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Abstract
Objective  Segmentation of thigh muscle and adipose tissue is important for the understanding of musculoskeletal diseases 
such as osteoarthritis. Therefore, the purpose of this work is (a) to evaluate whether a fully automated approach provides 
accurate segmentation of muscles and adipose tissue cross-sectional areas (CSA) compared with manual segmentation and 
(b) to evaluate the validity of this method based on a previous clinical study.
Materials and methods  The segmentation method is based on U-Net architecture trained on 250 manually segmented thighs 
from the Osteoarthritis Initiative (OAI). The clinical evaluation is performed on a hold-out test set bilateral thighs of 48 
subjects with unilateral knee pain.
Results  The segmentation time of the method is < 1 s and demonstrated high agreement with the manual method (dice 
similarity coeffcient: 0.96 ± 0.01). In the clinical study, the automated method shows that similar to manual segmentation 
(− 5.7 ± 7.9%, p < 0.001, effect size: 0.69), painful knees display significantly lower quadriceps CSAs than contralateral 
painless knees (− 5.6 ± 7.6%, p < 0.001, effect size: 0.73).
Discussion  Automated segmentation of thigh muscle and adipose tissues has high agreement with manual segmentations 
and can replicate the effect size seen in a clinical study on osteoarthritic pain.

Keywords  Muscle · Magnetic resonance imaging · Deep learning · Convolutional neural networks · Automated 
segmentation

Introduction

Thigh muscle deficits [1, 2] and accumulation of (local) adi-
pose tissue [3–5] are important pathophysiological events 
in the context of the clinical science and management of 

musculoskeletal diseases such as knee osteoarthritis (OA) 
[1]. Muscles play an essential role in stabilizing the joints 
[1, 6], while excessive adipose tissue may induce a chronic 
inflammatory state by producing adipokines and inflamma-
tory cytokines. Both are suggested to be involved in carti-
lage degradation, synovial inflammation, and bone erosion 
[3, 4]. Magnetic resonance imaging (MRI)-based analysis 
is increasingly used to study the association between thigh 
muscle and adipose tissue composition with knee OA 
[7–12]. Further, it has permitted to investigate the impact of 
training interventions on thigh tissue composition [13], as 
well as on functional and clinical outcomes of knee OA [5, 
14]. Yet, evaluation of thigh muscle morphology and adi-
pose tissue composition requires image segmentation, with 
the time needed for manual segmentations of thigh muscle 
and adipose tissue cross-sectional areas (CSAs), precluding 
the analysis of large databases and image repositories such 
as the Osteoarthritis Initiative (OAI) [15].
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There exist several semi-automated [16–21] and fully 
automated [22–25] tools for thigh tissue volume and CSA 
segmentation to overcome the challenges in capturing 
the complex morphology and texture of thigh muscle and 
adipose tissue that are complicated by considerable inter-
subject variability (Fig. 1) and potentially also artefacts as 
intensity distortions. Imperfections in MRI systems and 
interactions between the imaged subject and the electro-
magnetic field cause the sensitivity and hence, the image 
intensity scale to vary over the image.

Therefore, in previous published studies mainly con-
tinuous methods [18, 19, 24, 26, 27] and/or applied inten-
sity inhomogeneity correction prior to segmentation were 
applied [19, 21, 22, 24]. Several of the discrete methods 
used k-means [19, 27], fuzzy c-means clustering [24, 28] 
for adipose tissue classification and focused on atlas-based 
segmentation methods for the segmentation [18, 24, 25, 
27] of individual muscle heads or lean muscle tissue from 
whole MRIs. Similar segmentation techniques have also 
been applied to other body tissues [29–31]. With more data 
becoming available and recent advances in machine learn-
ing and computing infrastructure, segmentation techniques 
based on deep convolutional neural networks (CNN) are 
emerging as the new state-of-the-art [32, 33]. For this rea-
son, CNNs are recently examined for musculoskeletal tissue 
segmentation of the knee joint [34–36] and thigh muscle 
MRIs by Ahmad et al. [37] and our group [38]. Ahmad et al. 
explored five pre-trained fully convolutional networks (FCN) 

