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Abstract
It is well known that single-gene circuits with negative feedback loop can lead to oscillatory

gene expression when they operate with time delay. In order to generate these oscillations

many processes can contribute to properly timing such delay. Here we show that the time

delay coming from the transitions between internal states of the cis-regulatory system
(CRS) can drive sustained oscillations in an auto-repressive single-gene circuit operating in

a small volume like a cell. We found that the cooperative binding of repressor molecules is

not mandatory for a oscillatory behavior if there are enough binding sites in the CRS. These

oscillations depend on an adequate balance between the CRS kinetic, and the synthesis/

degradation rates of repressor molecules. This finding suggest that the multi-site CRS archi-

tecture can play a key role for oscillatory behavior of gene expression. Finally, our results

can also help to synthetic biologists on the design of the promoters architecture for new

genetic oscillatory circuits.

Introduction
Oscillatory phenomena are an essential feature of biological systems and such behavior is pres-
ent at different levels of the organization of the living matter (cell, tissues, organs and individu-
als). At the intra-cellular level several examples of genes with oscillatory expression are known,
whose periods range from* 40 minutes in the zebrafish somitogeneses [1] to a day in circa-
dian clocks [2]. In general, the mechanism underlying such oscillations is a negative regulatory
loop implemented in a gene-protein interaction network. The complexity of such networks
vary from highly complex ones, as those described for the cell division cycle, or the circadian
rhythm, to the simplest ones which were synthetically implemented in prokaryotic cells [3, 4].
In this sense Stricker et al. have shown that a synthetic single-gene circuit is able to display
oscillatory behavior [5]. It is well known that time delay serves as a source of instabilities which
can lead to oscillations and also to chaotic behavior [6, 7]. The dynamical system theory
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predicts that single-gene circuits with negative feedback loop can exhibit oscillatory gene
expression when they operate with an explicit time delay [8–11], or when such time delay is
implicit in additional steps representing post-transcriptional events [12, 13]. Several processes,
such as: transcript elongation, splicing, translocation, translation and phosphorylation, can
contribute to generate a proper time delay [14]. The resulting period of the oscillation emerges
from the combination of such time consuming processes rather than the sum of the individual
delays, because such processes can occur concurrently. Recently, researchers have assessed
experimentally the contribution of processes such as transcript elongation [15], splice process-
ing [16], and nuclear translocation [17] on the oscillatory behavior. However, the individual
impact of such processes on the dynamics of the circuit is not yet fully understood, offering to
modelers an opportunity to assess them theoretically. In this paper we show an alternative
mechanism able to provide the time delay needed for generate sustained oscillation. This
mechanism is based on transitions between internal states of the CRS rather than in post-tran-
scriptional events. To examine if this mechanism can generate sustainable oscillations per se,
we devise an autorepressive single-gene loop without explicit time delay nor additional post-
transcriptional events. Our analysis show that the proposed mechanism is able to generate
oscillations when operates in a stochastic regime, but not in a deterministic scenario where the
system exhibits a fixed point. This result suggests that the CRS architecture can constitute a
mechanism for noise-induced oscillations (NIO). NIO phenomenon was first reported associ-
ated with stable focus by McKane and Newman [18]. NIO was also reported in a chain of
downstream-coupled Brusselators [19]. Furthermore, Toner et al. have recently shown that
intrinsic chemical fluctuations can also induce concentration oscillations in systems whose
deterministic models exhibit a stable node [20].

Materials and Methods

The model
Our model considers that gene expression is regulated by a tandem of N functionally identical
regulatory binding sites, where the gene product can bind cooperatively inhibiting its own
expression (see Fig 1). This architecture has a biological counterpart in the mouse Hes1 and
Hes7 genes (associated to the somitogenic clocks of mammalians), which negatively autoregu-
late its own expression through three binding sites (an N- and two E-boxes sequences) in the
proximal promoter [21]. In order to emphasize the role of cis-regulatory system dynamics as
an alternative oscillatory mechanism, we do not take into account the translation step. Also, for
simplicity, we consider that the repressor synthesis occurs, at rate a, only when no repressor is
bound to the DNA, and that they are linearly degraded at rate g. In fact, the present model is a
modified version of a previous one with many binding sites [22, 23], by including a negative
feedback loop.

