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A B S T R A C T   

Background: In-depth analysis of the functional changes occurring in endothelial cells (ECs) 
involved in capillary formation can help to elucidate the mechanism of tumour vascular growth. 
Methods: Appropriate datasets were retrieved from the GEO database to obtain single-cell data on 
LUAD samples and adjacent normal tissue samples. ECs were selected by an automatic annotation 
program in R and further subdivided based on reported EC marker genes. Functional changes in 
different types of capillary ECs were then visualized, and the concrete expression was classified by 
genetic data in the TCGA. Finally, a prognostic model was constructed to predict immunoinfil
tration status, survival and drug therapy effects. 
Results: The LUAD data contained in the GSE183219 dataset were suitable for our analysis. After 
dimensionality reduction analysis and cell annotation, EC general capillary and EC aerocyte 
subsets as capillary specialized phenotypes showed a series of functional changes in tumour 
samples, with a total of 108 genes found to undergo functional changes. Use of CellPhoneDB 
revealed a close interaction of activity between ECs. After integration of TCGA, GSE68465 and 
GSE11969 datasets, the genes obtained were analysed by cluster analysis and risk model con
struction, identifying 8 genes. Drug sensitivity, immune cell and molecular differences can be 
accurately predicted. 
Conclusions: EC general capillary and EC aerocyte subsets are recognized capillary ECs in the 
tumour microenvironment, and the functional changes between them are relevant to the prog
nosis and treatment of LUAD patients and have the potential to be used in target therapy.   

1. Introduction 

Genetic alterations that promote changes in cell function and growth are the foundation of tumour development. However, the 
activity of tumour cells is the basis of tumour progression. As cells are not separate individuals but closely related symbionts, the 
abnormal function of tumour cells can also lead to functional changes in other types of cells that are not cancerous [1–3]. According to 
the tumour microenvironment theory, other cell types that surround tumour cells include immune cells and stromal cells, and the 
former have become increasingly important in many studies [4–7]. Conversely, stromal cells have not received as much attention as 
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immune cells; the reason may be that there are many kinds of stromal cells, that there are various combinations of stromal cells in the 
tissues of each organ, and that each stromal cell has different functions, for example, cancer-associated fibroblasts (CAFs), macro
phages, and endothelial cells. The relationship between CAFs and tumours has been gradually clarified [8–11]. Macrophages are the 
body’s defence system, and their role in phagocytic tumour cells has been clearly defined [12]. Endothelial cells (ECs) can be divided 
into several types according to their function, but their relationship with tumours has not been elucidated. As an important organ of the 
human body, the lungs are responsible for the respiratory and circulatory systems. ECs play a vital role in lung tissue by serving as a 
barrier between the air, blood and stromal tissue; they also rely on their metabolic activity to participate in processes such as 
angiogenesis, inflammation control and white blood cell transport. Lung adenocarcinoma (LUAD) is a type of tumour with a high 
incidence, and LUAD tumour cells inevitably engage in functional interactions with other cells in the microenvironment during tumour 
development and metastasis [13]. ECs in lung tissue play important roles in the tumour microenvironment, and other cells can 
interfere with ECs by affecting physiological activities [14], which may lead to poor treatment response and poor prognosis. Previous 
studies have neglected the changes that occur in ECs during the occurrence and development of LUAD and the impact on the prognosis 
of patients. The main manifestations of LUAD are as follows: first, “ECs in the tumour microenvironment” are a general term for a class 
of cells, and no studies have accurately classified the composing cells; second, “ECs in lung tissue” are involved in many functions, and 
there is no effective means to sort out these cells; and third, there are no relevant studies on the effects of different differentiation types 
of homologous ECs on tumour cells. 

