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Abstract
Pain is a percept of critical importance to our daily survival. In most cases, it serves both an adaptive function by helping us
respond appropriately in a potentially hostile environment and also a protective role by alerting us to tissue damage. Normally, it
is evoked by the activation of peripheral nociceptive nerve endings and the subsequent relay of information to distinct cortical and
sub-cortical regions, but under pathological conditions that result in chronic pain, it can become spontaneous. Given that one in
three chronic pain patients do not respond to the treatments currently available, the need for more effective analgesics is evident.
Two principal obstacles to the development of novel analgesic therapies are our limited understanding of how neuronal circuits
that comprise these pain pathways transmit and modulate sensory information under normal circumstances and how these circuits
change under pathological conditions leading to chronic pain states. In this review, we focus on the role of inhibitory interneurons
in setting pain thresholds and, in particular, how disinhibition in the spinal dorsal horn can lead to aberrant sensory processing
associated with chronic pain states.
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Inhibitory Interneurons in the Spinal Dorsal
Horn

The dorsal horn of the spinal cord is the principal termination
site of primary afferents that innervate the skin and deeper
tissues of the trunk and limbs and is composed of several
distinct classes of neurons. These afferent fibers engage dis-
crete, modality-specific circuits comprised of spinal interneu-
rons that play important roles in modulating and gating affer-
ent input, and projection neurons that relay the processed in-
formation to higher brain centers [1]. Nociceptive afferents of
various types terminate primarily in laminae I, II, and V, with
the central terminals of thinly myelinated Aδ fibers terminat-
ing in lamina I and V [2], peptidergic C-fibers arborizing in

lamina I and the outer part of lamina II (IIo), and non-
peptidergic C-fibers that express the mas-related G protein-
coupled receptor MrgD (CMrgD afferents) and bind isolectin
B4 (IB4) terminating in mid-lamina II [3, 4]. Low-threshold
mechanoreceptor afferents (LTMRs) terminate in deeper dor-
sal horn laminae, with unmyelinated C-LTMRs arborizing in
the ventral part of lamina IIi, Aδ-LTMRs in lamina IIi and III,
and Aβ-LTMRs in lamina IIi and III [5]. To allow the barrage
to sensory input into the spinal cord to be perceived in context,
afferent input into the central nervous system must be gated
and prioritized—this process is achieved by the action of spi-
nal interneurons. Local interneurons are thought to account for
99% of all neurons in the spinal dorsal horn [6] and can be
subdivided into two principal classes based on their neuro-
transmitter content: excitatory interneurons that release gluta-
mate and inhibitory interneurons that use GABA and/or gly-
cine (Fig. 1). In both the rat andmouse, inhibitory interneurons
account for approximately 25% of neurons in laminae I and II
and 40% of those in lamina III [7–9]. These cells can be
subdivided further into distinct subclasses based on their neu-
rochemical, electrophysiological, and morphological proper-
ties [5, 10–15], but it has yet to be determined whether these
represent functionally distinct populations. Given that the loss
of inhibition in spinal circuits is thought to lead to aberrant
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processing of somatosensory input, the loss of pain suppres-
sion, and the development of a neuropathic pain-like state
[16–18], these interneurons represent an obvious target for
the development of novel pain management therapies. To fa-
cilitate this, we must first define the functional significance of
various inhibitory interneuron subpopulations under normal
conditions and then determine how the circuits contribute to
change under pathological states that lead to chronic pain.