The macroscopic description
The deterministic reaction rate equations for the proposed model can be written as

d~�
dt

¼ S~f ~�
� �

; ð1Þ

where~� is the vector of concentrations, S is the stoichiometric matrix, and~f is a vector func-
tion whose component fj is the rate function of the j-th reaction. In our case ϕi is the fraction of
genes with i = 0, 1, . . ., N bound molecules, and ϕN+1 is the concentration of repressors R,
which will be denoted hereafter by c. For the example of Fig 1, when N = 3, the system
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comprises five chemical species and eight first-order chemical reactions. The stoichiometric
matrix is given by:

S ¼

�1 1 0 0 0 0 0 0

1 �1 �1 1 0 0 0 0

0 0 1 �1 �1 1 0 0

0 0 0 0 1 �1 0 0

�1 1 �1 1 �1 1 1 �1

0
BBBBBB@

1
CCCCCCA
;

and the corresponding deterministic reaction rate equations are:

d�0

dt
¼ �k01�0cþ k10�1;

d�1

dt
¼ �k12�1c� k10�1 þ k01�0cþ k21�2;

d�2

dt
¼ �k23�2c� k21�2 þ k12�1cþ k32�3;

d�3

dt
¼ �k32�3 þ k23�2c;

dc
dt

¼ a�0 � gcþ k10�1 þ k21�2 þ k32�3 � cðk01�0 þ k12�1 þ k23�2Þ;

ð2Þ

Fig 1. Sketch of the autorepressive single-gene loop with three binding sites. The repressor molecules R (red) can bind to regulatory sites (green) on
the DNA inhibiting its own synthesis. Inset: Cascade of reactions where Xi represents the promoter with i bound repressors, and ki, j the transition rates.

doi:10.1371/journal.pone.0151086.g001
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where kij is the kinetic rate between promoter states i and j. Due to cooperativity, previous
binding of a repressor molecule alters the actual binding or unbinding process. Known rela-
tionships between the system’s kinetics and thermodynamic properties allow us to write all
kinetic rates, ks,s+1 and ks+1, s in terms of three parameters [22]: the binding rate p, the unbind-

ing rate q, and � which represents the cooperativity intensity, i.e., (� ¼ e�
DGI
RT , where DGI is the

free energy of the interaction). We consider that the presence of already bound repressors alter
DNA affinities increasing binding rates ks, s+1. Thus, following [22], we can write ks, s+1 =
�s−1(N + 1 − s)p, while ks+1, s = s q. Of course � = 1 indicate the absence of cooperativity. An ana-
lytic exploration by standard linear analysis around the steady state of this system is only
possible for N� 2. However, if the synthesis and degradation processes are much slower
than the CRS kinetics, we can perform a quasi-steady state approximation on ϕi variables, with
i = 0, . . ., N, which allows to write the temporal evolution of the repressors concentration as
_c ¼ a FðcÞ � g c. F(c) is a sigmoidal regulatory function with an effective half-maximum con-
centration Kd, and effective steepness nH. Such simplified system does not present limit cycle
independently on the steepness of the monotonically decreasing regulatory function F.

The mesoscopic description
The macroscopic Eq (1) may be not suitable to describe correctly the gene expression regula-
tion due to the low copy numbers of the involved chemical species. This lead to the necessity of
a stochastic description of the system. To this end we consider stochastic simulations of the ele-
mentary reactions [24], and the strategy based on the linear-noise approximation (LNA). The
LNA is broadly used to study how noise affects reaction networks at the cellular level [25–27].
This approach provides exact predictions for reaction networks composed of zero- and first-
order reactions, or for networks involving second-order reactions and large volumes at con-
stant concentrations. Recently, it has been proved that the precision of LNA predictions can be
extended to a strict class of chemical systems with second-order reactions for all volumes [28].
This approach has been previously used to estimate power spectrum derived from biochemical
circuits [20, 27], and from genetic oscillators [26, 29]. In this approximation the fluctuations~Z
around the mean concentrations Eq (1) are given by [25]:

d~Z ¼ J~ZðtÞdt þBd~WðtÞ; ð3Þ

where J andD ¼ BBT are the Jacobian and diffusion matrices, respectively, and d~W is a Wie-
ner process. Matrices J andD can be computed from the rate equations and from the stoichi-

ometry matrix as Jij ¼
@ Si �~f ~�ð Þð Þ

@�j
; andD ¼ S diagð~f Þ ST [25]. This approximation allow us to

write the autocorrelation function hηi(t)ηi(t+τ)i, in terms of the J andDmatrices, from which
one can estimate the power spectrum.

