the Zeno Walkway gait analysis mat

(Protokinetics, PA, USA) during the10MWT. These data

were captured and recorded with the Protokinetics

Movement Analysis Software and later exported for off-

line analysis.

Walking capacity

Walking capacity, as determined by performance on the

6-min walk test (6MWT), is the most influential individ-

ual predictor of limited versus full community ambulation

(Fulk et al., 2017). Participants were instructed to walk

as fast as possible back and forth in a 23-m corridor,

with or without an assistive device (single-point cane or

quad cane) for 6 min. The total distance travelled was

measured and documented by the blinded therapist after

the test. The 6MWT was administered at screening, D8

follow-up (�24 h following the sixth day of training),

and D9 (2-week post-training).

Statistical analysis

The enrolment goal of 30 was determined based on the

site recruitment rate from past protocols from our group.

Normality assumption was tested by the Shapiro–Wilk

method, and the significance level was set at P¼ 0.05 for

all measures. Between-group differences in the proportion

who completed the study and tolerability outcomes were

determined using the Chi-squared test. Linear mixed-

effects models were used to test for within-group change

and between-group differences in change for gait speed,

cadence and stride length (D ¼ D8–D2), and for walking

capacity (D ¼ D8–D1). These models included each gait

measure (separately) as the dependent variable, with fixed

effects for time point, group and their interaction and a

random effect for participant, to account for the corre-

lated nature of repeated measures from the same person.

Also, to account for the relative imbalance of participants

with severe walking impairment in the anodal versus

sham groups, we performed a secondary analysis

adjusting for baseline gait speed. The retention of effect

within- and between-groups on each walking measure

was determined by comparing the change between D9

and D8. Since walking outcomes were exploratory, ad-

justment for multiple comparisons was not performed.

Walking data from one participant, in the control group,

were excluded at 5-timepoints (D5–D9) for 10MWT, and

6MWT (D8, D9), due to interspersed periods of ‘walk-

jogging’, characterized by absence of double support time

during walking trials on the gait analysis mat.

Data availability

The data that support the findings of this study are avail-

able from the corresponding author, upon reasonable

request.

Results

Feasibility

From 5 September 2017, to 7 January 2019, 37 chronic

stroke survivors with residual walking impairment were

enrolled, with 30 randomized (Fig. 2). There were no sig-

nificant baseline differences, in age, behavioural-cognitive

scales, stroke type, or severity, or gait metrics, between

groups (Table 1).

Completion rate

Twenty-six of the 30 (87%) randomized participants

completed the study (Fig. 2). All seven randomized partic-

ipants (100%) with mild walking impairment completed

the study, irrespective of group allocation. Sixteen of 17

(94%) of participants with moderate walking impairment

completed the study. The dropout from this cohort was

in the anodal-tsDCS group and discontinued due to a

viral gastrointestinal illness. Three out of six (50%) of

participants with severe walking impairment completed

the study. There was one dropout in the sham group, on

D9, due to a family illness. There were two dropouts in

the anodal tsDCS group: one participant discontinued the

study on D2 due to the development of leg and back

spasms during block 1 of training, and the second did

not meet treatment fidelity to satisfy the ‘completion’ cri-

teria on D3 and D6, due to fatigue and transient acute

on chronic arthritic knee pain.
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Tolerability, activity and safety

questionnaire

BLTT was well tolerated by participants in both groups

(anodal tsDCS and sham tsDCS). Participants from both

groups reported similar improvements in activity level

(P¼ 0.152), strength (P¼ 0.188), energy level (P¼ 0.370)

and mood (P¼ 0.238). On a 0–10 scale, both groups

similarly scored <1, for headache (P¼ 0.207), neck pain

(P¼ 0.449) or pain (P¼ 0.290), tingling (P¼ 0.423), itch-

ing (P¼ 0.280), burning (P¼ 1.000) or electric shock sen-

sation (P¼ 0.754) related to tsDCS. Reports of soreness

or fatigue were minimal and similar between groups,

P¼ 0.086, P¼ 0.472, respectively (Table 2).

Serious adverse events

There were no serious adverse events in the study, includ-

ing cardiac, cerebrovascular, orthopaedic injuries (i.e.

fracture or dislocation) or incidences requiring a visit to

the emergency room, hospitalization, persistent or signifi-

cant incapacity, or death.