Neurochemical and Molecular-Genetic
Heterogeneity of Inhibitory Interneuron
Populations

GABA acts as the major inhibitory neurotransmitter through-
out most regions of the central nervous system, although
glycinergic neurotransmission predominates in parts of the
sp ina l co rd and b r a i n s t em , and in the r e t i n a .
Immunohistochemical studies in the rat and mouse show that
GABA-immunoreactive (GABA-IR) cells in the spinal dorsal
horn are concentrated in laminae I–III, whereas glycine-IR
cells are rarely seen in laminae I and II, but are common in
laminae III and IV [7, 9, 19–22]. In the rat, inhibitory inter-
neurons account for between 25 and 30% of all cells in lam-
inae I and II, and approximately 40% of those in lamina III [7,
8], with similar patterns being reported in the mouse [9].
Virtually all interneurons in laminae I–III that are enriched
with glycine are also GABA-IR [7–9], and immunolabelling
studies have shown that most axon terminals in this region that
are derived from inhibitory interneurons contain both GABA
and glycine [23–27]. This supports the view that axon termi-
nals of most inhibitory interneurons in laminae I–III of the
spinal dorsal horn co-release both neurotransmitters [28–30],
but whether the resultant inhibition has both GABAergic and
glycinergic components (distinguished pharmacologically)

depends on the presence of corresponding neurotransmitter
receptors at postsynaptic sites.

All dorsal horn inhibitory interneurons are believed to ex-
press the developmental transcription factor Pax2 [31–34].
Inhibitory interneurons in the superficial dorsal horn (laminae
I–II) can be assigned to 5 largely non-overlapping populations
(Fig. 2) on the basis of their expression certain neurochemical
markers: the neuropeptides galanin and dynorphin (which are
co-expressed), neuropeptide Y, neuronal nitric oxide synthase
(nNOS), and the calcium-binding proteins parvalbumin (PV)
and calretinin (CR) [10]. It is important to note that these
markers are not exclusive to inhibitory interneurons, as several
are also expressed by excitatory neurons (dynorphin, nNOS,
calretinin, parvalbumin) or by primary afferents (galanin,
parvalbumin). Recent studies of dorsal horn populations using

Fig. 1 Neurotransmitter heterogeneity of dorsal horn neurons.
Fluorescent in situ hybridization labelling for VGLUT2 (magenta),
GAD1 (green), and VGAT (white) shows excitatory interneurons
(magenta) outnumber inhibitory interneurons (green and white, or white
only) in laminae I–III. VGLUT2-expressing interneurons are common
in laminae I–III. Inhibitory interneurons can be split into three
subpopulations based on their neurotransmitter content: those that express

GABA, those that express glycine, and those that express both GABA
and glycine. In this figure, inhibitory interneurons that only express
GABA, and those likely to co-express both GABA and glycine, show
co-expression for both GAD1 and VGAT (green and white, respectively)
and are common in laminae I–III, whereas cells that express only glycine
are common in lamina IV (insets, yellow asterisks). AM Bell, AJ Todd,
and DI Hughes, unpublished observations

Fig. 2 Neurochemical features of spinal inhibitory interneurons in
laminae I and II. The estimated proportions of all inhibitory interneuron
populations, as defined by their neurochemical profiles, are presented in
the pie chart (modified from reference 10]. Four segments of this chart
(parvalbumin, calretinin, neuropeptide Y, and galanin/dynorphin
populations) correspond well with molecular clusters of inhibitory
interneurons identified in single-cell RNA sequencing studies [12].
Taken together, these datasets provide a means of devising intersectional
strategies to target subpopulations of interneuron with greater precision
than possible previously
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open-ended genetic screening or transcriptomic approaches
provide an unprecedented means of assessing the neurochem-
ical and molecular-genetic profile of spinal interneurons [5,
11, 12]. The findings of one such study in the mouse identified
15 molecularly distinct subtypes of inhibitory neurons when
single-cell RNA sequencing was used to classify dorsal horn
neurons [12], and these largely match the neurochemically
distinct populations identified in the superficial laminae using
immunohistochemical approaches (Fig. 2), with the Gal/Dyn,
NPY, CR, and PV populations corresponding to the Gaba1–3,
Gaba5–7, Gaba8–9, and Gaba 14 clusters. Given that
glycinergic populations cannot be identified with any great
precision [12], this scheme is not definitive, but is nonetheless
an important resource that provides a means of identifying
unique molecular signatures in neurochemically defined neu-
ronal populations. With the ever-increasing development of
new transgenic mouse lines that express site-specific
recombinases (SSRs), we can use such schemes to develop
intersectional strategies in which co-expression of two
recombinases (e.g., Cre and Flp), driven from different genes,
is used to target specific neuronal populations [35, 36]. This
will provide a means of targeting and manipulating neuronal
populations with far greater precision than was previously
possible.

