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A B S T R A C T

Real-time fMRI neurofeedback (rtfMRI-nf) enables noninvasive targeted intervention in brain activation with
high spatial specificity. To achieve this promise of rtfMRI-nf, we introduced and demonstrated a data-driven
framework to design a rtfMRI-nf intervention through the discovery of precise target location associated with
clinical symptoms and neurofeedback signal optimization. Specifically, we identified the functional connectivity
locus associated with rumination symptoms, utilizing a connectome-wide search in resting-state fMRI data from
a large cohort of mood and anxiety disorder individuals (N = 223) and healthy controls (N = 45). Then, we
performed a rtfMRI simulation analysis to optimize the online functional connectivity neurofeedback signal for
the identified functional connectivity. The connectome-wide search was performed in the medial prefrontal
cortex and the posterior cingulate cortex/precuneus brain regions to identify the precise location of the func-
tional connectivity associated with rumination severity as measured by the ruminative response style (RRS)
scale. The analysis found that the functional connectivity between the loci in the precuneus (-6, −54, 48 mm in
MNI) and the right temporo-parietal junction (RTPJ; 49,−49, 23 mm) was positively correlated with RRS scores
(depressive, p < 0.001; brooding, p < 0.001; reflective, p = 0.002) in the mood and anxiety disorder group. We
then performed a rtfMRI processing simulation to optimize the online computation of the precuneus-RTPJ
connectivity. We determined that the two-point method without a control region was appropriate as a functional
connectivity neurofeedback signal with less dependence on signal history and its accommodation of head mo-
tion. The present study offers a discovery framework for the precise location of functional connectivity targets
for rtfMRI-nf intervention, which could help directly translate neuroimaging findings into clinical rtfMRI-nf
interventions.

1. Introduction

Neurofeedback is a noninvasive technique of intervening in human
brain activity (Sitaram et al., 2017). In neurofeedback training, a
feedback signal of on-going brain activation is presented to participants
to help them self-regulate their brain activity through learning to
modulate the signal. A promising application of this intervention is a
clinical treatment of psychiatric disorders via normalization of ab-
normal brain activation as a result of the training (Linhartová et al.,

2019; Stoeckel et al., 2014; Young et al., 2017). Designing a neuro-
feedback protocol involves the identification of the target brain acti-
vation associated with a disorder symptom. In this regard, real-time
fMRI neurofeedback (rtfMRI-nf) has a distinct advantage over other
neurofeedback modalities, such as electroencephalography and/or
near-infrared spectroscopy, in localizing a target region anywhere in
the brain with high spatial resolution. fMRI is also the most popular
neuroimaging method for mapping human brain function as well as
altered function in a disease state. RtfMRI-nf can take advantage of the

https://doi.org/10.1016/j.nicl.2020.102244
Received 24 January 2020; Received in revised form 28 February 2020; Accepted 11 March 2020

⁎ Corresponding authors.
E-mail addresses: mmisaki@laureateinstitute.org (M. Misaki), jbodurka@laureateinstitute.org (J. Bodurka).

1 The Tulsa 1000 Investigators include the following contributors: Robin Aupperle, Ph.D., Jerzy Bodurka, Ph.D., Justin Feinstein, Ph.D., Sahib S. Khalsa, M.D.,
Ph.D., Rayus Kuplicki, Ph.D., Martin P. Paulus, M.D., Jonathan Savitz, Ph.D., Jennifer Stewart, Ph.D., Teresa A. Victor, Ph.D.

NeuroImage: Clinical 26 (2020) 102244

Available online 12 March 2020
2213-1582/ © 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2020.102244
https://doi.org/10.1016/j.nicl.2020.102244
mailto:mmisaki@laureateinstitute.org
mailto:jbodurka@laureateinstitute.org
https://doi.org/10.1016/j.nicl.2020.102244
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2020.102244&domain=pdf


results of such fMRI functional mapping studies to determine the in-
tervention target. The activation measure of rtfMRI-nf can either be
activity at a specific region of interest (ROI), functional connectivity
between regions, or a pattern of multiple regions’ activity
(Watanabe et al., 2017). Thus, with its high spatial specificity and broad
applicability of functional measurement, rtfMRI-nf can be a direct way
of translating neuroscience knowledge into a clinical intervention.

In designing a rtfMRI-nf treatment protocol, abnormal brain activity
associated with a disorder symptom is determined as a neurofeedback
target, with the assumption that normalizing an abnormal brain acti-
vation could alleviate disorder symptoms. Two major approaches have
been used for neurofeedback target determination (Sulzer et al., 2013).
One approach involves referring to previous research characterizing
disease-specific abnormal brain responses to identify a specific anato-
mical location associated with the disease. RtfMRI-nf can take ad-
vantage of the outcomes of abundant neuroimaging research, including
systematic review and quantitative meta-analysis studies, to identify
the neurofeedback target. This approach, however, cannot fully utilize
the high spatial specificity of rtfMRI-nf. The result of a systematic re-
view that summarizes studies with different specific aims based on a
region name of atlas-based nomenclature does not indicate the exact
location of abnormal brain activation. While quantitative meta-ana-
lysis, such as activation likelihood estimation (ALE) (Turkeltaub et al.,
2002), can indicate a coordinate of the region involved in the disease,
meta-analysis usually includes studies with broadly different aims or
tasks. Thus, the identified locus may not be the region of specific
functional abnormality but an overlap of blurred activation maps for
different functions.

Another approach to identifying the rtfMRI-nf target is a functional
localizer scan (Sulzer et al., 2013; Weiskopf et al., 2007). This approach
performs a task that can elucidate a specific functional abnormality in
fMRI and finds a locus of abnormal brain activation for each partici-
pant. This approach has a significant advantage in pinpointing the
personalized target location, and researchers can fully take advantage
of the high-spatial specificity of rtfMRI-nf. However, it is not always
possible to fully utilize this approach since not all diseases have an
established localizer task to identify abnormalities, and some tasks may
not be applicable to patients with severe symptoms. For example,
showing negative pictures repetitively to depressed patients could be
harmful to their mood and possibly worsen their symptoms. Also, if the
abnormality is expressed as a non-activation, we cannot locate the
position of abnormality with a localizer scan (Young et al., 2018).