The advent of single-cell RNA sequencing (scRNA-seq) has made it possible to perform specific analyses of cell populations at the 
single-cell level. The main principle of scRNA-seq technology is to use detection tools such as integrated microfluidic chips to obtain 
the contents of individual cells, such as RNA/DNA, proteins, metabolites and other biological macromolecules, through the rupture 
and release of cell membranes. These inclusions were analysed to more thoroughly elucidate the composition and function of the cells. 
In contrast to traditional RNA-sequencing (RNA-seq) methods, which process millions of cells and average potential differences, 
scRNA-seq can reveal the changes that make each cell type unique [15,16]. At present, there are three main methods used to construct 
single-cell transcriptomes: SMART amplification, 10 × Genomics and Andeplete. Using these techniques and in-depth data analysis, we 
can determine cell heterogeneity, changes in gene expression, cell‒cell interactions, cell fate decisions and transcriptional states and 
identify novel cell subpopulations through single-cell analysis. For example, Diether Lambrechts et al. performed an in-depth analysis 
of microenvironmental cells in lung cancer [17], and Nayoung Kim et al. investigated the microenvironment of metastatic LUAD [18]. 
Therefore, single-cell technology can be applied to study the types of ECs contained in the LUAD microenvironment, helping to reveal 
changes in function and impacts on prognosis to deepen the understanding of the role of stromal cells in the tumour microenvironment. 
However, it is not possible to study all endothelial cells based on current techniques. Therefore, it is very important to choose the right 
research object. The newly formed blood vessels in tumours have their own unique structural characteristics, as the tube wall is 
incomplete, without smooth muscle components, and composed of only porous endothelial cells and lamellar basal membranes. 
Studies have shown that these proteins play complex roles in the tumour microenvironment [19,20]. Most of the existing studies have 
focused on pathway research and drug targeting design as a whole; however, which cells in this large group exhibit functional changes 
in the microenvironment and the relationship of these changes with prognosis have not been elucidated. Recently, two homologous 
and differentiated capillary cell types were identified based on the identification of ECs in lung tissue by Jonas C. Schupp et al. [21] and 
the results of the specialized phenotype of vascular ECs by Astrid Gillich et al. [22]. These two types of cells are present mainly in the 
alveoli of normal lung tissue and perform their established functions. Whether the functions of these two kinds of cells change after the 
tissue becomes cancerous, as well as the influence of these changes on LUAD, must be further discussed (Fig. 1). 

In this study, we obtained EC data for tumour tissue and paracancerous tissue after preliminary screening of existing single-cell 
data. Two homologous and differentiated capillary cell types were identified based on the marker genes identified in previous 
studies (FCN3, EDNRB, HPGD, PDPN, COL15A1, VWA1, ACKR1, SOX17, and GJA5) [23]. Some of these genes not only are marker 
genes but are also inextricably related to lung cancer. Among them, FCN3 plays an inhibitory role in LUAD by inducing endoplasmic 
reticulum stress [24]. EDNRB is a potential prognostic marker for patients with LUAD, and it may exert its function by modulating the 
ERK pathway in LUAD patients [25]. Cancer-associated fibroblasts expressing PDPN guide and enhance the local invasion of LUAD 
cells [26]. Reexpression of SOX17 in a lung cancer cell line inhibited Wnt signaling22. However, the direct relationships between lung 
cancer and HPGD, COL15A1, VWA1 and GJA5 have not been determined. The functional changes in the two kinds of capillary cells in 
tumour tissue and adjacent tissues, as well as interactions with other cells in tumour tissue and some genes that have characteristic 
expression patterns, were subsequently examined. The expression of these genes was combined with clinical and gene expression data 
for LUAD patients in the TCGA and GEO cohorts to analyse the correlation with prognosis, and the reliability of the results was verified 
by using multiple R packages. Prognostic models and risk scores were also used to group patients to analyse differences in clinical 

Fig. 1. ECs in the tumor microenvironment (By Figdraw).  
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characteristics, immune infiltration, and drug therapy efficacy and to evaluate clinical practicability. 

2. Methods 

2.1. Data collection and processing 

Single-cell data were obtained from the GSE183219 dataset. For this dataset, ECs and immune cells were removed based on EpCAM 
and CD45 expression, respectively. CD29, which is present on all stromal cells, was used to enrich cells with intact surface markers. 
Sample preparation, processing and library construction of single cells were carried out in accordance with standard procedures. 