Morphological and Electrophysiological
Features of Inhibitory Interneurons

Morphological heterogeneity among dorsal horn neuron pop-
ulations has been a consistent finding, from early studies using
Golgi labelling [37–39], to more recent studies where the
morphology of individual cells was revealed following
“blind” whole-cell recording in wild-type [13–15, 40, 41] an-
imals and targeted recordings from transgenic mice [42–47].
The morphology of lamina II interneurons has been studied
extensively. The most widely accepted scheme for classifying
these neurons was developed from studies in hamsters [13],
and defined four principal populations: islet, central, vertical,
and radial cells, although ~ 20% of the neurons in their sample
could not be assigned to any of these classes and were de-
scribed as “unclassified.” Central cells were further
subdivided into transient and tonic types, based on their action
potential firing pattern in response to injected depolarizing
current.

Similar morphological populations of lamina II neurons
have been described in various species, including rat [14, 15,
40, 41, 48, 49] and mouse [42, 45, 46, 50]. It is still to be
determined whether we can justifiably use morphological fea-
tures alone as an indicator of whether cells are excitatory or
inhibitory interneurons. A particular limitation is that most
studies have used a purely subjective approach to assign cells
to different morphological classes. Nonetheless, it is generally

accepted that 3 of the classes identified by Grudt and Perl
(radial, transient central, and vertical cells) in most cases cor-
respond to subsets of excitatory interneurons, while islet cells
are invariably inhibitory interneurons. However, it is also clear
that many inhibitory interneurons in lamina II are not islet
cells [46, 51].

Given that a variety of markers commonly used to define
inhibitory interneurons in the dorsal horn can also be
expressed in glutamatergic interneuron populations [5, 12,
45], using the expression of only a single neurochemical
marker to identify neuronal populations can be misleading.
The most widely used scheme for defining spinal interneurons
is based on a system that combines the morphological and
physiological properties of individual cells [13]. In this study,
five morphologically distinct populations (islet, central, radial,
vertical, and unclassified) were proposed, and three principal
patterns of action potential firing were identified, namely ton-
ic-, transient-, and delayed-firing discharge. Similar firing pat-
terns have been described in the rat and mouse spinal cord [43,
50, 52, 53], with five distinct patterns being reported, namely
tonic-, delayed-, and initial burst-firing, along with single
spiking and phasic bursting. The incidence of cells displaying
particular discharge properties appears to be correlated to the
lamina in which the recordings were performed [52] and also
on the holding potential used during these experiments [43,
53], but certain morphologically defined populations also ap-
pear to associate more commonly with certain firing patterns.
For example, islet cells typically display tonic- or initial burst-
firing action potential discharge patterns in response to
depolarizing current injection steps, whereas radial cells, cen-
tral cells, medial-lateral cells, vertical cells, and those cells of
unclassified morphology displayed a range of other firing pat-
terns including transient-, delayed-, and single spike-firing
[13, 43, 45]. Several other studies have also reported similar
correlations between firing patterns and morphology [15, 33,
40, 42], and these have helped propagate a general consensus
that tonic- or initial burst-firing discharge patterns in
representing recordings from inhibitory interneurons, whereas
transient-, delayed-, and single spike-firing patterns are indi-
cators of excitatory interneurons. Attempts to further define
what appear to be homogenous populations by incorporating
additional descriptive criteria can, however, be problematic.
For example, calretinin-expressing cells (CRINs) in the spinal
dorsal horn are largely confined to lamina II and have been
considered to represent a population of excitatory interneurons
[54]. More recently, interrogation of this neurochemically de-
fined population of cells using immunohistochemistry,
targeted whole-cell patch-clamp recordings, and transcripto-
mics have revealed that CRINs are morphologically,
neurochemically, and physiologically diverse [12, 45, 55,
56] and display features found in both excitatory and inhibi-
tory populations (Fig. 3). It therefore remains to be determined
precisely which combinations of features are reliable
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indicators of transmitter content for other cell populations, and
whether these morphological and electrophysiological signa-
tures also apply to spinal neurons in other laminae.