The present study introduced an alternative approach for data-
driven and process-based neurofeedback target identification based on
big data of resting-state fMRI, specifically for functional connectivity
rtfMRI-nf. The data-driven approach can identify the exact location of
abnormal brain activation by analyzing the original data, which is not
performed in review or meta-analysis studies. Although the approach
based on population data cannot personalize the target location like the
functional localizer, it can identify the location with a non-active or
low-connectivity abnormality through a comparison between disease
and control groups. In addition, a resting-state fMRI scan is applicable
to any patient population and could indicate an abnormality as a
therapeutic target (Yamada et al., 2017).

Furthermore, if the dataset for identifying the target includes sam-
ples with a wide range of symptom spectrum measures across diag-
nostic groups, we can identify the locus of brain activation associated
with symptom dimension. As the NIMH Research Domain Criteria
(RDoC) framework highlighted (Morris and Cuthbert, 2012;
Sanislow et al., 2010), current diagnostic systems for mental disorders
are not based on neurobiological alterations, and the connection be-
tween diagnosis and underlaying neurobiology has not been estab-
lished. The rtfMRI-nf intervention cannot be a full-fledged clinical
treatment with such uncertainty and variability of neurobiological ab-
normality. A process-based framework of rtfMRI-nf (Lubianiker et al.,
2019) has been proposed for precise intervention to accommodate such

neurobiological variability in a diagnostic group. This framework
identifies the neurofeedback target associated with a specific functional
process of pathological abnormality instead of the average difference
between disease and control groups. The data-driven approach can
identify such a process-based target via direct access to the original
data. A functional localizer cannot identify the locus associated with
dimensional abnormality because the abnormality can be characterized
only with a distribution of population data, not with one individual
data point. Taken together, the data-driven process-based approach
could be an optimal way to identify a neurofeedback target to make
good use of the advantage of rtfMRI-nf.

To establish this approach, we need a dataset with large sample size,
including a range of diagnostic groups and comprehensive measures of
functional dimensions. The Tulsa 1000 study provides the ideal dataset
for this purpose (Victor et al., 2018). The dataset includes both healthy
participants and those with a psychiatric diagnosis with comprehensive
measurements of biological and behavioral assessment, including fMRI
and symptom scales. Using this dataset, the present study aimed to
identify the functional connectivity locus associated with a specific
symptom, rumination in mood and anxiety disorder participants, as a
target of future rtfMRI-nf intervention.

Rumination has been defined as “the process of thinking perse-
veratively about one's feelings and problems rather than in terms of the
specific content of thoughts” (Nolen-Hoeksema et al., 2008). Rumina-
tion and associated repetitive negative thinking are a pervasive
symptom observed in multiple psychiatric disorders, including depres-
sion, anxiety, substance abuse, obsessive-compulsive disorder, binge
eating, and self-injurious behavior (McLaughlin et al., 2014; Wahl et al.,
2019). Ruminative response style to a traumatic event also mediates the
development of post-traumatic stress disorder symptoms (García et al.,
2015). Rumination could exacerbate depression symptoms by enhan-
cing the effect of depressed mood with repetitive thinking of negative
thoughts and by interfering with problem solving (Nolen-
Hoeksema et al., 2008). Ruminative response style is also a predictive
factor of major depressive episodes (Spasojevic and Alloy, 2001). These
indicate that rumination is a promising target for treatment to alleviate
disorder symptoms as well as prevent symptom development across
diagnoses. Indeed, cognitive behavioral therapies targeting rumination
showed an effect of decreasing depressive symptoms (Jones et al., 2008;
Schmaling et al., 2002; Watkins et al., 2011).

Neurobiologically, cortical midline structures (Nejad et al., 2013;
Northoff and Bermpohl, 2004) involved in the default mode network
(DMN) have been implicated in rumination and associated self-refer-
ential thinking (Burkhouse et al., 2017; Hamilton et al., 2015, 2011;
Jiang et al., 2017; Johnson et al., 2009; Lois and Wessa, 2016;
Murray et al., 2015; Nejad et al., 2013; Satyshur et al., 2018; Zhu et al.,
2012, 2017). Specifically, two core parts of the structure, the medial
prefrontal cortex (MPFC) and the posterior cingulate cortex/precuneus
(PCC/Prec) regions have been implicated in self-referential processing
as well as pathological rumination due to their abnormal activity
(Cooney et al., 2010; Nejad et al., 2019; Renner et al., 2015) and altered
functional connectivity (Berman et al., 2014; Cheng et al., 2018;
Connolly et al., 2013; Davey et al., 2017; Kuhn et al., 2012;
Philippi et al., 2018; Yuan et al., 2018).

The current study searched for the precise locus of functional con-
nectivity associated with rumination symptom severity for mood and
anxiety disorder patients. The brain areas involved in this search in-
cluded the MPFC and PCC/Prec regions. While studies indicate that
functional connectivity in either the MPFC or PCC/Prec was associated
with rumination, most of the studies used an a priori-defined seed re-
gion based on an anatomical atlas and did not perform a voxel-wise
search for the seed and its connectivity. As these areas are not func-
tionally homogeneous (Andrews-Hanna et al., 2010; Cavanna and
Trimble, 2006; Leech et al., 2012), an a priori definition of the seed ROI
could misidentify the precise location of the connectivity associated
with rumination symptom. While Cheng et al. (2016) and
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Cheng et al. (2018) examined voxel-wise resting-state functional con-
nectivity to find altered connectivity in participants with major de-
pressive disorder compared to controls, they did not search for and
determine connectivity correlated with rumination symptom severity.
They, instead, searched the connectivity with group difference and
evaluated a correlation with rumination in a post-hoc analysis. Thus,
the precise locus of functional connectivity associated with rumination
severity that can serve as a neurofeedback target with high-spatial
specificity has not yet been identified.