2.2. Single-cell sample evaluation and clustering 

Based on the GSE183219 data, 12 LUAD samples and 12 paracancerous tissue samples were extracted. For the tumour samples, 
quality control was carried out for each sample with the following criteria: subset = nFeature_RNA >200 & nFeature_RNA <5000 & 
percent.mt < 20 & nCount_RNA <100000, min.cells = 3, min.features = 200, and the FindVariableFeatures function set to the 
standard value. The FindIntegrationAnchors function was used to find and integrate the anchor points of the samples. The amount of 

Fig. 2. Dimensionality reduction and cluster analysis of samples. Distribution of samples and cell stages in two tissue types (A). The selection range 
of principal components (PCs) (B). Cluster number of single-cell data in tumour tissue and normal lung tissue (C). 
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data to be analysed for a single cell is very large and high-dimensional, involving tens of thousands of cells, which are difficult to 
distinguish during direct analysis; therefore, these high-dimensional data need to be reduced, and feature selection needs to be per
formed. After linear dimensionality reduction through Principal component analysis (PCA), nonlinear dimensionality reduction of t- 
distributed stochastic neighbour embedding (t-SNE) was carried out, and similar cells were clustered after appropriate values of "dims" 
and "resolution" were selected. The information about cell clusters can be better represented by images. This is done through the 
FindIntegrationAnchors, RunPCA and RunTSNE functions in the Seurat package [27]. The distribution of cells in the samples and the 
dimensionality reduction of the cell cycle were subsequently investigated to determine any potential influence on cell classification. 
The same procedure was performed for paracancerous tissue samples. 

2.3. Cell annotation, subpopulation extraction and functional pathway analysis 

The functionality of the SingleR package [28] was used in R to annotate the clusters of cells in consolidated data and extract cell 
subsets annotated as ECs. Then, appropriate values of "dims" and "resolution" were set to recluster the extracted subpopulations, and 
the cluster was further annotated in combination with cell marker genes verified in the literature. Lymphatic ECs were identified on the 
basis of the expression of the canonical lymphatic marker PDPN. Arterial ECs were identified by SOX17 and GJA5. Systemic venous ECs 
were identified by ACKR1, COL15A1 and vWA1 expression. EC aerocytes were identified by EDNRB and HPGD. The EC general 
capillaries were identified by FCN3 [21]. Functional pathway analysis was carried out through the Gene Set Variation Analysis (GSVA) 
program package [29] to assess the functional changes between tumour samples and normal samples. The Seurat, ggrepel [30], and 
ggplot2 [31] packages were used to map DEGs in different types of ECs. 

2.4. Cell communication analysis and expanded sample analysis of endothelial cells 

The CellPhoneDB function module in Python was downloaded, and the cell-to-cell communication relationships between the 
tumour samples and adjacent tissue samples were analysed [32]. In the obtained expression matrix and cell annotation, for the 

Fig. 3. Extraction and recognition of ECs in the microenvironment. Extraction and reclustering of ECs from the tumour tissue microenvironment (A) 
and normal lung tissue microenvironment (B). Expression of marker genes in reclustering of ECs in the tumour microenvironment (C). 

Fig. 4. Identification and functional annotation of ECs. Types of ECs (A), annotations of the top 50 functional pathways (B), and differential marker 
genes for each EC in tumour samples (C). Types of ECs (D), annotations of the top 50 functional pathways (E), and differential marker genes for each 
EC in normal samples (F). 
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interaction of Gene1-Gene2, the expression MEAN of gene1 in "clusterA" and of gene2 in "clusterB" were calculated, and the mean of 
the two was used as the mean. After the labels of the cells were randomly changed, the mean expression of gene1 in "clusterA" and 
gene2 in "clusterB" was calculated according to the new label, and the average mean was subsequently obtained. After this process is 
repeated many times, a mean distribution can be obtained. The position of the MANs in this distribution and the more extreme po
sitions constitute a fraction of the p value (the definition of a p value). Therefore, CellPhoneDB speculates that the significant 
enrichment of ligands between two cell types is essentially based on the amount of receptor expression in one cell type and the amount 
of ligand expression in the other cell type. Subsequently, the "ktplots" package [33] was used in R for a visual graphical display of the 
generated result file. The gene features of the ECs identified in the tumour samples and normal samples were mapped to TCGA data to 
obtain the levels of both EC aerocytes and EC general capillary cells and to analyse the prognostic correlation (CIBERSORT website and 
R). The annotated EC aerocyte and EC general capillary subgroups were extracted from the tumour samples to identify genes 
differentially expressed between the two populations and to classify them as upregulated or downregulated (genes with pval adj >0.05 
were removed). Similarly, this type of data analysis was performed for paracancerous tissues. The genes were classified, and a Venn 
diagram was created to visualize changes unique to the tumour samples. 