Spinal Inhibition

Inhibitory interneurons in the spinal cord can generate two
distinct forms of synaptic inhibition mediated through the re-
lease of GABA and/or glycine and activation of ligand-gated
ion channels (GABAA and glycine receptors, respectively).
Presynaptic inhibition is a GABA-mediated event resulting
principally from the release of transmitter from axons (or pre-
synaptic dendrites) that synapse with primary afferent termi-
nals to act on GABAA receptors primarily [57–60], although
GABAB receptors have also been implicated in this form of
inhibition on both group Ia muscle afferents and Aβ cutane-
ous afferents [61, 62]. Postsynaptic inhibition results from the
release (or co-release) of GABA and/or glycine at
axodendritic and axosomatic synapses (primarily). While
most inhibitory synaptic events typically have both GABA-
and glycine-mediated components [60, 63–65] similar re-
sponses resulting from purely GABA- or glycinergic trans-
mission have also been reported [66–68], and these support
anatomical studies where axon terminals showing
immunolabelling for only GABA or glycine have been de-
scribed [24, 26, 69–71]. The presence of functional neuro-
transmitter receptors in the postsynaptic membrane will

dictate the type of inhibition mediated at any given synapse,
and the kinetics of these responses may also be highly depen-
dent on the stoichiometry of receptors found at particular syn-
apses [18, 72, 73]. Immunohistochemistry for the β3 subunit
has been used to visualize GABAA receptors at synapses [25,
27], whereas the microtubule-associated protein gephyrin
(which anchors to the β glycine receptor subunit to the under-
lying cytoskeleton) is commonly used to visualize glycine
receptor expression [25, 74–77]. The β3 subunit of the
GABAA receptor and gephyrin colocalize extensively at syn-
apses formed by axon terminals containing both GABA and
glycine [25, 27], but given that gephyrin-expressing synapses
can also be found associated with axons enriched only in
GABA [25, 27, 75], it is now widely considered to be a reli-
able marker of most inhibitory synapses in laminae I–III. The
one notable exception to this generalized rule are axoaxonic
synapses. These types of synapses are found on the central
terminals of most types of primary afferents, with the excep-
tion of peptidergic C-fibers [78], and show immunolabelling
for GABAA receptor subunits but not for gephyrin [79, 80]. A
large-scale single-cell RNA sequencing of dorsal root gangli-
on neurons also shows very low expression levels for the
genes that encode for gephyrin (GPHN), or for any of the
splice variants of glycine receptorα subunits (GLRA1–4) that
supports the view that primary afferents do not express func-
tional glycine receptors [81], as implied in earlier studies
where glycinergic membrane currents could not be shown in
dorsal root ganglion neurons [82]. Furthermore, studies using