The power spectrum
In order to assess the oscillatory behavior of the model above, we are interested in compute the
power spectrum of the fluctuations associated with the number of transcripts. This power spec-
trum is computed in two ways. The first one is from the time series derived from stochastic
simulations. In this case, the spectrum is calculated by averaging the 8000 periodograms from
realizations of 820 min length, and then normalizing by the total power. As usual the periodo-
gram was computed using the discrete Fourier transform [30].

As this estimation are computational expensive to explore the parameter space, we have
also used as a second alternative, a closed-form equation for the power spectrum of fluctuations
derived from the autocorrelation function, in the LNA framework [20]. Thus, the power

Noise-Induced Oscillations in a Single-Gene Circuit

PLOS ONE | DOI:10.1371/journal.pone.0151086 March 9, 2016 4 / 12



spectrum of fluctuations associated to i–esima specie is given by:

SiðoÞ ¼
O
p

ð�Jþ I ioÞ�1
Dð�JT � I ioÞ�1� �

ii
; ð4Þ

where O is the volume, and I is the identity matrix. Once determined the spectrum, one impor-
tant issue in the study of stochastic oscillations is to distinguish them from the random fluctua-
tions using the peaks of the spectrum. Therefore, we will consider an oscillation quality
measure [20], Q90% ¼ ô=Do, where ô is the peak frequency of NIO, and Δω is the difference
between the two frequencies at which the power takes its 90% of the peak value. We choose
this formalism for its simplicity, despite of the limitations of its predictions when one is dealing
with low copy numbers of genes, as our case. In this sense, it is important to remark two limita-
tions of the LNA for our purpose: (i) it can significantly underestimate the period and ampli-
tude of the oscillations [26], and (ii) it is able to predict only the main peak of the spectrum
[31]. A more general discussion about the limitations of the LNA for chemical systems can be
found in [32, 33].

Results
To verify if a mechanism based on transitions between internal states of the CRS can generate
sustainable oscillations per se, we perform simulations of the model sketched in Fig 1 at two dif-
ferent descriptive levels. A macroscopic description can be obtained by numerical integration
of Eq (1). In this case, the system presents a damped oscillation before reaching the fixed point
(Fig 2A, red line) for N = 3, p = 1.7 × 10−3 (μMmin)−1, q = 0.75 min−1, � = 9, a = 0.075 μM
min−1, and g = 0.3 min−1 (see parameters values in [8, 22], and references therein). On the
other hand, an exact stochastic simulation of these same reactions exhibits oscillations (Fig 2A,
black lines) similar to the degrade-and-fire oscillations reported in [34] which uses an explicit
time delay model. Oscillations in deterministic single-gene circuits without delay have been
described in Goodwin-like models [14] which differ from the presented here because they con-
sider two additional post-transcriptional steps. However, the oscillatory behavior in the Good-
win model occurs for nH> 8 [12, 35]. This high value of the Hill coefficient at the
transcriptional level has been considered rather unrealistic [14]. The prediction of such high
nH-value could be explained as a consequence of the quasi-steady state approximation underly-
ing to such models and to an inadequate macroscopic-deterministic description. For the case
of a lower cooperativity (Fig 2B, � = 2), where the deterministic system does not exhibit
damped oscillations, the oscillatory-like behavior of the stochastic counterpart is less apparent
and more difficult to be distinguished from noise, as expected for lower cooperativity. The
results above show that the transitions between internal states of the CRS can constitute a
mechanism for noise-induced oscillations in gene expression. Consequently, the CRS architec-
ture can play an important role on oscillatory genetic circuits.

Fig 3 shows the normalized numerical spectrum (black dots) estimated from the exact sto-
chastic simulations displayed in Fig 2 and, for comparison, the corresponding power spectrum
computed by Eq (4) (red curve). The numerical spectrum show peaks, which are more evident
in the case of � = 9 (Fig 3A), where there is a stable focus. On the other hand, the approximated
power spectral densities exhibit only one peak, at ω = 0.37, in the case of � = 9, in good agree-
ment with the power spectrum computed from stochastic simulations. However, the LNA does
not reflect the small peaks that also appear with � = 2 (Fig 3B). The observed discrepancies
between the numerical and the approximate spectrum are due to the limitations of LNA to
describe systems with very low copy number of genes, and due to the high nonlinearity because
of the feedback loop. In the cases of Fig 3, the quality factor for the sustained oscillation case
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(Fig 3A, � = 9) is Q90% = 1.87, while it is not defined for the case with lower cooperativity (Fig
3B, � = 2). Increasing p-value 100-fold in case of � = 9 also leads to oscillations (data not
shown). The periods of the oscillations in Fig 3A (*15 min) are smaller when contrasted with
the fastest oscillations in eukaryotes, however by including other time-consuming steps in the
model, as elongation, protein synthesis and translocation, the oscillation period could increase
significatively.