To identify the precise location of the functional connectivity as-
sociated with rumination severity, the present study performed a con-
nectome-wide association analysis (Misaki et al., 2018a; Shehzad et al.,
2014). The connectome-wide analysis investigates comprehensive
voxel-wise connectivity associations (Shehzad et al., 2014) utilizing
multivariate distance matrix regression (MDMR) analysis
(Anderson, 2001). This analysis examines voxel-wise connectivity as-
sociation without a priori seed definition. We performed MDMR for
resting-state fMRI data in the Tulsa 1000 study dataset with a regressor
of rumination symptoms derived from the Ruminative Response Styles
(RRS) scale (Nolen–Hoeksema and Morrow, 1991). We supposed that
this analysis could enable us to identify the locus of functional con-
nectivity significantly associated with rumination severity in mood and
anxiety disorders, which can serve as a rtfMRI-nf target.

Additionally, we performed a simulation analysis to design an op-
timal real-time neurofeedback signal, following a framework in-
troduced by Ramot and Gonzalez–Castillo (2018). This optimization
with simulation is an additional benefit of accessing original data when
designing a rtfMRI-nf treatment protocol. The simulation analysis was
performed for the functional connectivity identified in the connectome-
wide analysis described above. Two measures of online functional
connectivity, sliding-window correlation and the two-point algorithm
(Ramot et al., 2017), were evaluated. Through a data-driven search for
the precise location of connectivity associated with rumination severity
and optimization of a connectivity-based neurofeedback signal, we in-
troduced and demonstrated a data-driven, process-based framework of
designing a rtfMRI-nf treatment protocol with precise targeting and an
optimally designed neurofeedback signal.

2. Materials and methods

2.1. Data

Data of 268 participants including a mood and/or anxiety disorder
group (MA; N = 223, 162 females, mean (SD) age = 36 (11) years, 147
participants were medicated) and a healthy control group (HC; N = 45,
23 females, mean (SD) age = 32 (11) years) from the Tulsa 1000 study
(Victor et al., 2018) were used in the analysis. Of the note, the parti-
cipants were selected from the first 500 subjects (exploratory dataset
out of 1000 subjects study cohort) of Tulsa 10,000 study. The diagnosis
was based on an abbreviated version of the Mini International Neu-
ropsychiatric Interview (MINI V.6.0) (Sheehan et al., 1998). MA group
includes participants with either mood disorder symptoms, anxiety
disorder symptoms, or both with MINI. While the majority of their
primary diagnoses were major depressive disorder or general anxiety
disorder, they also included comorbidity of social phobia, posttrau-
matic stress disorder, bipolar disorder, and alcohol dependence. We
included these diagnostically heterogeneous populations following a
trans-diagnostic approach of RDoC to search for a neurobiological basis
of the specific symptom dimension, rumination.

Rumination was evaluated with the Ruminative Response Styles
(RRS) scale (Nolen-Hoeksema and Morrow, 1991). The total score of
RRS as well as its sub-scores of depressive, brooding, and reflective
rumination (Treynor et al., 2003) were used as a regressor for resting-
state functional connectivity patterns in the MDMR analysis. Rumina-
tion is a multidimensional construct and its depressive and brooding
components are considered maladaptive processes associated with

disorder symptoms, while its reflective component could be an adaptive
process (Watkins and Teasdale, 2004). Hence, the neuropathology as-
sociated with depressive and brooding rumination could be a target of
intervention. We also used the depression and anxiety scales in the
Patient Reported Outcome Measurement Information System (PROMIS)
(Cella et al., 2010) to examine their effects on the connectivity pattern.
The MDMR analysis was performed independently for each symptom
scale.

Resting-state fMRI data were collected on a whole-body 3 Tesla
MR750 MRI scanner (GE Healthcare, Milwaukee, WI) with an 8-channel
receive-only head array coil at the Laureate Institute of Brain Research.
Participants were instructed not to move and to relax and rest while
looking at a cross on the screen during an 8-min resting-state scan. A
single-shot gradient-recalled echo-planner imaging (EPI) sequence with
sensitivity encoding (SENSE) was used with imaging parameters of TR/
TE = 2000/27 ms, FA = 78°, FOV = 240 mm, 39 axial slices with
2.9 mm thickness without gap, matrix = 96×96, SENSE acceleration
factor R = 2, sampling bandwidth = 250 kHz. The EPI images were
reconstructed into a 128 × 128 matrix resulting in
1.875 × 1.875 × 2.9 mm3 voxel volume. For anatomical reference, T1-
weighted MRI images with a magnetization-prepared rapid gradient-
echo (MPRAGE) sequence with parameters of FOV = 240 × 190 mm,
matrix = 256 × 256, 120 axial slices, slice thickness = 0.9 mm,
0.9375 × 0.9375 × 0.9 mm3 voxel volume, TR/TE = 5/2 ms, SENSE
acceleration R = 2, flip angle = 8°, delay/inversion time TD/
TI = 1400/725 ms, sampling bandwidth = 31.2 kHz, scan
time = 5 min 40 s, were also acquired.

2.2. Connectome-wide association analysis

Preprocessing of functional images was performed with Analysis of
Functional NeuroImages (AFNI) (http://afni.nimh.nih.gov/afni/). The
initial five volumes were excluded from the analysis. The preprocessing
included despiking, RETROICOR (Glover et al., 2000) and RVT
(Birn et al., 2008) physiological noise corrections, slice-timing correc-
tion, motion corrections, nonlinear warping to the MNI template brain
with resampling to 2 mm3 voxels using the Advanced Normalization
Tools (ANTs) (Avants et al., 2008) (http://stnava.github.io/ANTs/),
smoothing with 6mm-FWHM kernel, and scaling to percent change
relative to the mean signal in each voxel. General linear model (GLM)
analysis was performed with regressors of 12 motion parameters (three
rotations, three shifts, and their temporal derivatives), three principal
components of ventricle signals, local white matter average signals
(ANATICOR (Jo et al., 2010)), 4th-order Legendre polynomials for
high-pass filtering, and censoring TRs with large head motion (>
0.25 mm frame-wise displacement). Voxel-wise residual signals of the
GLM were used for the connectome-wide analysis.