Secondary outcome measures

Overground walking speed

Both groups demonstrated a significant improvement in

overground walking speed on the 10MWT after BLTT

(P< 0.001), and reached minimal clinically importance

difference (MCID¼ 0.16 m/s) in speed for stroke walking

recovery [mean (95% CI): 0.412 m/s (0.213–0.611),

sham, 0.215 m/s (0.119, 0.310), anodal], (Schmid et al.,

2007). Participants receiving sham tsDCS demonstrated a

greater improvement in walking speed (D2–D8), relative

to the anodal tsDCS (P¼ 0.016). This result was still

similar, although just non-significant, after adjusting for

baseline differences in walking speed (P¼ 0.054)

(Fig. 3B). There was retention in walking speed up to 2

weeks following the period of training in both groups;

Figure 2 Flow diagram of the study.
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however, there were no between-group differences in

change from D8 to D9 (P¼ 0.207) (Fig. 3C).

Cadence

Both groups demonstrated a significant improvement in

cadence on the 10MWT (P< 0.001). Participants receiv-

ing sham tsDCS demonstrated a greater improvement in

cadence at (D2–D8) (P¼ 0.046), although this signifi-

cance was lost after adjusting for baseline differences in

walking speed (P¼ 0.091). Both groups demonstrated re-

tention of cadence gains up to 2 weeks following the

period of training, with no between-group differences

from D8 to D9 (P¼ 0.503) (Fig. 3c–E).

Stride length

Similar to speed and cadence, both groups demonstrated

a significant improvement in stride length on the

10MWT (P< 0.001). However, there were no between-

group differences in stride length change (P¼ 0.3162).

Both groups demonstrated retention of stride length gains

up to 2 weeks following the period of training, with no

between-group differences from D8 to D9 (P¼ 0.711)

(Fig. 3F and G).

Walking capacity

Both groups demonstrated a significant improvement in

walking capacity on the 6MWT after BLTT (P< 0.001)

and reached clinically meaningful importance difference

(MCID¼ 34.4m) [Mean (95% CI): 92 m (62.70–122.9),

sham, 41.96 m (25.74, 58.18), anodal] (Tang et al.,

2012). Participants receiving sham tsDCS demonstrated a

greater improvement in walking capacity, relative to the

anodal tsDCS (P¼ 0.050), although this significance was

lost after adjusting for baseline differences in walking

speed (P¼ 0.082). Both groups demonstrated retention of

walking capacity gains up to 2 weeks following the

period of training; however, the sham group experienced

greater within (P¼ 0.005) and between-group perform-

ance (P¼ 0.040) (Fig. 4).

Discussion
Our findings suggest BLTT and tsDCS are safe, feasible

and well-tolerated approaches for walking rehabilitation

training in stroke. Moreover, preliminary results on walk-

ing speed and capacity demonstrated clinically significant

and sustained (at least 2 weeks) improvement following

six sessions of BLTT.

Backward locomotion treadmill

training

Although, BLTT was not tested head-on with overground

walking training, it is understood that treadmill allows

for more efficient training by enhancing the number of

steps achievable over a fixed unit of time, and providing

greater aerobic conditioning (Ivey et al., 2008)—a feature

which is particularly advantageous in this era of health-

care constraints and decreasing time allotted for physio-

therapy by third-party payers. Therefore, it is

encouraging that 87% of randomized participants com-

pleted the entirety of the BLTT protocol, with 82% com-

pleting the training without assistance from a therapist. It

is also notable that three out four participants, who ini-

tially needed assistance, were able to perform the BLTT

task independently by Day 6 of training (Supplementary

Table 2).

Table 2 Safety and tolerability questionnaire

Questionsa

Sham tsDCS 1 BLTT Anodal tsDCS 1 BLTT P-value

Areas of improvement
• Activity level 6.818 6 3.46 (median: 8) 4.889 6 3.39 (median: 5) 0.152
• Strength 6.727 6 3.04 (median: 7) 5.111 6 3.18 (median: 5) 0.188
• Energy level 6.454 6 3.33 (median: 7) 4.611 6 3.03 (median: 5) 0.137
• Mood 6.545 6 3.11 (median: 7) 4.833 6 4.02 (median: 5.5) 0.238

Symptom questions not specific to one intervention
• Headache 0.455 6 1.51 (median: 0) 0.000 6 0.00 (median: 0) 0.207
• Neck pain 0.000 6 0.00 (median: 0) 0.056 6 0.24 (median: 0) 0.449