2.5. Mutation information and clustering grouping of differentially expressed genes 

Gene mutation information, expression matrix data and clinical feature data of LUAD patients were downloaded from the TCGA 
database to examine mutations in the differentially expressed genes in TCGA LUAD patients obtained by the above procedure. The 
gene expression matrix and clinical features of LUAD patients were downloaded from the GSE68465 and GSE11969 datasets and 
integrated with the TCGA data. Univariate Cox analysis was used to further screen out genes associated with prognosis among the 
differential genes; the correlation of these genes was analysed, and patients with pulmonary glands were grouped based on these genes. 

2.6. Characteristic differences between the types 

The difference in survival between subtypes was analysed with clinical data. Because some of the clinical data in the GEO cohort 
could not be matched with the data in the TCGA cohort, only the information in the TCGA cohort was used to determine differences in 
the characteristics of clinical patients among different subtypes and to determine differences in the expression of differentially 
expressed genes among subtypes. 

2.7. Construction and evaluation of the prognostic model 

First, the reliability of the classification was checked by PCA dimensionality reduction. R was subsequently used to identify genes 
differentially expressed between different subtypes (parameter set as logFCfilter = 1, adj.p.Val.filter = 0.01). Univariate Cox analysis 
was performed for the DEGs, followed by least absolute shrinkage and selection operator (LASSO) regression analysis to screen for 
suitable genes for the construction of prognostic models. These genes were searched in the UALCAN database and the differential 
expression maps between tumor samples and normal samples were downloaded. The model calculation formula was as follows: 
βgene1 × expressiongene1 + βgene2 × expressiongene2 + βgene3 × expressiongene3 + … + βgenen × expressiongenen, where β 

Fig. 5. CellPhoneDB results of ECs in the tumour sample. The degree of association of costimulatory molecules between various endothelial cells 
(A). Intensity of interactions between various endothelial cells (B, D) and quantified heatmaps (C). 
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refers to the coefficient value in the multivariate Cox analysis and Expressiongene refers to the expression level of a gene in patients 
with LUAD. The patients were subsequently divided into a high-risk group and a low-risk group according to the median risk score. The 
combined TCGA and GEO data were grouped using a prognostic model to examine differences in risk scores among subtypes and to 
verify differences in survival and expression of differentially expressed genes between high- and low-risk groups. The patients were 
divided into a training group and a test group. A receiver operating characteristic (ROC) curve was drawn based on the prognostic 
model, and the accuracy of the area under the ROC curve (AUC) was calculated and compared with that of the existing prognostic 
model. Next, a nomogram was constructed to integrate clinicopathological features with risk groups to verify the accuracy of the 
prognostic prediction. A receiver operating characteristic (ROC) curve was also plotted, and the area under the curve (AUC) was 
calculated. 

2.8. Relationships of prognostic models with immune cells and drug therapy efficacy 

The Spearman correlation was used to analyse the correlation between genes in the model and immune cells, as well as the cor
relation between the risk scores of the samples calculated based on these genes and immune cells and stem cells (CIBERSORT in R) 
[34]. The pRRophetic package [35] was used to calculate the relationship between the half-maximal drug inhibitory concentration 
(IC50) of different drugs commonly used in pulmonary glands and the risk score. 

2.9. Statistical analysis 

Statistical analysis and visualization were performed using R (version 4.2.2) and the corresponding R packages. Kaplan-Meier 
survival curves were generated, and univariate and multivariate Cox regression analyses were performed using the "Survival" R 
package. Chi-square tests or Fisher precision tests were used to compare differences in clinical features between the two risk groups. 

Fig. 6. Sample expansion analysis and differential gene change analysis of ECs. The content distribution (A) and difference (B) of various ECs in 
tumour samples and normal samples. EC aerocyte (C), EC general capillary (D), EC systemic - venous (E), lymphatic capillary (F) and unknown EC 
(G) content differences and the survival time curve. Changes in differentially expressed genes in two types of specialized capillary endothelial 
cells (H). 
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The Wilcoxon rank sum test was used to compare differences in continuous variables. Spearman correlation analysis was used to 
evaluate the correlation between the expression of the model genes and the number of infiltrating immune cells. Gene coexpression 
analysis was calculated by Pearson correlation analysis. If not otherwise indicated, a P value < 0.05 was considered to indicate sta
tistical significance. 