Connectome-wide investigation was performed in two steps; iden-
tification of the seed area with MDMR and a post-hoc traditional seed-
based analysis for the identified seed. The first step examined the as-
sociation between whole-brain patterns of functional connectivity (FC)
from a seed voxel and a symptom scale using MDMR analysis
(Anderson, 2001; Shehzad et al., 2014). We followed the procedure
described in detail in Misaki et al. (2018a), and scripts for the analysis
are available at GitHub (https://github.com/mamisaki/MDMR_fMRI).
Briefly, the processed resting-state fMRI images were down-sampled to
4mm3 voxels, and then the voxels in gray matter regions were ex-
tracted. A connectivity map (z-transformed Pearson correlation) was
made from each voxel to all other voxels. The dependent variable of
MDMR is a distance matrix of the connectivity maps between partici-
pants. The distance of the maps was calculated with Euclidean distance
of the connectivity maps. The MDMR analysis evaluates the association
between the distance matrix and the predictor variables with a linear
model. The model includes a symptom score, group (MA/HC), and their
interaction, as well as gender, medication status, age, and motion
(mean frame-wise displacement) as covariates. The result of MDMR was
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represented with an F value that was the ratio of the variance explained
by a certain regressor relative to the residual variance (Misaki et al.,
2018a; Shehzad et al., 2014). A permutation test was performed to test
the significance of the statistic, in which regressors of interest
(symptom score, group, and their interaction) were orthogonalized with
regard to nuisance regressors, and then the orthogonalized regressors of
interest were randomly permuted (Winkler et al., 2014). Ten thousand
random permutations were performed.

These procedures were repeated for individual voxels within the
MPFC and PCC/Prec regions. The MPFC and PPC/Prec region masks
were extracted from the DMN map obtained from 405 healthy partici-
pants' resting-state fMRI data (Allen et al., 2014) provided at http://
trendscenter.org/data/. One cluster in the MPFC and four clusters in the
PCC and the precuneus in the DMN were used as the MPFC and PCC/
Prec masks, respectively (Fig. 1A). The MDMR analysis was performed
for the MPFC and PCC/Prec regions, separately. The MDMR statistical
map was thresholded with voxel-wise p < 0.005 and cluster-size cor-
rected p < 0.05. Cluster-size corrected p-value was evaluated with the
same permutation procedure as the voxel-wise test.

The MDMR statistical parametric map indicates how much the
whole-brain connectivity pattern for a voxel was associated with ru-
mination symptom severity. From MDMR analysis, we used the sig-
nificant regions as the seed of the following seed-based connectivity
analysis. We note that while the seed search with MDMR was performed
within the MPFC and PCC/Prec masks, connectivity from a seed was
evaluated in the whole brain region. Therefore, the analysis covered the
whole brain connectivity that originated from the MPFC and PCC/Prec
seed regions.

The second step was a seed-based connectivity analysis for the
discovered significant regions of the MDMR statistical map. The ana-
lysis was done for the original resolution functional images. The seed
region (6mm-radius sphere) was placed at a peak location of significant
clusters in the MDMR statistical map. The average signal time-course of
the seed area was used as a reference signal to calculate correlations
with other voxels in the whole brain. Fisher's z-transformation was
applied to the correlation coefficient to make a connectivity map for
each participant. Then, as a second-level group analysis, voxel-wise
linear model analysis was applied to the connectivity maps with the
same design matrix as the MDMR. The statistical map was thresholded
with voxel-wise p < 0.001 and cluster-size correction of p < 0.05. The
cluster-size threshold was evaluated with 3dClustSim in AFNI using a

spatial autocorrelation function model (Cox et al., 2017).
Limiting the search area of MDMR helps increase the sensitivity of

the analysis because the estimation of the null distribution derived from
the permutation test used for family-wise error correction could be
optimized for each region. This sensitivity improvement could be cri-
tical for the discovery because the sensitivity of MDMR analysis is lower
than a seed-based analysis (Misaki et al., 2018b).

2.3. Simulation of online functional connectivity neurofeedback signal

To design an optimal neurofeedback signal for the identified FC
associated with an RRS score, we performed a simulation to calculate
an online real-time FC feedback signal. Here, two methods of online
connectivity neurofeedback signal, sliding-window correlation
(Gembris et al., 2000) and the two-point algorithm (Ramot et al., 2017),
were evaluated. The sliding-window correlation is a z-transformed
Pearson correlation between ROIs within a time window. Widths of a
three- to ten-time points window were evaluated in the simulation. The
window was moved at each TR to calculate the online feedback signal.
The two-point algorithm uses the directionality of the signal change
between the regions to evaluate their connectivity. The feedback signal
is calculated as a binary value; e.g., when a participant is trained to
increase the connectivity, positive feedback (+1) is given if the two
regions have the same change direction (e.g., an increase or decrease);
otherwise, no feedback (0) is given. The original introduction of the
two-point method (Ramot et al., 2017) used a control ROI to cancel a
signal change unspecific to the target connectivity. With the control
ROI, positive feedback is given when the two target regions have the
same change direction as well as that is different from the direction in
the control region. Both versions of the two-point method, with and
without the control ROI, were evaluated in the simulation.

Feedback signals of these online functional connectivity measures
were calculated in a real-time fMRI processing simulation for the
resting-state fMRI data used in the connectome-wide analysis. The si-
mulation was performed on an advanced real-time fMRI data processing
system implementing comprehensive online noise reduction processes
(Misaki et al., 2015; Misaki and Bodurka, 2019). The system performed
slice-timing correction, motion correction, spatial smoothing, signal
scaling, and GLM with regressors of high-pass filtering, six motion
parameters, mean white matter signal, mean ventricle signal, and
RETROICOR (Glover et al., 2000) in real-time online processing. This

Fig. 1. MDMR analysis mask and results. a) Masks of the medial prefrontal cortex (MPFC, red) and the posterior cingulate cortex/precuneus (PCC/Prec, cyan)
regions, where MDMR analysis was performed. b) F-value map of the reflective RRS effect on the connectivity pattern in MDMR analysis in the discovered MPFC
region. c), F-value map of the group by depressive RRS interaction effect on the connectivity pattern in MDMR analysis in the discovered PCC/Prec region. The maps
were thresholded with voxel-wise p < 0.005 and cluster-size corrected p < 0.05.
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system enabled us to obtain a cleaned online fMRI signal in real-time.
The online FC was calculated for this online processed signal.