with initiated weights for transfer learning for the quadriceps 
muscle (including the femoral bone and the medulla). The 
authors reached high dice similarity coefficients (DSC) of 
0.95. While in the above paper [37], the FCN-8s showed 
the most accurate results, a modified 2D U-Net architecture 
achieved an ever better performance, when applied to seg-
mentation of cardiac MRI data [39]. While, in general, these 
CNN methods show great potential for thigh muscle and 
adipose tissue segmentation, particularly in large clinical 
image repositories; it is important to demonstrate whether 
clinical observation can be reproduced using segmentations 
generated and thus to “clinically” validate the methodology 
developed. More specifically, our study aims to close this 
important gap between medical imaging innovation and its 
clinical application by reproducing a clinical effect observed 
in a previous published study and by comparing effect sizes. 
A fully automated segmentation method that is clinically 
validated will enable segmentation of large imaging reposi-
tories such as the OAI, where the MRIs of several thousand 
patients can be analyzed and used for the development of 
imaging biomarkers and ultimately the resulting diagnosis 
and treatment of diseases.

The aim of the current study was therefore: (i) to deter-
mine the agreement between a fully automated thigh mus-
cle and adipose tissue segmentation method based on a 2D 
U-Net technique vs. manual segmentation and (ii) to test 
whether a previously published clinical study can be repro-
duced using the CNN algorithm [40] that has shown that 

Fig. 1   Thigh MRI s from eight 
OAI participants illustrating 
the intrasubject variability of 
thigh muscle and adipose tissue 
morphology, as well as intensity 
distortions
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patients display lower quadriceps CSAs in limbs with fre-
quently painful knees compared with pain-free contralat-
eral limbs. The latter “clinical evaluation” is particularly 
important to show the value of the fully automated algorithm 
for detecting small differences between groups and within 
subjects over time.

Material and methods

U‑Net architecture

Convolutional neural networks are a type of multilayered 
artificial neural networks that can be used to analyze imag-
ing data. The U-Net architecture is built upon the fully con-
volutional network (FCN), which is built only from succes-
sive locally connected convolution, and pooling layers, and 
a final upsampling layer. In contrast to FCNs, the U-Net (1) 
has symmetric downsampling and upsampling with deep 
skip connections and (2) the skip connections between the 
downsampling path and the upsampling path apply a con-
catenation operator instead of a sum. These skip connections 
intend to provide local spatial cues to the upsampling opera-
tor. Because of its symmetry, the network has a large num-
ber of feature maps in the upsampling path, which allows 

transferring information. Our proposed method also relies 
on data augmentation, adding random spatial transforma-
tions of existing data as additional training examples, to use 
the available annotated samples more efficiently and yield 
higher segmentation performance [32]. In this work, we used 
a modified 2D U-Net architecture, where the number of fea-
ture maps in the transpose convolutions of the upsampling 
path was set to the number of classes, which has been used 
previously for segmenting cardiac tissue [39]. We trained the 
architecture to optimize pixel-wise multi-class, where each 
pixel i in image X is assigned to a label yi ∈La = {lo,… , lL} 
and p denotes the ground-truth probability distribution, and 
q denotes the networks softmax output (Eq. 1) with mini-
batch stochastic gradient descent using the ADAM optimizer 
[41] with a learning rate of 0.01. The network was trained 
on Nvidia Titan Xp GPU for 24 h.

U‑Net training

In principal, the following steps were performed (Fig. 2):

(1)C =
∑

i

mi

∑

l∈La

p
(
yi = l

)
log q(yi = l|X).

Fig. 2   Graphical abstract and method overview: a the network was 
trained with a set of images and corresponding manual segmenta-
tions made by one reader (1st reader); b technical evaluation was 
performed using another dataset with corresponding manual seg-
mentations made by the same reader (1st reader); c technical evalu-

ation was repeated using 96 manual segmentations of another reader 
(2nd reader) who were manually acquired in the clinical study with 
48 patients under d clinical evaluation was performed in comparison 
with data previously generated by the 2nd reader
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(a)	 The network was trained with a set of images and cor-
responding manual segmentations made by one reader 
(1st reader)

(b)	 Technical evaluation was performed using another data-
set with corresponding manual segmentations made by 
the same reader (1st reader)

(c)	 Technical evaluation was repeated using 96 manual 
segmentations of another reader (2nd reader) who were 
manually acquired in the clinical study with 48 patients 
under d)

(d)	 Clinical evaluation was performed in comparison with 
data previously generated by the 2nd reader.