Symptom severity questions related to BLTT
• Soreness 1.818 6 1.72 (median: 2) 0.778 6 1.40 (median: 0) 0.086
• Fatigue 1.818 6 2.89 (median: 0 ) 1.222 6 1.52 (median: 0.5) 0.472

Symptom severity questions related to tsDCS
• Pain 0.000 6 0.00 (median: 0) 0.167 6 0.51 (median: 0) 0.290
• Tingling 0.182 6 0.40 (median: 0) 0.389 6 0.78 (median: 0) 0.423
• Itching 0.000 6 0.00 (median: 0) 0.278 6 0.83 (median: 0) 0.280
• Burning 0.000 6 0.00 (median: 0) 0.000 6 0.00 (median: 0)
• Electric shock 0.091 6 0.30 (median: 0) 0.059 6 0.24 (median: 0) 0.754

aBased on 0–10 written analogue scale (0¼No change, 10¼ Severe/Significant), values represent the mean and standard deviation.
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Figure 3 Walking speed and metrics. Mean change in 10MWT speed (A), Cadence (D) and Stride Length (G), during 6 days of BLTT (D2–

D7), 24 h, and 2-week follow-up (error bar in SEM). Cumulative training-related changes (D8–D2), for 10MWT (B), Cadence (E), and Stride

Length (H), represented as the median and interquartile range. Retention of performance at 2-week follow-up (D9–D8) for 10MWT (C),

Cadence (F), represented as the median and interquartile range (I).

BLTTand tsDCS in stroke BRAIN COMMUNICATIONS 2020: Page 9 of 14 | 9



Severe walking impairment

Six participants met the classification of severe walking

impairment, based on their baseline preferred 10 MW

speed (<0.4 m/s). Of these, one participant dropped out

entirely from the study on the first day of training, and

another stayed in the study but did not meet the criteria

for study fidelity. Three others needed assistance with

placing the paretic leg backward during training during

the early part of the study. In sum, only two of the six

participants (33%) were able to independently complete

all six BLTT sessions. This finding is akin to previous

walking rehabilitation studies that have reported that

baseline walking severity level may influence training abil-

ity (Burke et al., 2014; Dobkin et al., 2014; Bernhardt

et al., 2016; Boyd et al., 2017), which may be associated

with the magnitude of post-stroke cognitive and physical

limitations in this subgroup, (Kurz et al., 2012; Hawkins

et al., 2018; Chatterjee et al., 2019). Therefore, it is pos-

sible that our BLTT protocol, in its present form, is too

tasking for severely impaired individuals and future pro-

tocols will need modification to further accommodate

those with severe walking impairment.

Overground walking performance

While BLTT is, in theory, a task-based training approach,

its effects extended beyond the improvement in backward

walking ability on the treadmill. Our BLTT paradigm

was associated with clinically meaningful improvement in

overground forward walking speed, step length, cadence

and capacity. Participants also noted an improvement in

other aspects in quality of life measures such as increased

confidence, strength, agility, sleep and mood

(Supplementary Fig. 2). Although this study did not

directly probe mechanisms for BLTT-related change in

walking function, we speculate that factors such as, re-

duction in spasticity (Thorstensson, 1986; Winter et al.,

1989; Schneider and Capaday, 2003; Duysens et al.,

2013; El-Basatiny and Abdel-Aziem, 2015), lower extrem-

ity and core strengthening (Straube et al., 2014), enhance-

ment of peripheral somatosensory signals to spinal and

supraspinal locomotor centres (Takakusaki, 2013; Clark

et al., 2014; Afzal et al., 2017; Takakusaki, 2017) and

increased exercise capacity (Flynn et al., 1994; Macko

et al., 2005; Terblanche et al., 2005) played a role.

Future studies are needed to assess these mechanisms, de-

termine the duration of training-related effects and define

which physiologic factors and rehabilitation pathways

best predict the training outcome.

Transcutaneous spinal direct

current stimulation

From a safety standpoint, tsDCS was well tolerated in

this study and did not result in any observable adverse

effects. This finding is consistent with previous direct cur-

rent stimulation studies in the literature (Antal et al.,

2017).