3. Results 

3.1. Characteristic distribution of samples and annotated results of cells 

A quality control diagram of the tumour samples and adjacent normal lung tissue samples is shown in Supplementary Material 1. 
Fourteen cell subpopulations were obtained from the tumour samples (parameter set to PCA 20, resolution 0.2; Supplementary Ma
terial 2A), and twelve cell subsets were obtained from the adjacent normal lung tissue samples (parameter set to PCA 20, resolution 
0.2; Supplementary Material 2B) (Fig. 2B and C). The distribution and cell cycle distribution of the tumour samples and adjacent 
normal lung tissue samples are shown in Fig. 2A. ECs from the two types of tissues were screened by singR annotation screening in R 
(Fig. 3A and B), extracted and regrouped. A total of 7 clusters were obtained for the tumour samples, and 8 were obtained for the 
adjacent normal lung tissue samples (parameter set to dims 1:20, resolution 0.2 in FindNeighbors). (Supplementary Material 3). 
Combined with previously published research, the identified EC marker genes were used to distinguish clusters in the tumour (Fig. 3C) 
and adjacent normal lung tissue (Supplementary Material 4) samples. 

3.2. Functional information of different types of EC 

The cell subpopulations were further annotated by marker genes (Fig. 4A and D). In the tumour samples, we identified the EC 
general capillary, EC aerocyte, EC systemic venous, EC arterial, and lymphatic capillary subtypes, although some clusters could not be 

Fig. 7. In-depth analysis of differentially expressed genes in TCGA. Display of mutation information for 108 genes (A). Correlation between 
prognostic differential genes, where purple represents prognostic correlation and green represents positive prognostic correlation (B). Prognostic 
differential genes divided the LUAD patients in TCGA into two groups (C). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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identified. We identified the EC general capillary, EC aerocyte, and EC systemic venous subtypes in the paracancerous tissue samples, 
as well as some unidentifiable clusters. These subpopulations were functionally annotated to assess the difference in function between 
the same type of EC subpopulation in tumour samples and adjacent tissue samples (Fig. 4B and E). The signature genes of these cells are 
shown, and the top 10 genes are labelled in Fig. 4C and F. 

3.3. EC communication, ECs and differential gene screening in LUAD samples 

The relationships of costimulatory molecules with the six types of ECs were determined via CellPhoneDB analysis (Fig. 5A); 
moreover, the interactions between various ECs were also determined (Fig. 5B and D). The number of interactions between different 
ECs was quantified, and a heatmap was drawn (Fig. 5C). By combining the specific genetic characteristics of various ECs with TCGA 
gene expression data, we obtained the proportions and differences between tumour samples and normal samples (Fig. 6A and B). 
However, subsequent survival data analysis failed to reveal a correlation between the EC concentration and survival prognosis, but 
differences in the content of EC general capillaries and EC aerocytes were found in LUAD patients at different time points (Fig. 6C–G). 
Based on the homologous characteristics of the two types of cells as the research background, subsequent differential gene analysis was 
conducted to determine the changes in the DEGs between the tumour tissue and normal lung tissue. The genes differentially expressed 
between the EC general capillary and EC aerocyte subtypes in tumour tissue samples and paracancerous tissues were extracted 
(Supplementary Material 5). The extracted genes were divided into upregulated genes and downregulated genes and intersected 
(Fig. 6H) to obtain 108 genes with differential expression in tumour tissues versus adjacent tissues. 

3.4. Expression of differentially expressed genes in the databases 

Mutation information for the selected genes was displayed using TMB data from the downloaded TCGA database (Fig. 7A). Using 
the TCGA, GSE68465 and GSE11969 datasets, 108 genes were preliminarily subjected to univariate Cox analysis, and 36 genes related 

Fig. 8. Characteristic differences between the two groups. Significant difference in prognosis between the two groups (A). Significant differences in 
immune cell infiltration between the two groups (B). Clinicopathological features and gene expression between the two groups (C). The KEGG 
pathway distribution was different between the two groups (D). 
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to prognosis were screened out. In addition, risk and favourable genes among these genes, as well as their correlation properties, 
including positive and negative correlations, were obtained through a drawn circle diagram (Fig. 7B). These genes were subsequently 
used to classify LUAD patients into two groups (Fig. 7C). 