Fig. 3 Morphological and electrophysiological diversity within a
neurochemically-defined population lamina II neurons. Targeted whole-
cell patch-clamp recordings were carried out in spinal cord slices
maintained in vitro from a transgenic mouse line where enhanced green
fluorescent protein (eGFP) was expressed in calretinin (CR) interneurons.
(a) The distribution of eGFP-labelled cells mirrors that of calretinin cells
labelled using immunohistochemical approaches (CR-IR). (b) Five

distinct action potential firing patterns were recorded in eGFP cells from
lamina II. (c) The morphological features of recorded neurons were also
determined, with five morphologically distinct groups being recorded, as
well as a group of unclassified cells. The only correlation between
morphology and firing pattern that could be established was that cells
with tonic-firing discharge patterns were always islet cells (and all islet
cells were tonic firing). Modified from reference 45
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optogenetic approaches to define the pharmacological basis of
presynaptic inhibition in both myelinated LTMR afferents (A-
LTMR) from the skin and of proprioceptive afferent groups
have demonstrated that this form of inhibition is insensitive to
strychnine but can be abolished by bicuculline [60, 83],
whereas light-evoked postsynaptic inhibition mediated in un-
identified neurons were sensitive to both antagonists. Taken
together, these findings imply that the action of both transmit-
ters at specific synapses serve important, but as yet largely
undefined, roles in the resultant inhibition, although mecha-
nisms where these transmitters tonically inhibit inhibitory in-
terneurons in laminae I–III of the spinal dorsal horn have been
proposed as being important in separating low-threshold
mechanoreceptive information from pain circuits in lamina I
[84].

At the ultrastructural level, the central terminals of both
non-peptidergic C-fibers and Aδ down hair afferents display
distinctive anatomical features where they form the central
elements of Type I and Type II glomeruli, respectively
[85–87]. These glomerular arrangements provide structural
insights into how the synaptic circuitry of the spinal dorsal
horn is arranged to provide stringent control over the passage
of sensory information into the central nervous system. The
central terminals relay afferent input to spinal neurons by the
release of glutamate at axodendritic synapses, and like most
classes of primary afferents, are subject to presynaptic inhibi-
tion via axoaxonic synapses. Ultrastructural studies using
post-embedding immunogold labelling have shown diversity
of transmitter content within individual axon terminals that
synapse on to both spinal neurons [88] and the central termi-
nals (and postsynaptic targets) of several classes of
functionally-distinct cutaneous primary afferents [24, 26,
69–71]. These show that virtually all axon terminals that form
axoaxonic synapses show immunolabelling for GABA, and
most (but not all) also label for glycine, while inhibitory
axodendritic synapses are typically formed by boutons that
contain glycine, GABA, or both transmitters. These anatomi-
cal observations support earlier reports from electrophysiolog-
ical studies that presynaptic inhibition is mediated through
activation of GABAA (and possibly GABAB) receptors on
the central terminals of primary afferents [57, 61, 63, 89],
whereas postsynaptic inhibition can be mediated by either
GABA or glycine, or the co-transmission of both [65, 84,
90]. Some inhibitory axon terminals form synaptic triads with
the central terminals of primary afferents and dendrites that are
themselves postsynaptic to the primary afferent [91–95], and
these are likely to provide strict control over the passage of
afferent input to postsynaptic dendrites by mediating both pre-
and postsynaptic inhibition simultaneously. Most of the axon
terminals involved in these triadic arrangements contain both
GABA and glycine [24, 26, 69–71], and it is likely that while
both transmitters are released at the axoaxonic and
axodendritic synapses formed by these boutons, glycinergic

inhibition only operates at the axodendritic synapses, given
the absence of functional glycine receptors on primary
afferents.