The optimality of online FC was evaluated with regard to three
criteria, correlation with FC obtained from offline analysis, robustness
to head motion, and timeliness of neurofeedback. Since the identified
FC in the connectome-wide analysis had a significant association with
rumination severity in the offline FC (correlation with whole time-
course signals), an online FC that had a high correlation with the offline
FC should be a better neurofeedback signal. Correlation between the
offline FC and the average online FC neurofeedback signal time-course
was calculated for this evaluation. Robustness to the head motion's
artifact was evaluated with the correlation between the time-course of
the online FC neurofeedback signal and the time-course of the mean
frame-wise displacement within the window of online connectivity
calculation. For the two-point method, the window was defined by the
current and the previous time points. The timeliness of the online FC
was determined by its dependence on the signal history. Dependence on
history is large for methods with more time points; thus, a short-width
sliding-window or the two-point method are preferred in this regard.

3. Results

3.1. Connectome-wide association analysis

Table 1 shows the demographic and symptom profile of the Tulsa
1000 participants used for this analysis. There was no significant dif-
ference in age between the groups. Symptom scales of rumination,
depression, and anxiety were significantly higher for MA than HC. All
the sub-scales of RRS were also significantly higher for MA than HC.

Fig. 1a shows the masks for the MPFC and PCC/Prec regions, where
the MDMR analysis was performed. A significant association between a
symptom scale and the FC was found for reflective RRS and depressive
RRS in the MDMR analysis. Specifically, a significant F value of the
MDMR analysis for the effect of reflective RRS was found in the anterior
cingulate cortex (ACC, x, y, z = −2, 30, 24 mm in MNI) in the MPFC
(Fig. 1b). A significant effect of the group by depressive RRS interaction
was found in the left precuneus (−6, −54, 48 mm in MNI) in the PCC/
Prec (Fig. 1c). No other symptoms and their interaction with the group
showed a significant effect on the connectivity pattern in the MDMR
analysis. Post-hoc seed-based connectivity analysis was performed for
the peak locations of the significant MDMR results.

The second step post-hoc analysis for the ACC seed connectivity
revealed a significant effect of reflective RRS (Fig. 2) at the bilateral
fusiform and inferior temporal area, the bilateral middle frontal region,
the left middle cingulate region, the left medial frontal region, the right
precuneus, the right temporal pole, the right thalamus, and the right
calcarine region. Peak coordinates of the significant clusters are shown
in Table 2. The connectivity between the ACC and these regions was
positively correlated with reflective RRS.

The second step post-hoc analysis for the effect of depressive RRS on

the precuneus connectivity was performed for each of the HC and MA
groups to resolve the significant interaction effect on the precuneus
connectivity. As the aim of this study was to identify the connectivity
associated with pathological rumination, and the variance of RRS
within HC was not large, we focused on the MA group here. A result of
the HC group is shown in supplementary materials (supplementary
figure 1 and table S1). Figs. 3 shows the regions with the precuneus
connectivity significantly associated with depressive RRS for MA. The
MA group had a significant association between depressive RRS and the
precuneus connectivity at the right temporoparietal junction (RTPJ, x,
y, z = 49, −49, 23 mm in MNI) area and the left intraparietal sulcus
(LIPS, −37, −57, 53 mm) region. Connectivity between the precuneus
and these regions was positively correlated with depressive RRS in MA.

These results indicated that pathological rumination in MA was
associated with the precuneus connectivity with the right TPJ and the
left IPS regions. We further examined the association with other RRS
subscales as well as the effect of gender and medication status on these
connectivities. Fig. 4 shows associations between the precuneus con-
nectivity and RRS subscales for the RTPJ and the LIPS regions. Con-
nectivity (z-transformed Pearson correlation) was calculated between
the mean signals of a 6-mm-radius sphere ROI centered at the peak
locations. The RTPJ connectivity with the precuneus had significant
associations with all RRS subscales in the MA group. LIPS connectivity
with the precuneus had a significant association only with depressive
RRS in MA. No significant effect of gender was found on either con-
nectivity when the interaction of gender by depressive RRS was added
in the analysis. When the interaction of medication status by depressive
RRS was added in the analysis, a significant interaction effect of med-
ication by depressive RRS was observed for the RTPJ connectivity
(F = 4.663, p = 0.031). This effect was driven by the larger association
in unmedicated (t = 4.189, p < 0.001) than medicated participants
(t = 1.986, p = 0.048). No significant interaction effect of the medi-
cation on depressive RRS was found for the LIPS connectivity
(F = 0.382, p = 0.537). Considering that all RRS subscales were sig-
nificantly higher for MA than HC (Table 1), these results suggest that
the precuneus connectivity with the RTPJ could be more strongly as-
sociated with the severity of rumination symptoms in MA disorder than
with the LIPS.

We also examined the robustness of the post-hoc result with a split-
data validation analysis. The analysis was performed for the MA group
with the precuneus seed identified by the MDMR analysis. The MA
participants were randomly divided into two sets (N = 112 and 113),
and the seed-based connectivity analysis was performed for each set
independently with the same procedure as above. While the significant
effect was seen only with a less stringent threshold (voxel-wise
p < 0.005) in either set, RTPJ was the only cluster that was overlapped
in both splits of the analysis (supplementary figure 2a). The overlapped
region was included in the result of the original analysis. We also ex-
amined the robustness of the association between RRS and the pre-
cuneus-RTPJ connectivity. The significant RTPJ region in one split was
used to evaluate the connectivity in samples from another split (sup-
plementary figure 2b). When the RTPJ region for the first split was
tested with the second split samples, the RRS association was significant
(t[107] = 2.156, p = 0.033), and when the RTPJ region for the second
split was tested with the first split samples, the RRS association was
close to significance (t[106] = 1.952, p = 0.054). Although sig-
nificance level decreased in a split data, the same trend of the asso-
ciation between the RRS and the precuneus-RTPJ connectivity was re-
plicated in both splits.