Ad (a) training

The training set consisted of axial MR images from 222 
participants (250 thighs: 202 left; 48 right) of OAI partici-
pants (male: 44%, age 65.5 ± 10.1 years, BMI 28.8 ± 4.8 kg/
m2). In these, various muscle groups (i.e. quadriceps, 
hamstrings, adductors and sartorius), adipose tissue (i.e. 
subcutaneous fat [SCF], intermusclar fat [IMF]), and the 
femoral bone (including the cortex and the medulla) had 
been manually segmented to study the impact of pain [7, 8] 
and radiographic disease stage [42] on thigh muscle. The 
MR images had been acquired using a T1-weighted spin 
echo MRI sequence from the OAI (slice thickness 5 mm; 
in-plane resolution 0.98 mm; no inter-slice gap, repetition 
time 500 ms, echo time 10 ms) [15, 43] using a 3-T scanner 
(Siemens Trio, Siemens AG, Erlangen, Germany). Image 
acquisition encompassed 15 slices at a fixed distance from 
the distal femoral metaphysis [32]. Segmentation was per-
formed at a single slice located at 33% of the femoral bone 
(from distal to proximal), the anatomical location that was 
consistently covered in all cases according to previously 
established criteria [44]. All MRI datasets were manually 
segmented by one reader (1st reader). Since both thighs are 
almost left–right symmetric, the right and left ones were 
mirrored to increase the number of training samples and ran-
domly divided into a training set (N = 225 lefts and N = 225 
right thighs) used to adjust the U-Net weights and into a 
validation set (N = 25 right and N = 25 left thighs) used to 
determine when to stop the training to avoid overfitting. Note 
that the validation set here is not used to evaluations, but 
only to determine when to stop the training.

Ad (b) technical evaluation with data from the same reader

The trained U-Net segmentation method was first applied 
to ten previously manual-segmented MRI datasets from the 
OAI segmented by the same reader (1st reader) that were not 
part of the training and validation set.

To determine the agreement between manual (M) and 
the fully automated (A) technique, the segmentations were 

compared using three different metrics. First, the dice simi-
larity coefficient (DSC) was determined to measure the pixel 
overlap between A and M, normalized to their respective 
size (Eq. 2). The DSC is commonly used to evaluate the 
agreement between segmentation methods and relates the 
overlap of the segmentations to the total area of the segmen-
tations. It takes pixel misclassification more strongly into 
account in smaller areas compared to larger ones. There-
fore the average symmetric surface distance (ASSD) and 
Haussdorf distance (HD) were also included: The ASSD 
was determined as an indicator of the average segmentation 
error by the average of all the distances from each pixel on 
the boundary bM of M to the boundary bA of A and vice versa 
(Eq. 3). Finally, we determined the HD as an indicator of the 
largest segmentation error measuring the maximal distance 
from a pixel in A to a nearest pixel in M (Eq. 4):

Ad (c) technical evaluation with data from another reader 
(2nd reader)

As interobserver differences have been previously reported 
for thigh muscle and adipose tissue segmentations between 
different readers [45], this step was used to elucidate how 
technical evaluation parameters differ when the neural net-
work trained by one reader is applied to data from another 
reader. To this end, the algorithm was applied to 48 differ-
ent MRI from the OAI dataset, which have been manually 
segmented by another reader (2nd reader) who was involved 
in the clinical study described under (d). The same measures 
of similarity were used as described under (b).

The differences between the manual segmentations by the 
2nd reader and the fully automated results of the pain study 
were examined using Bland–Altman analyses.

Ad (d) clinical evaluation

Finally, the trained U-Net segmentation method was applied 
to 48 patients from a previous published pain study seg-
mented by the 2nd reader [40]. This study had aimed to 
determine whether thigh muscles differ in subjects with uni-
lateral pain, i.e. between limbs with frequent knee pain (for 
at least one month during the past 12 months) compared 
with contralateral limbs without any knee pain over the 

(2)DSC(M,A) = 2
(M ∩ A)

(M + A)
.

