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We consider the long-term relationship between human demog-
raphy, food production, and Holocene climate via an archaeolog-
ical radiocarbon date series of unprecedented sampling density
and detail. There is striking consistency in the inferred human
population dynamics across different regions of Britain and Ireland
during the middle and later Holocene. Major cross-regional
population downturns in population coincide with episodes of
more abrupt change in North Atlantic climate and witness societal
responses in food procurement as visible in directly dated plants
and animals, often with moves toward hardier cereals, increased
pastoralism, and/or gathered resources. For the Neolithic, this
evidence questions existing models of wholly endogenous de-
mographic boom–bust. For the wider Holocene, it demonstrates
that climate-related disruptions have been quasi-periodic drivers
of societal and subsistence change.
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The relationship between human population dynamics, crises
in food production, and rapid climate change is a pressing

modern concern that is in considerable need of higher-
resolution, chronologically longitudinal perspectives. We have
collected a large series of radiocarbon dates from archaeological
sites in Britain and Ireland, which is a globally unique region
because of (i) its high density of archaeological radiocarbon
sampling, (ii) its unusually high proportion of well-identified
botanical and faunal material, and (iii) its balance of dates
from both research projects and rescue archaeology. We con-
sider this high-resolution evidence over four different geo-
graphic regions and a broad Holocene timespan as a proxy for
human demographic variability and subsistence response. We
identify several episodes of regionally consistent population
decline—the later fourth millennium BCE, the early first mil-
lennium BCE, and the 13th–15th century CE, respectively—that
also appear to be associated with episodes of rapid Holocene
climate change toward more unstable, cooler/wetter condi-
tions. We also demonstrate the existence of structured re-
sponses to these changes in the form of altered human food-
production strategies. The most obvious such episodes during
the middle and later Holocene are likely consistent with altered
North Atlantic storm regimes, reduced solar insolation, and climate-
related cultural and demographic impacts across northwestern
Europe.
Archaeological radiocarbon dates typically come from samples

of bone, charred or waterlogged wood, and seeds that are taken
to date specific stratigraphic events in the surviving archaeo-
logical record. When considered in large-scale aggregate, how-
ever, they also provide an anthropogenic signal of changing
overall levels of past human activity and, ultimately, population.
Some commentators highlight taphonomic and investigative
biases in this record, but there is increasing agreement that, if
these biases are controlled for and if the number of available
dates is sufficiently high, an important demographic signal re-
mains (Materials and Methods). While in many areas of the world

the anthropogenic radiocarbon record is insufficient to support
such aggregate treatment, in Britain and Ireland there is a long,
well-resourced tradition of sampling, both from active-mode
academic research and responsive-mode, development-led ar-
chaeology. Furthermore, parts of Britain and Ireland lie toward
the perceived margins of effective European-type agriculture
and thereby can offer many of the same insights on middle and
later Holocene population stability, climate change, and food
production as other North Atlantic islands (e.g., Greenland and
Iceland) but for a much longer and larger history of human
settlement. Therefore we have gathered over 30,000 existing
archaeological dates from British and Irish databases, publica-
tions, and gray literature reports while also recording informa-
tion about sample provenance, context, and material/species
(Fig. 1). The changing intensity of this anthropogenic radiocar-
bon record through time can be modeled via summation of the
postcalibration probability distributions of individual dates
(Materials and Methods).