3.2. Simulation of online functional connectivity neurofeedback signal

The FC between the precuneus and the RTPJ was determined as a
promising rtfMRI-nf target to relieve the rumination symptoms. We,
therefore, performed a simulation analysis of online FC neurofeedback
signal for this connectivity. Control ROI for the two-point method was

Table 1
Data demographic and symptom scales.

HC mean (SD) MA mean (SD) t-test: MA-HC

N 45, 23
females

223, 162
females

Age 32 (11) 36 (11) t = 1.96, p = 0.054
RRS Total 29.8 (8.0) 55.1 (11.5) t = 17.74, p < 0.001

Depressive 15.5 (4.7) 31.2 (7.1) t = 18.41, p < 0.001
Brooding 6.8 (2.2) 12.7 (3.4) t = 14.70, p < 0.001
Reflective 7.5 (2.7) 11.2 (3.2) t = 8.09, p < 0.001

PROMIS Depression 43.7 (6.2) 60.9 (7.7) t = 16.21, p < 0.001
PROMIS Anxiety 46.2 (7.8) 62.8 (6.4) t = 13.45, p < 0.001

HC: healthy controls; MA: mood and anxiety disorder; RRS: ruminative re-
sponse style; PROMIS: Patient Reported Outcome Measurement Information
System.
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placed at the right precentral region (6mm-radius sphere centered at x,
y, z = 31, −29, 69 mm in MNI), where the correlation between motion
and its connectivity with the precuneus was highest in the cortex. Thus,

controlling the signal change in this ROI could remove the effect of
motion on the FC neurofeedback signal.

Fig. 5a shows the correlations between the offline and online FCs
with the two-point and sliding-window methods in a real-time fMRI
processing simulation. Including the control point in the two-point
method decreased the correlation, and the more time points the online
calculation included, the higher the correlation with the offline mea-
sure was observed. Fig. 5b shows the distribution of correlation be-
tween head motion and online connectivity measures across partici-
pants. The plot indicates that the more time points the online
calculation included, the more participants had a high absolute corre-
lation with motion.

4. Discussion

We performed a data-driven process-based search for a rtfMRI-nf
target of functional connectivity associated with rumination symptoms
using resting-state fMRI data on the cohort of mood and anxiety dis-
order individuals and healthy controls. The connectome-wide associa-
tion analysis revealed that the connectivity between the precuneus
(−6,−54, 48 mm in MNI) and the RTPJ (49,−49, 23 mm in MNI) was
significantly associated with depressive RRS as well as brooding and
reflective RRS in MA, and this association was greater for unmedicated
than medicated participants. The simulation analysis of the online FC
neurofeedback signal for this connectivity indicated that while the
methods with more time points had a high correlation with offline FC,
these also had a high risk of contamination by motion. In addition, a
method with more time points is also not favored in regard to the
timeliness of feedback signal.

While depressive and brooding components, rather than reflective
component of RRS have been associated with the pathological effect of
rumination (Watkins and Teasdale, 2004), the current data indicated
that MA participants had significantly high reflective RRS as well as
depressive and brooding RRS. High RRS in both reflective and brooding
components was also observed in another study (Satyshur et al., 2018).
This observation was consistent with the study indicating that brooding
and reflective rumination were not separate factors in depressed pa-
tients because these components could exacerbate each other in

Fig. 2. Regions with anterior cingulate cortex (ACC) connectivity significantly associated with reflective RRS. The map was thresholded with voxel-wise p < 0.001
and cluster-size corrected p < 0.05.

Table 2
Peak coordinates (MNI) of clusters with the significant effect of reflective RRS
on the anterior cingulate cortex (x, y, z = −2, 30, 24 mm) functional con-
nectivity.

Region x y z t-value

Left fusiform −43 −77 −9 5.072
Right middle frontal 27 23 43 4.578
Left middle Frontal −45 5 57 4.316
Left middle cingulate −15 −19 43 4.682
Left medial Frontal −13 9 49 4.758
Right inferior temporal 53 −69 −5 3.847
Left middle frontal −49 33 27 3.917
Left medial frontal −5 37 45 4.336
Right precuneus 5 −51 49 4.399
Right temporal pole 43 15 −37 4.503
Right fusiform 49 −49 −19 4.237
Right thalamus 17 −21 −11 4.268
Right calcarine 19 −47 5 4.697

Fig. 3. Regions with precuneus connectivity significantly associated with de-
pressive RRS in mood and anxiety disorder (MA) group. The maps were thre-
sholded with voxel-wise p < 0.001 and cluster-size corrected p < 0.05.
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depression (Whitmer and Gotlib, 2011). The significant effect of de-
pressive RRS was found in the FC between the precuneus and RTPJ and
between the precuneus and the left intraparietal sulcus (LIPS) region.
The precuneus–RTPJ FC was significantly associated with all compo-
nents of RRS, while the precuneus–LIPS FC was significantly associated
only with depressive RRS. Considering that all components of RRS were
significantly higher for MA than HC, and each component of RRS could
exacerbate each other in a pathological state, the precuneus–RTPJ
functional connectivity constitutes a promising intervention target for
FC-based rtfMRI-nf to treat pathological rumination.