Fig. 9. The division of risk groups and the relationship between risk groups and cluster groups. Dimension reduction analysis between cluster 
groups (A). LASSO regression analysis of different genes between groups (B, C). Significant prognostic differences between risk groups in the total 
data (D), training set (E) and test set (F). Obvious differences in risk scores among cluster groups (G). Differential expression of genes among risk 
groups (H). 

Table 1 
Multivariate Cox proportional hazards regression 
analysis.  

Gene coefficient value 

NDRG1 0.17014 
GSTA3 − 0.22152 
NPAS1 0.32838 
FAIM2 − 0.14953 
CHEK1 0.28621 
ABAT − 0.34306 
CD19 − 0.14815 
PTPRCAP − 0.08262  
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3.5. Differences in clinical features between tumour subtypes 

As described above, LUAD patients were defined as type A or type B, and analysis of prognostic expression data revealed prognostic 
differences between the two types of LUAD (P < 0.001) (Fig. 8A). By using the single-sample gene set enrichment analysis (ssGSEA) 
calculation score on the sample integration data from the TCGA and GEO cohorts, differences in immune infiltration between type A 
and type B patients were found (Fig. 8B). By comparing the clinicopathological feature data (smoking status, stage, sex, age) of the two 
subtypes, as well as the expression of the above 36 genes, it can be concluded that there are obvious differences in these features 
between the two subtypes (Fig. 8C). Smoking history was defined as follows: a lifelong nonsmoker (<100 cigarettes smoked in life
time) = 1, current smoker (including daily smokers and nondaily smokers or occasional smokers) = 2, current reformed smoker for 
>15 years = 3, current reformed smoker for ≤15 years = 4, current reformed smoker, duration not specified = 5). Because the TCGA 
data could not be synchronized with the GEO data, only relatively comprehensive TCGA data were used. GSVA revealed significant 
differences in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between the two groups of patients, with the "CAL
CIUM SIGNALING PATHWAY" exhibiting significantly greater enrichment in the B type and the opposite occurring for the other 
pathways (Fig. 8D). 

3.6. Applicability and accuracy of the prognostic model 

By dimensionality reduction of the A and B classification data, the degree of dispersion was shown to be appropriate, indicating that 
the classification was accurate (Fig. 9A). After LASSO regression analysis (Fig. 9B and C), suitable and reliable genes were selected for 
construction of a prognostic model consisting of eight genes (ABAT, CD19, CHEK1, FAIM2, GSTA3, NDRG1, NPAS1, and PTPRCAP) 
obtained by proportional risk regression analysis (Table 1). Differential expression maps for these genes in Supplementary Material 6. 
Risk score = (0.17014 × expression of NDRG1) + (− 0.22152 × expression of GSTA3) + (0.32838 × expression of NPAS1) +

Fig. 10. Performance prediction of the prognostic model and construction of the nomogram. Prognostic model AUC values for survival at 1, 3, and 5 
years in the total dataset (A), training set (B) and test set (C). The constructed nomogram (D), its AUC values for survival at 1, 3, and 5 years (E) and 
validation results (F). 
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(− 0.14953 × expression of FAIM2) + (0.28621 × expression of CHEK1) + (− 0.34306 × expression of ABAT) + (− 0.14815 ×
expression of CD19) + (− 0.08262 × expression of PTPRCAP). The patients were divided into risk groups based on the prognostic 
model, and the survival time between the high-risk and low-risk groups significantly differed (Fig. 9D). The data were also divided into 
training and test sets, and the difference in prognosis between the high-risk and low-risk groups was also evaluated (Fig. 9E and F). The 
difference in risk scores between the type A and B groups is depicted in Fig. 9G. Among the 36 genes involved, 35 exhibited differences 
in expression between the high- and low-risk groups (Fig. 9H), although the difference in KLF4 expression was not statistically sig
nificant. According to the prognostic model, the area under the curve (AUC) for survival at 1, 3, and 5 years was 0.729, 0.723, and 
0691, respectively (Fig. 10A), with better survival in the training cohort (0.752, 0.767, and 0.766, respectively) (Fig. 10B) and slightly 
worse survival in the test cohort (0.704, 0.676, and 0.617, respectively) (Fig. 10C). Comparisons with other models are shown in 
Supplementary Material 7. Clinicopathological features were combined with the risk score to construct a nomogram (Fig. 10D), and 
the prediction of survival at 1, 3, and 5 years matched the real survival time, as illustrated in Fig. 10F; the area under the curve (AUC) 
for survival at 1, 3 and 5 years was 0.735, 0.740 and 0.659, respectively. The data used herein are only clinically relevant from the 
TCGA cohort (Fig. 10E). The reason is that the available data on clinicopathological features in the GEO cohort are not comprehensive 
enough. 