Results and Discussion
The overall summed distribution (Fig. 1C) shows a dramatic
upswing in radiocarbon dates ca. 4000–3850 BCE that coincides
closely with the first arrival of Early Neolithic cereal agriculture
in Britain and Ireland. Although caution is required in inferring
actual population growth rates directly from rates of change in
summed radiocarbon, the latter values exceed 1% during this
earliest phase, are unlikely to be explained by increased fertility
among farming groups alone, and therefore must be due in part
to migrant farmers from the European mainland, a conclusion
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that is consistent with current archaeological and genetic evi-
dence (1, 2). After this Early Neolithic peak, there follows de-
cline, ca. 3500–3000 BCE, and continued moderate downturn
thereafter. This is followed by slow Late Neolithic and Early
Bronze Age recovery up to a new peak at ∼2000 BCE, for which
there again is a strong isotopic and genetic argument in favor of
significant population replacement by groups from continental
Europe (2–4). After ∼1000 BCE (the last part of the Bronze
Age), there is another striking decline, and, while a higher un-
certainty in the calibration curve at this point inhibits precise
characterization of timing and duration, substantial recovery is
visible again only by ∼400 BCE. The Roman period exhibits a
trough in the aggregate radiocarbon time series that is unlikely to
represent a valid picture in England and Wales due to the far
weaker tradition of dating Roman sites via radiocarbon (instead,
pottery and coinage are typically used for dating during the pe-
riod ∼50–400 CE) but may well be valid in Scotland and Ireland
(see below and Archaeological and Demographic Overview). After
the Roman period, there is evidence for sustained early Medi-
eval growth, followed by an abrupt decline approximately con-
sistent with the demographic collapse surrounding the
historically well-documented episodes of the Great Famine and
Black Death (∼1270–1450 CE).
This radiocarbon record can be further disaggregated into

subregions [following commonly proposed divisions (5)] to con-
sider local consistency with or departure from the pan-regional
pattern (Fig. 2). Restricting comparison to within the post-Mesolithic
period, when dynamics are more abrupt, north/west England/
Wales versus Scotland exhibits the highest pairwise correlation
(with the range among all regional pairs being r = 0.69–0.86), while

Ireland exhibits more volatile dynamics than the others (co-
efficient of variation = 0.52, with the range of the other three
being 0.39–0.42). In addition, the specific local radiocarbon
trends exhibited by a given region in excess or deficit of the
cross-regional pattern typically match very well with that re-
gion’s known archaeological record: such as the very reduced
archaeological evidence from Ireland in the Roman period ∼1–
400 CE and then the sharper-than-average upward Irish growth
∼400–800 CE match periods of peak, archaeologically observed
settlement activity and historically documented Irish monastic
influence abroad (Archaeological and Demographic Overview).
However, it is striking that all four chosen subregions show the
same sharp Early Neolithic demographic peak∼4000–3500
BCE and then a decline, another peak at the beginning of the
Bronze Age ∼2000 BCE, a Late Bronze Age decline ∼1000–800
BCE, a subsequent peak in the Late Iron Age ∼250 BCE, and
then a decline in the later Medieval period ∼1250 CE at the
end of the sequence. The particular cross-regional consistency

Fig. 1. (A) The kernel-smoothed intensity of archaeological radiocarbon
dates from Britain and Ireland showing uneven spatial sampling (the sub-
regions used in Fig. 2 are marked with white borders). (B) The proportion of
dated samples with genus- or species-level identifications. (C) A summed
probability distribution of all dates compared with a 95% Monte-Carlo en-
velope of equivalent random samples drawn from a fitted logistic model of
population growth and plateau.
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Fig. 2. Regional summed probability distributions for (A) south/east England,
(B) North/west England and Wales, (C) Scotland, and (D) Ireland compared with
a 95% Monte Carlo envelope produced by permutation of each date’s regional
membership.
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at these points in the overall time series suggests an exogenous
factor of some kind.
Evidence for an Early Neolithic boom-and-bust in the British