The TPJ region, especially in the right hemisphere, has been im-
plicated in attentional and social functions, including the theory of
mind and self-other judgment (Eddy, 2016). Specifically, its anterior
part is associated with externally-oriented, stimulus-driven attention
with high connectivity to attentional selection regions, while its pos-
terior part is associated with internally-oriented, stimulus-independent
process with high connectivity to regions for social cognitions
(Bzdok et al., 2013; Mars et al., 2012; Uddin et al., 2010). The RTPJ
region in the present result was included in the posterior part of TPJ in
either parcellation of anatomical connectivity of diffusion tensor ima-
ging (Mars et al., 2012), the task-related meta-analytic connectivity, or
resting-state functional connectivity (Bzdok et al., 2013). Meta-analysis
studies also found that brain activations for social cognitive tasks

overlapped with the DMN regions in the dorsomedial PFC, the pre-
cuneus, and the TPJ areas (Schilbach et al., 2012; Spreng et al., 2009;
Van Overwalle, 2009). These regions coactivated in autobiographical
memory and theory of mind tasks (Spreng et al., 2009). These suggest
that high connectivity between the precuneus and RTPJ could be as-
sociated with thinking of autobiographical events in a social context
that might be associated with exacerbation of negative judgment in
rumination. Coactivation of the precuneus and the TPJ was also re-
ported for the contrast between other- and self-agency conditions, with
higher activation at the other-agency condition (Farrer and Frith, 2002;
Murray et al., 2015). Hence, critical thinking of autobiographical things
with others’ viewpoints, which could amplify rumination severity,
might be associated with a high precuneus–RTPJ connectivity.

This connectivity, however, has not been identified in studies in-
vestigating FCs associated with self-referential processing and rumina-
tion symptoms. Actually, several studies suggest that MPFC was in-
volved in self-referential processing and rumination. The MPFC
implication in self-referential thinking has been indicated in a direct
examination of a self-referential thinking task, which showed that
MPFC activity was high in self-referential thinking relative to a general
thinking condition (Nejad et al., 2019). Interestingly, while RRS was
positively correlated with this activity in healthy participants, it was
negatively correlated with RRS in remitted MDD participants. This

Fig. 4. Associations between the precuneus connectivity and RRS subscales in the right temporoparietal junction (TPJ, a) and the left intraparietal sulcus (IPS, b)
regions for the healthy control (HC) and mood and anxiety disorder (MA) groups. Each point indicates an individual participant. Fitted lines and their 95%
confidence intervals for HC and MA are also shown. t and p values indicate the significance of the linear association between RRS and connectivity for each group.
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decreased MPFC activity associated with high RRS in participants with
a high risk of MDD suggests that the self-recognition process decreased
in the ruminative state. If the present result of increased pre-
cuneus–RTPJ connectivity is linked to thinking with others’ viewpoints
(Farrer and Frith, 2002; Murray et al., 2015), the decrease of MPFC
activity associated with a decreased self-recognition process might be
consistent with the current result. Thus, the precuneus-RTPJ FC might
not be implicated in the self-referential processing itself but could be
related to the process of exacerbating and maintaining pathological
rumination through thinking autobiographical events with critical
others’ perspective.

Alterations in FC associated with rumination have also been in-
dicated for MPFC seed connectivity. Increased resting-state FC between
the MPFC seed and the PCC was correlated with reflective rumination
for female participants with major depressive disorder (MDD)
(Satyshur et al., 2018). This result is partly consistent with the present
result that found the association between reflective RRS and the MPFC
connectivity (Fig. 2, Table 2). Resting-state FC between the dorsal
MPFC seed and the temporal pole was positively correlated with de-
pressive rumination for first-episode treatment-naïve young adults with
MDD (Zhu et al., 2017). Resting-state FC between the MPFC seed and
the left inferior parietal lobule was also positively correlated with the
severity of negative self-focused thought (Philippi et al., 2018). Positive
correlation with negative self-focused thought was also seen for preg-
enual ACC seed connectivity with the dorsolateral PFC, the precuneus,
the inferior parietal cortex, and the paracentral lobule extending to
SMA (Philippi et al., 2018). Resting-state FC for the subgenual ACC
with the right middle and inferior frontal gyrus was negatively

correlated with RRS (Connolly et al., 2013). These results suggest that
MPFC is implicated in self-referential processing and the rumination
process, while the associated FC was not consistent.

We should note that the results of these FC association with rumi-
nation studies cannot be compared to the current result because those
used a priori defined seed ROI, and the analysis for the RRS association
was performed post hoc for the FC with a significant difference between
the depressed and healthy groups. Thus, even though the current effect
has not been found in those studies, they do not contradict the current
result. Also, while the present analysis did not find associations be-
tween depressive rumination and FC in the MPFC, this could be ex-
plained by the low sensitivity of MDMR analysis relative to a seed-based
connectivity analysis (Misaki et al., 2018b). Since the MDMR analysis
could find a significant association only with a large effect, the found
association between the precuneus-RTPJ connectivity and the RRS
should be considered a robust result. In addition, the aim of this ana-
lysis was to discover the rtfMRI-nf intervention target, not to describe
the connectivity affected by the rumination comprehensively. Thus,
finding the FC with a robust association with rumination should be
suitable for the present purpose.

Additionally, we performed simulation analysis to find the optimal
online functional connectivity neurofeedback signal for the precuneus-
RTPJ connectivity. The real-time fMRI processing simulation indicated
a trade-off between the correlation with offline FC and the risk of
motion contamination. The higher correlation with the offline FC for
the methods with more time points was not surprising because the
offline FC includes all time points for its calculation. The higher cor-
relation with motion was because the methods with more time points
had prolonged dependence on signal history, which could spread the
effect of a time point with a significant head motion to many points of
the neurofeedback signal. Dependence of long signal history is also
unfavored regarding the timeliness of the feedback signal. Because a
motion artifact could be critical as a risk of implicit learning of artifact
effect in rtfMRI-nf training (Zhang et al., 2011), and the online rtfMRI-
nf signal should minimize the delay as the fMRI signal already includes
the hemodynamic response delay, a feedback signal with fewer time
points should be preferred. While the correlation with offline FC was
lower for the methods with fewer time points, the observed correlation,
higher than 0.5 (Fig 5a), could be high enough to train the participants
to regulate the target connectivity. As a matter of fact, many rtfMRI-nf
studies demonstrated successful self-regulation training even without a
comprehensive real-time noise reduction process (Heunis et al., 2018),
and the correlation between the online- and offline-calculated signals
was not high when the real-time noise reduction process was not
comparable to the offline one (Misaki and Bodurka, 2019). When we
performed a simulation with only the motion correction in real-time
processing – which is a conventional rtfMRI process used in many
studies – the correlation between the online and offline FC was less than
0.5 even for the highest online FC neurofeedback signal (10-TR sliding-
window). This indicates that an online neurofeedback signal with a
correlation as high as 0.5 with offline-evaluated FC could be enough to
train a participant to regulate the target brain activity. Taken together,
we consider the two-point method or a sliding-window correlation with
short window width as favored to an online FC neurofeedback signal.