Beyond showing evidence on NIO phenomenon in a single-gene circuit without explicit
delay, we want to study two key features. The first one is the steepness of the regulatory func-
tion, which is determined both by the intensity of the cooperative binding �, and the number of
regulatory binding sites N. The second one is the interplay between the CRS kinetic and the
rate of synthesis and degradation processes. To unshroud the influence of this relationship, we
scaled the rates of the synthesis and degradation processes with a parameter λ, writing a = λa0,
and g = λg0. Thus, increasing λ speeds up the synthesis/degradation processes in relation to the
CRS, but without altering the mean number of repressor molecules nor the resulting regulatory
function.

Fig 2. Deterministic vs. stochastic descriptive levels. Temporal course of the concentration c (red lines), obtained by numerical integration of Eq (1), and
stochastic trajectories (black lines) of the same system displaying an oscillatory behavior. The parameter values are N = 3, p = 1.7 × 10−3 μMmin−1, q = 0.75
min−1, a = 0.075 μMmin−1, and g = 0.3 min−1. In addition � takes value of 9 for case (A) and 2 for case (B). For stochastic simulations we consider the cell
volume asΩ = 1 × 10−15 l.

doi:10.1371/journal.pone.0151086.g002
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Fig 4A and 4B depict the peak frequency ô and the corresponding quality factor Q90%,
respectively, of the oscillatory behavior as a function of � and λ for the oscillations in the num-
ber fluctuations of repressor. For the parameter values studied here (the same as in Fig 2 with
a0 = 0.075 μMmin−1 and g0 = 0.3 min−1) the oscillation period ranges from 3 to 15 minutes,
reaching the maximum frequency at high values of lambda, i.e. high rates of the synthesis/deg-
radation processes (left panel). However, in this regime the quality of oscillations is poor, as
one can observe in the right panel. The Q90%-factor shows that there is a particular range for
the synthesis/degradation rates, around λ = 2, where the NIO become particularly evident. Fig
4B also shows that the auto-regulatory circuit proposed here can not present clear oscillatory
behavior for slow rates of synthesis/degradation processes (λ< 2). One also can observe from
Fig 4B that increasing � improves the NIO phenomena.

We have also studied what happens when we increase the steepness of the effective regula-
tory function by increasing the number of binding sites, keeping constant all other parameters.
For the case of N = 5, one observes a slight decrease of the peak frequency when increasing �, as
shown in Fig 5. On the other hand, as expected, the Q90%-factor increases markedly when the
number of regulatory binding sites increases, as can be seen in Fig 5B. In this sense, for λ = 1
and moderate � values the Q90%-factor reaches higher values than in Fig 3B. An interesting fea-
ture shown in Fig 5B is that Q90%-factor does not increase monotonically with �. This behavior
can be linked with the fact that fluctuation levels, and probably the width of the peak frequency,
increases with � [23].

Fig 3. Power spectral densities. Normalized power spectral density of the fluctuations of repressor obtained by averaging 8000 periodograms from
stochastic simulations of Fig 2 (black dots), and the approximate normalized power spectral density computed by using Eq (4) (red curve). ô indicates the
peak frequency, and Δω is the difference of the two frequencies at which the power takes the 90% of the peak value. The frequencyω is given in radians per
minute (rad min−1).

doi:10.1371/journal.pone.0151086.g003
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Fig 4. Influence of kinetic rates and cooperativity on oscillations. Peak frequency ô (panel A) and the quality factorQ90% (panel B) as a function of � and
λ, for oscillations in the number fluctuations of repressor. Red dots correspond to the parameter values used in Figs 2 and 3, where λ = 1. See details of the
plot near λ = 1 in S1 Fig.

doi:10.1371/journal.pone.0151086.g004

Fig 5. The number of binding sites enhances oscillatory behavior. Peak frequency ô (panel A) and the quality factorQ90% (panel B) as a function of �
and λ, for oscillations in the number fluctuations of repressor for the same parameter than Fig 4, but withN = 5 instead of N = 3.