Cellular Basis and Behavioral Consequences
of Spinal Disinhibition

The importance of spinal inhibition in somatosensory process-
ing was demonstrated in studies where strychnine and
bicuculline (glycine and GABAA receptor antagonists, respec-
tively) were administered via intrathecal routes in rats [16].
This resulted in “a dose-dependent organized agitation re-
sponse to light tactile stimulation,” which resembled tactile
allodynia, a symptom reported by up to half of patients with
neuropathic pain [96]. Tactile allodynia is often resistant to
treatment, meaning that developing novel, more effective ther-
apies presents a pressing clinical need [97]. Subsequent studies
supported these initial findings [98–100], and the selective loss
of spinal inhibition (spinal disinhibition) has been identified as
an important contributor leading to the development of central
sensitization and pathological pain [101–103]. Precisely how
peripheral nerve injury induces spinal disinhibition, and the
resultant effect this has on the activity of spinal circuits, re-
mains a topic of considerable interest and debate (see reviews
104, 105, 106, 107, and 108). One of the most highly contested
hypotheses proposes that peripheral nerve injury leads to se-
lective loss of inhibitory interneurons in laminae I–III of the
spinal dorsal horn through apoptosis [104–108]. However, a
series of detailed anatomical studies have challenged these
views, finding no loss of either GABA- or glycine-
immunoreactive neurons in animals that had undergone partial
peripheral nerve injuries that resulted in signs of neuropathic
pain and showing that apoptosis in the dorsal horn after nerve
injury was confined to microglia [8, 109, 110]. Although it has
been shown that glutamic acid decarboxylase (the enzyme re-
sponsible for GABA synthesis) and mRNA encoding for the
GAD65 isoform is down-regulated following nerve injury
[107, 110, 111], other studies report no reduction of GABA
levels in axon terminals of inhibitory interneurons from lami-
nae I and II in the same partial nerve injury model [27].

Given that a loss of inhibitory interneurons and (or) a loss
of GABA levels in the spinal dorsal horn remain topics of
debate, other alternative mechanisms have been proposed to
explain heightened excitability of dorsal horn circuits in con-
ditions of neuropathic pain. One hypothesis implicates the
downregulation of the chloride ion transporter KCC2 follow-
ing peripheral nerve injury [112–115], brought about by the
release of brain-derived neurotrophic factor (BDNF) from
axotomized afferents [116, 117]. A reduction of KCC2 leads
to disruption in chloride equilibrium, and this reduces the
efficacy of inhibition mediated by the release of GABA and
glycine in pain-transmitting neurons, whereas others have
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proposed that the reduced excitability of inhibitory interneu-
rons and/or loss of their synaptic inputs are additional contrib-
uting factors [118–120].

Although the loss of spinal inhibition has been shown to
allow A-LTMR afferent input to activate pain circuits in lam-
ina I [121, 122], the route(s) through which this is achieved is/
are poorly understood. Two distinct circuits through which
this is achieved have been proposed, although both are gated
by inhibitory PV-expressing interneurons (iPVINs) and in-
volve the aberrant recruitment of vertical cells [60, 123].
Vertical cells have been proposed as likely candidates to fa-
cilitate the recruitment of pain circuits following A-LTMR
activation given that their dendrites extend into lamina III
and receive inputs from myelinated afferents, and their axon
arborizes in lamina I to synapse on projection neurons that
relay information to the spinoparabrachial nucleus [13, 124,
125]. PVINs are found primarily in the inner part of lamina II
and in lamina III [126, 127], andmost of these co-express both
GABA and glycine [128]. These interneurons are known to
play a crucial role in gating A-LTMR input into the spinal
dorsal horn, given that selectively ablating them in naïve mice
induces allodynia-like responses to mechanical stimuli,
whereas chemogenetic activation of these cells in allodynic
mice alleviates their mechanical hypersensitivity [123].
PVINs have been shown to be a source of axoaxonic inputs
on to the central terminals of A-LTMRs [50, 60], and of
axodendritic synapses on to several classes of interneuron
populations known to receive direct input from myelinated
afferents including vertical cells, interneurons that express
the γ-isoform of protein kinase C (PKCγ), and other PV-
expressing cells [124, 129]. The co-release of GABA and
glycine at synapses formed by iPVINs initiates two types of
inhibition (GABA-mediated presynaptic inhibition at
axoaxonic synapses, and postsynaptic inhibition resulting
from the action of both GABA and glycine), and supports
the view that both transmitters play distinct roles in segregat-
ing A-LTMR afferent input from pain circuits and underlie
their involvement in the development of different aspects of
mechanical hypersensitivity [98, 130–133]. The most direct
impact of losing inhibition mediated by PVINs would be the
simultaneous reduction in presynaptic control of A-LTMRs
and postsynaptic inhibition of vertical cells, allowing innocu-
ous tactile inputs to activate lamina I pain circuits [60]. An
additional consequence of losing PVIN-mediated inhibition is
the loss of postsynaptic inhibitory drive to PKCγ interneurons
[123]. These cells play an important role in neuropathic pain
[134] by relaying A-LTMR information to pain circuits via
transient central cells when glycinergic inhibition is compro-
mised [41, 131, 132], and is brought about when PVIN-
mediated inhibition is reduced after peripheral nerve injury
[123].