(3)

ASSD(M,A) =
1

bM + bA

(
∑

x∈bM

d
(
x, bA

)
+

∑

y∈bA

d
(
y, bM

)
)
.

(4)HD(M,A) = maxx∈M(x, y).
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past 12 months. These 48 subjects (31 women; 17 men; age 
45–78 years) had been drawn from 4796 OAI participants, 
in whom both knees displayed the same radiographic stage 
osteoarthritis according to Kellgren and Lawrence grade 
(KLG) system for classification of osteoarthritis of knee and 
had been classified to be either bilaterally KLG2 or KLG3 
[40]. Twenty-one participants displayed KLG2 (6 men, 15 
women) and 27 bilateral KLG3 (11 men, 16 women) in both 
knees. Axial MR images were used to determine quadriceps, 
hamstrings, and adductors at 33% femoral length (distal to 
proximal).

As in the previously published paper [40], side differ-
ences between knees were determined and the standard 
deviation of these side differences was calculated. Paired 
t-tests were used to determine whether significant side differ-
ences in the quadriceps, hamstrings, and adductors appeared, 
with the effect size of significant differences being described 
using Cohen’s D.

All statistical analyses were performed using SPSS ver-
sion 24 (IBM Corp., USA) and Python 3.4 (Python Software 
Foundation, Delaware, United States).

Results

Figure 3 shows examples of different segmentations and 
some of the variability observed in the training dataset.

The agreement between manual and U-Net segmentation 
on the technical evaluation set (segmented by the same read-
ers who’s segmentations had been used in the training and 
testing of the U-Net) was consistently high for all segmented 
structures (overall DSC (mean ± SD): 0.96 ± 0.02, overall 
ASSD: 0.004 ± 0.001, overall HD: 0.022 ± 0.001, Table 1). 
The DSC agreement was particularly high for the SCF, the 
quadriceps, the hamstrings, the femoral bone circumference, 
and the sartorius, and somewhat lower for femoral medulla, 
adductors, and IMF (Table 1).

The agreement between manual and U-Net segmenta-
tion, using training and evaluation data from different read-
ers was also very high with an overall DSC of 0.94 ± 0.04 
and overall ASS of 0.006 ± 0.004 cm2 and an overall HD of 
0.085 ± 0.097 cm2 (Table 2). Yet, the measures of similarity 
were slightly lower than for the technical evaluation obtained 
from data from the same reader (Table 1).

Fig. 3   Example thigh MRI (33% distal–proximal) segmentation results from five OAI participants: original image (upper); manual segmentation 
results (middle); U-Net segmentation results (lower)
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In the technical evaluation (Fig. 4), the Bland–Altman 
analysis applied to data from the 1st reader showed a high 
agreement between the automated and manual segmentation 
results with a difference (absolute values in cm2 (percent 
values relative to size of structure)) of − 1.1 cm2 (− 0.8%) 
for the SCF, + 0.8 cm2 (+ 2.1%) for the quadriceps, + 0.3 
cm2 (− 1.0%) for the hamstring, + 0.2 cm2 (+ 1.5%) for the 
adductors, and + 0.02 cm2 (+ 0.7%) for the Sartorius and -0.5 
cm2 (− 3.0%) IMF CSAs (Fig. 4). When applied to data 
from the 2nd reader, the Bland–Altman analysis showed 
good agreement between the automated and manual segmen-
tation results with a difference (absolute values in cm2 ( per-
cent values relative to size of structure) of − 1.2 cm2 (1.5%) 
for the SCF, − 1.0 cm2 (− 2.0%) for the quadriceps, − 0.45 
cm2 (− 1.3%) for the hamstring,  + 0.2 cm2 (+ 1.5%) for the 
adductors, and + 0.02 cm2 (+ 0.7%) for the Sartorius CSAs 
(Fig. 4). Some systematic deviations between the automated 

and the manual segmentation methods were observed with 
+ 2.3 cm2 (+ 14.6%) for the IMF CSAs (Fig. 4).