Isles has already been noted by previous research, alongside
explanations stressing a collapse due either to ecological over-
reach by incoming farmers or the abandonment of cereal agri-
culture in response to declining climate conditions (6–8). Fig. 3
compares the radiocarbon record with well-known climate ar-
chives and suggests that an exogenous cause is likely for all three
observed episodes of cross-regional population stagnation during
(i) the end of the Early Neolithic, (ii) the final Bronze Age and
earliest Iron Age, and (iii) the late Medieval, associated with
relatively rapid changes toward more unstable conditions in
Britain and Ireland as well as with colder winters and wetter
summers. In particular, pan-regional demographic decline in
these three episodes is consistent with reduced insolation at
Hallstatt-type grand solar minima [every 2100–2500 y (9–16)].
They are likewise consistent with periodic episodes of increased
terrestrial salt input to the Greenland ice sheet, which in his-
torical periods has been shown to be an excellent glaciochemical
indicator of stormier, winter-like conditions and the increased

dominance of Atlantic westerlies (17–19). Broadly coincident
later Holocene changes are also observable in North Atlantic
oceanic regimes as separately exhibited by increased ice-rafted
surface debris and reduced deep-water contributions (20–22).
This evidence collectively suggests quasi-periodic solar forcing of
atmospheric and oceanic circulation with wider climatic conse-
quences, associated with accentuated Siberian Highs and Icelandic
Lows. We argue that these reorganizations have repeatedly exerted
downward pressure on the human population in certain parts of
northwestern Europe, as evident for three phases of decline in
the high-resolution British and Irish archaeological radiocarbon
record. It is very probable that similarly timed impacts were felt
by human populations in less well-documented parts of Eurasia
[as already partially evident for earlier episodes (23, 24)], albeit
with different expression in local weather patterns, varying local
human response, and ultimately different positive or negative
consequences for local human society. An important proximate
downward-forcing mechanism on human population in Britain
and Ireland is likely to be reduced food production exacer-
bated by fewer growing-degree days for cereal agriculture and
increased risk of crop loss and food insecurity due to storms.
However, social dislocation and intensified epidemic out-
breaks are possible accompanying phenomena. By contrast,
intervening episodes of climatic amelioration may have pro-
vided good conditions for population expansion in certain
areas, with the broadly simultaneous Early Neolithic coloniza-
tion of southern Scandinavia, Ireland, and Britain being one
probable example (25).
Radiocarbon-dated plant and animal food sources further

provide an unusually well-resolved time series of potential
changes in British and Irish food production (Fig. 4), as long as
we are careful to consider the possible confounding effects of
changing human depositional practices with regard to food re-
mains (26). Overall, the summed probability distribution of dates
from starchy food plants (cereals and hazelnuts) broadly matches
the demographic signal observed in the entire radiocarbon
dataset, but in contrast the relative proportion of each plant type
varies significantly. Hazelnuts (Corylus avellana), a key co-
mestible for Mesolithic communities before the arrival of agri-
culture, dominate the starchy plant data up to ∼4000 BCE,
decline in relative popularity with the earliest Neolithic, but then
rebound for half a millennium or more during the Middle-Late
Neolithic (∼3500–2500 BCE) before declining again (for per-
mutation tests, see Food Production). In contrast, wheat (Triti-
cum sp.) is a high-value cereal that first appears and increases
sharply at the very start of the British and Irish Neolithic and
then declines equally sharply by the end of the Early Neolithic.
Much later, during the Bronze Age, its relative presence in the
radiocarbon record grows slowly again to a peak at ∼1000 BCE
before collapsing once more. Barley (Hordeum sp.) is a hardier
cereal species which also arrives as part of the earliest farming
activity and is present throughout later periods. It is less popular
than wheat early on but is far more visible during the Middle-
Late Neolithic period of inferred population downturn (taking
the British Isles as a whole). Oats (Avena sp.) appear in conse-
quential amounts in Britain and Ireland only from the Roman
period but become increasingly popular in the later Medieval
period, partly replacing or complementing barley as a hardier,
lower-risk, lower-status food for both humans and foddered
animals. The use of oats or oat/barley mixes as spring-sown,
back-up crops, especially after initial harvest failures, is also
well known from English manorial accounts in the Great Fam-
ine/Black Death era (27). Radiocarbon samples for individual
food-animal species are fewer and encompass a wider range of
meat, hide, wool, and dairying strategies, not to mention dif-
ferent kinds of deposition. However, comparison between the
proportion of animal and plant food data suggests the greater
importance of animals (as wild food) before the Neolithic and
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Fig. 3. Radiocarbon-inferred population and North Atlantic climate proxies.
(A) Aggregate anthropogenic radiocarbon dates from Britain and Ireland (as
Fig. 1C, the y axis is linear). (B) Total solar irradiance (12). (C) GISP2 potassium
ion density (note descending axis) (17). (D) North Atlantic ice-rafted debris
(note descending axis) (19). Shaded blue zones indicate suggested onset and
duration of cold/wet episodes with the first one, the well-known “8.2 ky”
event before the Neolithic and not addressed directly here.
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then their high visibility (as domesticated herds) again in the
Late Neolithic and Early Bronze Age (with a focus on Bos and
Sus sp.); more complicated and regionally differentiated stock-
keeping strategies emerge from the Middle Bronze Age onwards
(Food Production).
Although subject to changing cultural depositional practice