Precisely how peripheral nerve injury leads to a loss of PV
cell-mediated inhibition has yet to be established. There is no

apparent loss of PV interneurons [60, 123], but whether the
axons of these cells disconnect from their principal synaptic
targets is yet to be resolved. What has become apparent is that
some of the functional properties of PVINs change following
peripheral nerve injury [60]. For example, the amplitude of
current injection needed to maintain tonic firing for the entire
stimulus in tonic-firing PV cells was significantly higher ipsi-
lateral to the nerve injury than for the contralateral side, and
the current-frequency relationship for action potential dis-
charge was also significantly lower on the ipsilateral side.
These changes are likely to result in a reduction of PV cell-
mediated inhibition. An earlier targeted electrophysiological
study of inhibitory interneurons in a GAD67::eGFP mouse
line reported an impaired excitatory drive to GABAergic neu-
rons after nerve-injured mice [135] but no change in either the
excitability or discharge properties of these neurons [118,
119]. When similar experiments were conducted in a PVCre;
Ai9 mouse line, no change in excitatory drive to PV cells was
seen, but distinct differences in the excitability and action
potential firing patterns of these interneurons were reported
[60]. These findings suggest that subtle physiological differ-
ences may become apparent when discrete subpopulations of
inhibitory interneurons are targeted specifically.

Future Directions—Novel Targets

One approach in helping to develop new therapies to tackle
chronic pain states is to establish the functional significance of
discrete neuronal populations in the spinal dorsal horn and
then determine precisely how their associated anatomical fea-
tures or electrophysiological properties change under patho-
logical conditions. Experiments involving topical application
of specific neurotransmitter receptor antagonists in freely
moving animals were the first to establish the importance of
spinal inhibition in somatosensory processing [16, 98–100].
These were followed by a series of in vitro electrophysiolog-
ical studies where the properties of interneuron populations
were recorded under normal or chronic pain conditions [42,
43, 107, 119], and more recently, where the activity of rela-
tively large populations of cells was manipulated in vivo to
determine [131–133, 136, 137]. Given recent technological
advances and a better understanding of neurochemically dis-
tinct populations of spinal interneurons, we now have the
unprecedented means of targeting and manipulating subpop-
ulations of inhibitory interneurons with great precision [5, 11,
12, 36, 138].

For example, manipulating the activity of PV interneurons
specifically in both naïve and nerve-injured mice in vivo has
been instrumental in establishing their role in setting mechan-
ical thresholds [123]. By determining that the inhibition me-
diated by these cells play important roles in gating both A-
LTMR input directly, and the relay of information through
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vertical cells, we find that they are uniquely placed to exert
significant influence on the segregation of innocuous tactile
information from pain circuits [50, 60]. When PV cell-
mediated inhibition is lost, the disinhibition on A-LTMRs will
likely lead to increased recruitment of several excitatory inter-
neuron populations [139–143], and the aberrant recruitment of
the circuits they contribute to in turn may underlie the diffi-
culties we have faced to-date in developing effective therapies
to manage chronic pain states (Fig. 4). Simply targeting one
spinal circuit may not be sufficient to alleviate chronic pain,
but since disinhibition of afferent input is believed to contrib-
ute to the development of several chronic pain states [17] and
lies upstream of these spinal circuits, re-establishing presyn-
aptic control of A-LTMRs in chronic pain states may be a
more effective strategy.