In the clinical evaluation study (Fig. 5), painful knees 
displayed significantly lower quadriceps CSAs for analy-
ses performed with both segmentation methods (man-
ual:  − 5.7 ± 7.9%, p < 0.001, effect size: 0.69; fully auto-
mated: −  5.6 ± 7.6%, p < 0.001, effect size: 0.73) than 
painless contralateral knees (Table 3). The CSAs of the 
hamstrings and adductors, in contrast, did not show any 
significant side differences using either segmentation 
method (Table 3). No statistically significant differences 
were observed for the other muscle groups, the SCF or the 
IMF between both segmentation techniques, but as can be 
appreciated by Table 3, the mean values and standard devia-
tions on either side were very similar between both methods. 
Values of IMF CSAs obtained from the automated method 
tended, however, to be somewhat (approx. 15%) smaller than 
the CSAs obtained from manual segmentation (Table 3).

Discussion

The aim of the current study was to evaluate a rapid fully 
automated U-Net segmentation method for thigh muscle 
CSA segmentation from MRI that is suitable the analysis of 
large imaging databases in clinical trials. For this purpose, 
we evaluated the agreement between the fully automated 
segmentations and previously performed manual segmenta-
tions using data from the reader that performed the manual 
segmentations used to train the U-Net and using data from a 
second reader that were not part of the training or validation 
set. In a second step, the current U-Net segmentation method 
was able to reproduce the results from a previous clinical 
study, in which we had observed that the quadriceps of limbs 
with frequently painful knees shows lower CSAs compared 
with contralateral knees without knee pain.

The results from the current study showed high agree-
ment (DSCs > 0.95) between the fully automated U-Net vs. 
manual segmentation approach for SCF, quadriceps, ham-
strings, and femoral bone segmentations, independent of 
whether the algorithm was compared to the segmentations 
of the same or a different reader. The agreement for adduc-
tors, medulla, and sartorius was still high, but slightly lower 
(DSCs > 0.91) and in a similar range for both readers. The 
agreement for IMF was still good (DSCs > 0.90), when the 
U-Net was applied to segmentations from the same reader 
and was notably lower (DSCs > 0.80), when the U-Net was 
applied to segmentations from a different reader. This was 
consistent with the outcome of the Bland–Altman plots: 
the fully automated method showed a good agreement 
with the manual segmentations from both readers for most 
of the structures. Only the measurement of the IMF CSAs 
showed a considerable bias, when the U-Net was applied 

Table 1   Agreement between manual and fully automated U-Net seg-
mentation in the technical evaluation set; manual segmentations were 
acquired by the same reader (1st reader)

Accuracy measured (mean ± SD) with dice similarity coefficient 
(DSC), average symmetric surface distance (ASSD), and Hausdorff 
distance; distances measured in cm2

DSC ASSD HD

SCF 0.99 ± 0.00 0.002 ± 0.001 0.067 ± 0.066
Quadriceps 0.98 ± 0.00 0.005 ± 0.001 0.082 ± 0.071
Flexors 0.98 ± 0.01 0.004 ± 0.001 0.075 ± 0.031
Adductors 0.91 ± 0.06 0.005 ± 0.002 0.058 ± 0.020
Sartorius 0.97 ± 0.01 0.004 ± 0.001 0.023 ± 0.013
Medulla 0.95 ± 0.02 0.004 ± 0.003 0.067 ± 0.143
Femoral bone 0.98 ± 0.02 0.002 ± 0.002 0.020 ± 0.022
IMF 0.90 ± 0.02 0.005 ± 0.001 0.116 ± 0.059
Overall 0.96 ± 0.02 0.004 ± 0.001 0.022 ± 0.032

Table 2   Agreement between manual and fully automated U-Net seg-
mentation in the technical evaluation set; manual segmentations were 
acquired by another reader (2nd reader)

Accuracy measured (mean ± SD) with dice similarity coefficient 
(DSC), average symmetric surface distance (ASSD), and Hausdorff 
distance; distances measured in cm2

DSC ASSD HD

SCF 0.97 ± 0.02 0.004 ± 0.002 0.057 ± 0.087
Quadriceps 0.98 ± 0.01 0.008 ± 0.006 0.109 ± 0.129
Flexors 0.96 ± 0.02 0.008 ± 0.004 0.110 ± 0.086
Adductors 0.93 ± 0.04 0.009 ± 0.006 0.101 ± 0.101
Sartorius 0.94 ± 0.09 0.006 ± 0.006 0.082 ± 0.171
Medulla 0.93 ± 0.03 0.004 ± 0.002 0.052 ± 0.127
Femoral bone 0.96 ± 0.04 0.003 ± 0.003 0.022 ± 0.028
IMF 0.80 ± 0.05 0.009 ± 0.002 0.150 ± 0.044
Overall 0.94 ± 0.04 0.006 ± 0.004 0.085 ± 0.097