and representing only a fraction of the wider archaeobotanical
and zooarchaeological record, the above-described highs and
lows of directly dated food species offer a temporally high-
resolution proxy for shifting food-production strategies under
both advantageous and deleterious climate conditions. For ex-
ample, wheat has always been a higher-value, potentially higher-
yield cereal and often was a cash crop in later periods (particu-
larly Triticum aestivum). It is therefore unsurprising that the
proportion of dated wheat samples grows during peak de-
mographic episodes but declines sharply in at least two of the

inferred episodes of demographic stagnation and climate
downturn: the Middle/Late Neolithic and Late Bronze Age/Early
Iron Age. In the former episode (after ∼3500 BCE), barley takes
over as a hardy alternative cereal resource during the initial
phase of demographic decline/stagnation, but then gathered
hazelnuts and cattle herding become dominant strategies during
the later stages and as population slowly rebounds. These indi-
cators are consistent with what we know from larger, indirectly
dated bone and crop samples from environmental archaeology
(Food Production). For the latter episode (after ∼1000 BCE),
changes occur over what appears to be a shorter period, but
again there are proportional increases in barley, animal products,
and possibly hazelnuts and an overall decline in wheat. Un-
derlying the aggregate wheat pattern, however, is also regional
variation, with sharper wheat declines in Ireland and north/west
England, for example, but actually increased wheat proportions
in south/east England. Such gradual regional differentiation is
also a clear feature of land cover and land use from the Middle
Bronze Age onwards, as inferred from British and Irish pollen
archives (Paleoecological Audit). Contrasting patterns of wheat
investment are also potentially consistent with two alternative
responses to harvest failure attested in historical periods:
(i) resource switching to back-up crops in some areas (or by
certain social groups) but also (ii) continued speculation by
others on high-value wheat production as wider demand for it
spikes. South/east England would also be the area that retained
the most amenable weather conditions under climate downturn.
For the Late Medieval period, crop and animal sample sizes
from radiocarbon dates are much lower, and the radiocarbon
evidence therefore is more equivocal, but contemporary docu-
mentary sources point clearly to heavily adjusted plant and ani-
mal husbandry in the period 1270–1450 CE (28). They also offer
an important empirical basis for causal linkages between de-
creased weather stability and lower temperatures, declining food
supply per capita, and further lagged human consequences such
as multiyear famines, human and animal epidemics, widespread
cereal market speculation, labor shortages and agricultural dis-
intensification, increased violent conflict, and overall population
decline (29). Given these linkages, it is striking that while a naive
assumption might be that food production and resource-switching
strategies should have become more successful as populations
became more technologically sophisticated over time, the pop-
ulation consequences of climate downturns appear to be no less
severe, suggesting no major enhanced resilience in later periods
and indeed potentially additional demographic and subsistence
risks for economically integrated, socially stratified, and in-
creasingly nucleated late prehistoric to Medieval societies.