doi:10.1371/journal.pone.0151086.g005
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As illustrated by the previous examples, autorepressive single-gene circuit with multi-site
CRS can exhibit oscillatory behavior in a mesoscopic regime without the necessity of explicit
time lagged variables, or post-transcriptional step. The oscillatory behavior illustrated above
can be explained in terms of transitions between the internal states of the CRS, which are able
to buffer time in the same way as additional post-transcripcional steps. In our model the time-
buffering capability is determined by the mean number of sites occupied when there is a high
number of repressor molecules. Consequently, for a given CRS kinetics the expression level of
repressors that reach the system could be an important parameter for NIO development. To
illustrate this idea we consider the same parameters for CRS as in Fig 5, but increasing a0 and
decreasing g0 parameters by the same factor (a0 = 0.15 μMmin−1 and g0 = 0.15 min−1), in
order to increase the expression level. Fig 6 shows that the peak frequency ô is almost the same
as Fig 5A, while the quality factor Q90% gives clear evidence that the oscillatory behavior
becomes much more apparent. Remarkably, in this regime it is possible to find good oscilla-
tions even in the absence of cooperative binding (i.e., � = 1).

Discussion
In summary, we have presented a model that considers a multi-site CRS architecture and
allows to unravel the role of different elements that conform the circuit (binding sites, coopera-
tive interactions, kinetic rates) in the development of sustained oscillatory behavior. Our sto-
chastic analysis reveals that oscillations in the expression level of repressor are feasible in a
broad range of parameters, while the corresponding macroscopic reaction rate equations pre-
dict the existence of stable fixed points. To the best of our knowledge, the existence of

Fig 6. Improving oscillations by increasing the occupancy of all binding sites. Peak frequency ô (panel A) and the quality factorQ90% (panel B) as a
function of � and λ, for oscillations in the number fluctuations of repressor for the same parameter as Fig 5, but with a0 = 0.15 μMmin−1 and g0 = 0.15 min−1.

doi:10.1371/journal.pone.0151086.g006

Noise-Induced Oscillations in a Single-Gene Circuit

PLOS ONE | DOI:10.1371/journal.pone.0151086 March 9, 2016 9 / 12



phenomena NIO has previously been predicted solely in genetic oscillators with explicit time
delay [36, 37].

We find that, the steepness of the regulatory function F plays a key role in NIO develop-
ment. In this sense, both the intensity of the cooperative interaction between transcription fac-
tors and the number of regulatory binding sites on the CRS can enhance the oscillatory
behavior. However, the cooperative interaction is not an essential ingredient because we found
oscillatory behavior even in a total absence of cooperativity. Not trivial behavior in absence of
cooperativity was also reported in genetic toggle switch [38, 39]. This fact is in contrast with a
recent finding about instabilities on spatially extended systems, where cooperative binding is
essential for Turing patterns arising [40]. On the other hand, recent studies have been shown
that Turing patterns can also be promoted by chemical noise [41, 42], in an equivalent manner
to the NIO phenomenon. Furthermore, we show that by increasing the expression level of the
system improves the quality of the sustained oscillations. This effect is derived from the multi-
site CRS architecture, because at higher levels of repressor, the system have more chance to
occupy all binding sites during the resting phase, which in turn increases the implicit delay
[43].

Our finding emphasize the role of the multi-site CRS architecture for naturally occurring
genetic oscillators, such as genes Hes1 and Hes7. The expression of these genes is inhibited by
their own products which can bind to three regulatory binding sites [1], as proposed here. We
have shown that in a multi-site promoter the activation/deactivation process contributes to the
overall time delay and can drive oscillations per se. However, though the periods of the oscilla-
tions reported here are smaller than the period of the segmentation clocks, we expect that lon-
ger periods can be reached by including in the model other time-consuming processes [15–17].

We believe that the use of detailed, and biologically interpretable, CRS model in combina-
tion with stochastic analyses, offers new insights into the nature of these oscillations, especially
in the context of segmentation clocks, as well as potentially aiding in the design of new syn-
thetic biological prototypes.

Supporting Information
S1 Fig. Details of Fig 4. Peak frequency ô (top panel) and the quality factor Q90% (bottom
panel) as a function of �, for three value of λ: 0.75 (red), 1.0 (green) and 1.25 (blue).
(TIF)
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