3.7. Immunological correlation and drug treatment differences 

The CIBERSORT results showed that the 8 genes composing the prognostic model had different associations with cells involved in 
the immune response; among these genes, CHEK1 had the strongest correlation with activated memory CD4+ T cells, and FAIM2 had 
the weakest correlation with immune cells. However, FAIM2 was the only gene associated with regulatory T cells (Tregs) (Fig. 11A). 
The risk score calculated by the model correlated positively with activated dendritic cells, M0 macrophages, resting NK cells, activated 
memory CD4+ T cells, and CD8+ T cells. In contrast, the proportions of memory B cells, resting dendritic cells, resting mast cells, 
monocytes, activated NK cells, resting memory CD4+ T cells, and follicular helper T cells were negatively correlated (Fig. 11B). The 
number of tumour stem cells also correlated positively with the risk score (Fig. 12A). Compared with those in the high-risk group, the 
low-risk group exhibited good sensitivity to cisplatin, docetaxel, gemcitabine, paclitaxel, etoposide, and vinorelbine and poor sensi
tivity to axitinib, ABT-888, and ATRA (Fig. 12B–J). 

4. Discussion 

Here, we present a detailed map of ECs in the LUAD microenvironment. We optimized marker genes of different ECs based on the 
results of previous studies. By elucidating the relationships between differences in vascular EC differentiation and the occurrence and 
development of LUAD, we have provided a better understanding regarding the importance of the stromal microenvironment in tumour 
research. By establishing these effects in the form of differences in clinical data, reasonable research directions can be explored. 

Fig. 11. Combined analysis of the prognostic model and immune infiltrating cells. The relationship between genes and immune cells in the con
struction of the prognostic model (A). Relationship between risk grouping and immune cells (B). 
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There are many kinds of cells, and under comprehensive analysis of the existing data, these cells can be identified and classified 
only to a certain extent. The role of different capillary differentiation types in the LUAD microenvironment, as well as their prognosis 
and efficacy, are the focus of our research. After analysing the existing data, we identified five types of ECs in the microenvironment in 
tumour samples and three types of ECs in normal lung tissue samples based on the expression of marker genes. Among these different 
types of ECs, we found that the EC general capillary, EC aerocyte, and EC systemic venous subtypes can be well distinguished in the two 
different tissues. The EC general capillary and EC aerocyte subtypes are derived from bipotent progenitors. The EC general capillary 
subtype functions in the lung to regulate vasomotor tension; as stem/progenitor cells in capillary homeostasis and repair, EC aerocytes 
perform gas exchange and transfer of white blood cells [22]. Both types of specialized capillary ECs play important roles in the lung. 

The growth of tumours occurs through the formation of new blood vessels to provide nutrients for their growth, promoting the 
metastasis and spread of tumour cells far from the primary site [36,37]. During tumour progression, blood vessels develop from 