Conclusions
Through a data-intensive approach to the British and Irish ra-
diocarbon evidence, we are able to provide a detailed, long-term
demographic proxy that, among other things, demonstrates at
least three regionally consistent episodes of population downturn.
While other Holocene climate changes may also have had human
impacts in this region, and other European regions need not have
responded in the same way, these shared episodes of demographic
change match quasi-period shifts to more unstable weather re-
gimes in the North Atlantic and well-known solar grand minima.
Furthermore, each downturn across Britain and Ireland was of
varying longer-term consequence, with subsistence responses such
as resource switching and food diversification that varied through
time. Exogenous climatic factors appear more likely to account for
these consistencies than endogenous population over-reach on its
own, although both processes may well have operated in tandem.
In any case, both archaeological and historical evidence suggests
that human action has always played a role in either mitigating or
exacerbating climate-driven effects.
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son). Accompanying permutation tests are provided in Figs. S6 and S7.
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Materials and Methods
A radiocarbon date is a measurement of residual radioactivity in a sample
containing carbon, with the most widely cited measurement being a “con-
ventional radiocarbon age” that has been corrected for carbon isotopic
fractionation (30). This age has a measurement error that is typically as-
sumed to be a Gaussian distribution. Calibrating this radiocarbon age
against observed variability in atmospheric radiocarbon through time [as
documented by known standards, which are mostly tree-ring sequences for
the Holocene (31)] produces a postcalibration probability distribution that is
irregular due to the nonlinear shape of the calibration curve (32). For a re-
gional dataset of many such calibrated probability distributions, it has be-
come commonplace to sum them, under the assumption that a large mass of
probability in certain parts of this aggregate time series offers a proxy for
greater overall anthropogenic activity and higher human population in that
timespan (6). Concerns that certain archaeological sites or site phases have
garnered disproportionate and misleading numbers of dates (e.g., because
they were better-resourced scientific projects) can be addressed by pooling
adjacent dates from the same site and rescaling these subsite clusters before
summing distributions between different sites. In this paper, we cluster
temporally uncalibrated dates from the same site that are within 100 y of
each other via a complete-linkage, agglomerative hierarchical method (33).
Date distributions falling in the same cluster are pooled and divided by the
number of contributing dates in the cluster before these pooled distribu-
tions are aggregated overall. Some software for radiocarbon date calibra-
tion normalize the postcalibration distribution of each date to ensure it
sums to 1 under the curve before summing multiple dates or performing any
other modeling procedure. However, this rescaling leads to not all calendar
dates having an equal probability of occurrence and creates abrupt spikes in
the summed probability distributions at points where the calibration curve is
steep (34). Therefore we have chosen not to rescale the calibrated date
distributions before summation. We address the methodological implica-

tions in greater detail in Supporting Information and consider the alterna-
tive result where dates are normalized. We conclude that the paper’s main
conclusions remain consistent in either case.

To explore the degree to which an observed summed probability distri-
bution is well-described by a theoretical null model of demographic change,
we first fit such a model (e.g., exponential, logistic, uniform) to the observed
data on the calendar scale. In this case, a logistic model was preferred, given
the observed distributional shape and an assumption that there might be an
upper bound to post-Neolithic, pre-Roman population growth. The model of
expected population intensity is then back-calibrated, and a set of conven-
tional radiocarbon ages (equal to the number of observed dates) is simu-
lated proportional to the modeled per C14-year amplitude. These simulated
dates are then calibrated and summed. Repeating this process many times
(e.g., 1,000) provides a global goodness-of-fit test and a 95% critical enve-
lope with which to assess local departures from the theoretical model (6, 35).
A second kind of test used here holds constant the date of a given sample
but shuffles its label (e.g., the geographic region it comes from or the ma-
terial type/species of the sample). This permutation test creates conditional
random sets (e.g., 1,000) and a 95% critical envelope with which to assess
region-specific or species-specific departures from the global trend (33). Such
a technique also addresses the challenge of reduced sample sizes (e.g., for
particular plants), as the resulting envelopes are correspondingly larger in
such cases.
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