Although the study was not sufficiently powered to de-

tect significant group differences, our working hypothesis

was that BLTT þ anodal tsDCS group would perform

better than BLTT alone. However, our results showed

the contrary, even after adjusting for baseline differences

in walking speed. Past studies with direct current stimula-

tion applied over the scalp suggest that anodal stimula-

tion enhances the rate and retention of learned motor

task (Nitsche and Paulus, 2000; Reis et al., 2009; Fritsch

et al., 2010; Kadosh et al., 2010; Dayan et al., 2013;

Figure 4 Walking capacity. Mean change in the 6-min walk test (6MWT) at screening baseline (D1), 24-h post-BLTT training, and 2-week

follow-up (D9) (A), (error bar in SEM). Cumulative training-related change (B), and retention of performance at 2-week follow-up (C)

represented as the median and interquartile range.
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Snowball et al., 2013). Likewise, a recent study from our

group, albeit in young and neurologically intact individu-

als, demonstrated that anodal tsDCS over the thoracol-

umbar vertebra enhanced the acquisition rate and

retention of the trained locomotor task (Awosika et al.,

2019).

Herein, we propose two potential explanations for this

unexpected finding. Firstly, while anodal tsDCS at the spi-

nal segmental level is understood to be facilitatory

(Winkler et al., 2010; Lamy et al., 2012; Awosika et al.,

2019), its influence on ascending somatosensory pathways

has been reported as inhibitory (Cogiamanian et al., 2008;

Truini et al., 2011; Lenoir et al., 2018), resulting in a phe-

nomenon known as ‘anodal block’ (Bhadra and Kilgore,

2004; Cogiamanian et al., 2012). Therefore, one possible

explanation for our findings was that anodal tsDCS, in

stroke patients, resulted in the inhibition of ascending sen-

sory axons of the somatosensory pathway, which may

have diminished the degree of proprioceptive feedback

reaching supraspinal locomotor centres during BLTT (Hao

and Chen, 2011; Takakusaki, 2013; Clark et al., 2014; El-

Basatiny and Abdel-Aziem, 2015; Schweizer et al., 2017;

Takakusaki, 2017). While anodal-tsDCS does not appear

to hinder performance in younger and neurologically intact

individuals, it is widely accepted that stroke survivors rely

more heavily on somatosensory processing to maintain

functional gait and balance (Clark et al., 2014; Afzal et al.,

2017); additionally, somatosensation is known to diminish

with age (Callisaya et al., 2008; Chu et al., 2015; Seung-

Uk et al., 2016); therefore, we speculate that our study

population are more likely more susceptible to perturba-

tions of this pathway.

A second explanation may be the inadequate dosing of

anodal tsDCS, which may have led to inhibition, rather

than excitation of spinally mediated locomotion. While

both groups performed similarly in Week 1 training, the

tsDCS group began to experience a decline in the rate of

training-related improvement by the second week of

training, and at follow-up. Along this line, two groups

have reported that direct current stimulation over the

scalp may exhibit a time-dependent switch in stimulus ef-

fect (Batsikadze et al., 2013; Monte-Silva et al., 2013).

While active electrode was placed over the spine, this

paradoxical effect with prolonged and frequent stimula-

tion may have altered the spinal locomotor physiology,

hindering walking performance. Future electrophysiologic

and dosing studies would be useful in testing this work-

ing hypothesis, and help to better elucidate the effects of

tsDCS at the spinal segmental level.

Limitations

Our study could have been strengthened by the addition

of a forward walking training control group, which

would have helped to determine the magnitude of BLTT-

related improvement in forward walking in comparison

to regular overground or forward treadmill training.

With this said, the average change in walking speed

documented in this study was comparable to previous

rigorous rehabilitation studies with much longer training

sessions (Duncan et al., 2011; Mehrholz et al., 2017).

Our conclusions regarding training changes in walking

speed and capacity between groups must be regarded

conservatively, given the between-group differences in

baseline performance. Although these differences were not

statistically significant, the distribution of severity be-

tween groups may have skewed our study results in fa-

vour of the control group. Furthermore, since the

primary aim of this study was on safety and feasibility

and was powered based on our recruitment capabilities,

our study was not designed to detect statistically signifi-

cant differences in walking speed and capacity. Based on

the observation that stroke survivors with severe walking

impairment had more difficulty completing the BLTT

protocol as designed and demonstrated less improvement

in overground walking, walking severity will be an a pri-

ori co-factor in future studies. Moreover, future studies

will determine how stroke lesion type, size, location and

white matter burden influence training and outcomes.

Conclusion
In summary, this study found that BLTT and tsDCS were

both safe and feasible approaches worth further investiga-

tion, as possible approaches to optimize walking recovery

after stroke. Future, well-powered and dosing-related

studies are needed to determine the utility and generaliz-

ability of both approaches, alone or combined, in this

population.
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