For the two-point method, using the control ROI did not help to
reduce the motion effect compared to the two-point method without the
control ROI (Fig. 5b). This result could be attributed to the fact that the
current real-time fMRI processing simulation included a comprehensive
noise reduction process; thus, the additional benefit of controlling
motion was minimal. The control region is employed to ensure the
specificity of the feedback signal to the target connectivity. While we
picked a control region whose connectivity with the precuneus was
correlated with motion, other kinds of unspecific effects on the con-
nectivity, such as breathing, should also be controlled (Weiss et al.,
2020). A single control ROI, therefore, is not enough to reduce all un-
specific effects. However, employing multiple control regions in the

Fig. 5. The results of the real-time fMRI processing simulation. a, Correlation
between the offline and online connectivity measures for the two-point and
sliding-window methods with different window width (w). b, Distributions of
correlations between head motion and online connectivity measures across
participants. The box shows the range of the 1st to 3rd quartile values (inter-
quartile range, IQR) and the extending lines indicate the whole range of values
except outliers (values larger or less than 1.5 x IQR from the edge of the box),
which are indicated with dots. The line in the box shows the median value.
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two-point method complicates the calculation as well as the meaning of
the feedback signal. Indeed, in the simulation, using the control ROI
decreased the correlation with offline FC evaluation for the target,
which was due to a reduced positive feedback frequency with restric-
tion by the control ROI. This suggests that noise reduction in pre-
processing is preferred to using a control ROI. The current real-time
fMRI processing used in the simulation included not only regressors of
motion but also cardiac and respiration noise (RETROICOR), the mean
white matter signal, and the mean ventricle signal. This comprehensive
process could help to reduce unspecific effects on the connectivity and
reduce the necessity of using a control ROI in the two-point method.

The connectome-wide investigation indicated that the precuneus-
RTPJ connectivity was positively correlated with rumination severity.
Hence, the rtfMRI-nf training to treat rumination symptoms should
train a participant to decrease this connectivity. At the rtfMRI-nf
training to decrease FC, the two-point method is more convenient than
the sliding-window correlation because the sliding-window correlation
requires a baseline level of connectivity to present feedback for signal
reduction. Defining baseline connectivity is not a trivial task, though - it
will need a personalized approach. In contrast, the two-point method
does not need a baseline setting because the feedback signal is a binary
value. We can give positive feedback when the two regions have dif-
ferent change directions, and give no feedback when they are the same.
In light of these considerations, we suggest that the two-point method
without control ROI is the most convenient, robust to motion, and
timely online FC neurofeedback method to train a participant to de-
crease FC as far as we use the comprehensive real-time fMRI noise re-
duction process.

Several limitations of this study should be acknowledged. Although
the association between RRS and the precuneus-RTPJ connectivity was
seen specifically for the MA group, this specificity could be due to the
unbalanced number of participants. The present result might be biased
to the MA population, and may not be generalized to rumination for the
preclinical population. With the limitation of the sensitivity of MDMR,
the analysis could detect only the association with a large effect. MDMR
analysis is insensitive to a change in a small region because the analysis
depends on the between-subject distance matrix, which summarizes the
difference between a whole-brain connectivity maps into one distance
measure (Misaki et al., 2018a, b). Permutation test used in the analysis
also limits the sensitivity (Misaki et al., 2019). As the bias-variance
trade-off in model complexity suggested (Bishop, 2007), null distribu-
tion in the permutation test could have large variance with a large
multivariate model fitted to a limited number of samples, which makes
it hard to find a significant effect. Therefore, the absence of a significant
effect in other symptoms does not prove the absence of their effect on
resting-state FC. Limiting the MDMR search within the MPFC and PCC/
Prec areas could also limit the findings. While limiting the search region
has methodological merit in increasing the analysis sensitivity, and
these areas are the most credible regions for searching for association
with rumination, there might be FCs that do not stem from these areas
but have a strong association with rumination symptoms. Nevertheless,
the identified association between RRS and the precuneus-RTPJ con-
nectivity was significant, and this connectivity is a promising target of
rtfMRI-nf that can possibly treat rumination symptoms. We should re-
member that the present result did not describe a comprehensive ab-
normality of resting-state FC associated with rumination but rather
discovered the credible target of rtfMRI-nf intervention to treat rumi-
nation symptoms.

5. Conclusion

The data-driven process-based approach discovered the functional
connectivity locus in the precuneus associated with rumination se-
verity. We showed that the precuneus-RTPJ connectivity is a promising
target of rtfMRI-nf intervention to treat rumination symptoms. The si-
mulation analysis of the online FC neurofeedback signal suggested that

the two-point method without control ROI was robust to motion, less
dependent on the signal history, and convenient for the training to
decrease FC. In future studies, we will examine the utility of rtfMRI-nf
training to reduce the precuneus-RTPJ connectivity with the two-point
method for alleviating pathological rumination.

The present study offers a discovery framework for the precise lo-
cation of functional connectivity targets for rtfMRI-nf intervention. This
framework could identify the target with high spatial specificity and is
applicable to a wide range of symptom dimensions. In the future, the
current approach could help rtfMRI-nf become fully-fledged as a clin-
ical treatment, with a direct application of the neuroimaging result to
clinical interventions focused on improving psychiatric symptoms and
modifying the trajectory of psychiatric disorders.
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