To achieve this selectively with pharmacological ap-
proaches may be challenging given the widespread distribu-
tion and heterogeneity of GABAA receptors in primary affer-
ents and spinal dorsal horn neurons [79, 144], but by re-
engaging specific neuronal populations and their outputs, rath-
er than activating these receptors globally, it may be possible
to restore normal function in experimental animal models with
minimum additional consequences. Inhibition mediated by
PV neurons is necessary to segregate A-LTMR input from
pain circuits, and disinhibition of the circuits they serve is a
significant contributor to the development of mechanical hy-
persensitivity. The loss of PV cell-mediated inhibition does
not result from the death of these cells, but the reported chang-
es in intrinsic electrophysiological properties of these cells
imply that specific channelopathies within PV interneurons
may be an important factor in the development of tactile
allodynia. Although the precise mechanisms underpinning
the changes in firing patterns and excitability seen in PV in-
terneurons have yet to be determined, hyperpolarization-
activated cyclic nucleotide–gated (HCN) channels are one of
many possible targets given that they have been implicated in
many pathological conditions including neuropathic pain

[145–147]. HCN channels play critical roles in setting action
potential firing patterns, and PV cells are known to show a
high prevalence of Ih subthreshold currents and are enriched in
both HCN1 and HCN4 subunits [50, 77]. It is tempting to
speculate that changes in the properties of these channels in
PV interneurons may contribute to the altered properties of
these cells in chronic pain states. For example, a downregula-
tion in HCN1 subunit expression (which confer faster kinetics
on HCN channel complexes) in iPVINs, coupled with an in-
creased expression of the more slowly conducting HCN4 sub-
units, could contribute to the reduced excitability seen in these
cells after nerve injury [60]. Although changes in HCN sub-
unit expression in distinct dorsal horn neuron populations
have yet to be reported following peripheral nerve injury, it
has been shown that mRNA for both HCN1 and HCN2 is
markedly decreased in dorsal root ganglion neurons following
axotomy [145, 148]. Should spinal interneurons undergo sim-
ilar changes, restoring normal HCN subunit expression in
these cells could re-establish spinal inhibition and alleviate
the mechanical hypersensitivity seen in pathological condi-
tions. The widespread expression of various HCN channel
complexes in non-neuronal tissue poses significant problems
when antagonists are administered systemically, but by devel-
oping intersectional strategies to target these channels in spi-
nal interneurons specifically, it is now possible to study their
contribution to the development of chronic pain states in a
variety of animal models. The recent advances made in defin-
ing, targeting, and manipulating discrete neuronal populations
now provide us with unprecedented means of studying dis-
tinct components of neuronal circuits in animal models, and
this generates real hope that more effective treatments for
treating chronic pain will soon be available.
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Fig. 4 The role of inhibitory parvalbumin-expressing interneurons in
gating low-threshold tactile input. Under normal conditions, inhibitory
parvalbumin-expressing interneurons (iPV, green) mediate presynaptic
inhibition of A-LTMR input (red) and postsynaptic inhibition of both
vertical cells (blue, V) and PKCγ-expressing interneurons (blue,
PKCγ). Peripheral nerve injury results in a reduction of iPV excitability
(iPV, grey), leading to spinal disinhibition. The loss of iPV-mediated

inhibition allows A-LTMR input to activate vertical cells directly, and
through a polysynaptic route incorporating PKCγ-expressing
interneurons and transient central cells (TC, blue). Under these
conditions, vertical cells can relay A-LTMR input activate projection
neurons (PN, black) in lamina I and recruit pain circuits. Based on
references 48, 60, 123, 125
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