Fig. 12. Significance of the risk score and risk grouping in clinical treatment. A positive correlation between the risk score and tumour stem cell 
index (A). A significant difference between the low- and high-risk groups was found for cisplatin (B), docetaxel (C), gemcitabine (D), paclitaxel (E), 
etoposide (F), vinorelbine (G), axitinib (H), ABT.888 (I), and ATRA (J). 
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existing capillaries or postcapillary veins [38–40]. The processes involved include activation of ECs, degradation of the basement 
membrane and extracellular matrix, migration and proliferation of ECs, formation of blood vessels and extension of blood vessels into 
solid tumours. It is obvious that the functional activities of ECs play an important role. The EC general capillary and EC aerocyte 
subsets are different differentiation phenotypes of capillary ECs. They perform specific functions in normal lung tissue, and we found 
many functional changes in these tissues. As shown in Fig. 4, these differences involved mainly the HallMark complement, HallMark 
apical junction, HallMark p53 pathway, HallMark complement, HallMark apical junction, HallMark p53 pathway, HallMark mtorc1 
signalling, HallMark E2F targets, HallMark DNA repair and HallMark oxidative phosphorylation pathways. These pathways are 
inextricably linked to tumour growth. The complement system is an often overlooked component of the tumour microenvironment 
[41]. Previous studies have shown that malignant cells and infiltrating cells can produce a large amount of complement protein [42], 
thereby participating in different tumour growth activities. Endothelial and epithelial cells constitute the body’s osmotic barrier with 
apical junctions [43–45]. In gastric cancer, scoring apical junction function can predict patient survival, possibly due to increased 
metastatic potential through EMT and angiogenesis [46]. The relationship between the p53 pathway and tumours has been confirmed 
by various scholars [47,48], and it is closely related to tumour vascular growth [49,50]. Mtorc1 signalling is one of the pathways that 
promotes cell growth, and its dysregulation can lead to abnormal growth of blood vessels [51]. 

According to our cell communication analysis, there is a close relationship between ECs. Although tumour cells could not be well 
identified for joint analysis, the results of this and previous studies allowed us to preliminarily conclude that tumour cells have a 
certain degree of influence on ECs. These functional changes in ECs may vary according to type; for example, they may not be able to 
perform their normal functions, resulting in abnormal organ function, or they may have an intricate relationship with tumour 
angiogenesis. This study focused on two specialized types of capillary ECs that may be associated with tumour angiogenesis. Through 
supplementary analysis of TCGA data, it was found that in addition to functional changes, the proportions of these two kinds of cells 
significantly differed between tumour and normal tissue samples, but the difference in content had no statistically significant prog
nostic correlation. Nevertheless, the prognostic curve indicated that the difference in the proportions of these two kinds of cells during 
different periods may be related to the difference in survival time. The two kinds of cells are homologous, and the differential 
expression of genes between them may reflect a difference in differentiation. This study also revealed differences in the expression of 
these genes between tumour samples and normal tissue samples. Therefore, it can be preliminarily hypothesized that the differenti
ation of these two cell types may be influenced by other cells in the tumour microenvironment. We visualized these differences and 
obtained an 8-gene (ABAT, CD19, CHEK1, FAIM2, GSTA3, NDRG1, NPAS1, and PTPRCAP) prognostic model through comprehensive 
analysis of public databases. The prediction performance of this model was more accurate than that of a previous model [52–54]. 
Among these genes, the main function of 4-aminobutyrate aminotransferase (ABAT) is amino-butyl catabolism, and its reduced 
expression is associated with endocrine therapy resistance in breast cancer and progression of liver cancer [55,56]. CD19 is an 
immunoglobulin expressed by B lymphocytes that plays an important role in the activity of immune cells in the lung cancer micro
environment [57,58]. The purpose of CHEK1 is to identify DNA damage and nonreplication, which are closely related to the occur
rence of non-small cell lung cancer and drug resistance [59]. FAIM2 is involved in the process of apoptosis and can promote non-small 
cell lung cancer cell growth and bone metastasis by activating the Wnt/β-catenin pathway [60]. GSTA3 acts as a cellular defence 
against toxic and carcinogenic substances, and its expression in alveolar cells induces an oxidative stress response [61]. The protein 
encoded by the NDRG1 gene is involved in the stress response, cell growth and differentiation and has been implicated in angiogenesis 
and drug resistance in lung cancer [62,63]. The function of the NPAS1 gene is still unclear, and deletion polymorphisms have been 
found only in breast cancer [64]. Although the role of PTPRCAP in lung cancer is unclear, studies have shown that certain poly
morphisms are associated with susceptibility to and gene expression in diffuse gastric cancer [65]. These genes deserve further study 
and may serve as targets. 

5. Conclusions 

Finally, we summarized our findings and identified two main subtypes of capillary ECs in the lung adenocarcinoma microenvi
ronment. These two specialized types of cells appear to undergo functional changes during tumour growth, which may be influenced 
by tumour cell activity. These functional changes are reflected by a series of gene function changes, and comprehensive analysis of 
these genes can be used to predict the prognosis of LUAD patients and drug efficacy. Whether changes in the function of these genes can 
normalize capillaries from tumour regression through drug therapy is worthy of further investigation. 
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