489Magnetic Resonance Materials in Physics, Biology and Medicine (2020) 33:483–493	

1 3

to data from a different reader. As outlined previously, the 
method presented here is fully automated and not dependent 
on a specific reader. The difference between automated and 
manual segmentation observed here, however, is well in the 
range of the interobserver variability of manual segmenta-
tion reported in previous studies [45]. When applied to the 
data from the clinical study with unilateral pain subjects, the 
proposed fully automated algorithm detected similar side 
differences in quadriceps CSAs, but with substantially less 
time needed for the analysis (< 1 s) than for current (semi-) 
automated (3–6 min) or manual segmentation techniques 
(60–90 min) depending on the reader and the image quality.

Prescott et al. used a numerical analysis-based level set 
approach and reported DSCs of 0.69 ± 0.16 (vastus medialis) 
− 0.82 ± 0.08 (vastus lateralis) in the individual quadriceps 

heads [17]. Trotter et al. focused on the individual quadri-
ceps heads as well, reaching a DSC of 0.87 ± 0.11 for the 
fully automated multi-atlas framework [18]. Baudin et al. 
reported an average DSC of 0.86 ± 0.07 for individual thigh 
muscle heads combining a statistical shape atlas with a ran-
dom walks graph [26]. Andrews et al. presented a proba-
bilistic shape model framework and reported a mean DSC 
of 0.81 ± 0.07 for the segmentation of all individual thigh 
muscle heads [23]. Yang et al. used a voxel classifier com-
bined with morphological operations in four contrast Dixon 
MR images. The authors reached a DSC of 0.96 ± 0.03 for 
the SCF, 0.80 ± 0.03 for the IMF and 0.97 ± 0.01 for the 
combined thigh muscles [22]. Karlsson et al. based their 
work on a multi-atlas segmentation approach for the mus-
cle tissue segmentation from the whole body and reached a 

Fig. 4   Bland–Altman plots showing the mean difference in cm2 
between the manual and the fully automated U-Net segmentation 
results from the pain study (segmented by the 1st reader: green, seg-

mented by the 2nd reader: blue). The limit of agreement (1.96 SD) is 
shown using dashed lines
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true positive classification from 0.93 ± 0.01 to 0.93 ± 0.03 
[24]. Orgiu et al. introduced a discrimination of muscle 
and adipose tissue from T1-weighted MRIs of the thigh 
using a fuzzy c-mean algorithm and morphologic opera-
tors reporting a mean sensitivity above 96%, mean relative 

area difference of 1.8%, 2.7%, and 2.5%, respectively [28]. 
A first attempt for quadriceps MRI segmentation based on 
deep neural networks was undertaken by Ahmad et al. [37]. 
The authors explored five pre-trained deep learning models 
FCN-AlexNet, FCN-32s, FCN-16s, FCN- 8s with initiated 
weights for transfer learning and PSPNet with two different 
optimizations as Stochastic Gradient Descent and ADAM for 
quadriceps (including femoral bone and medulla as one large 
segmentation label), where the FCN-8s showed combined 
with the ADAM with quick processing time for inferencing 
as the best all-around deep learning model with a DSC of 
0.95 for the quadriceps and processing time of 0.117s per 
image. In our study, we obtained an average DSC of 0.98 for 
the quadriceps, both when using evaluation data segmented 
by the same or by another reader (in relation to the training 
dataset) and hence, were able to improve upon this previous 
approach. Also, we included other and far more complex 
thigh MRI structures, such as the other muscle groups and 
IMF, and reached an overall DSC of 0.96 for an evaluation 
dataset from the same reader and an overall DSC of 0.94 
for that from the a different reader, improving upon current 
state of the art.

More importantly, in the previous approaches [17, 18, 
22-24, 26, 28, 37] the performance was not evaluated in the 
setting of a clinical study. The ability to reproduce relatively 
small side differences in the quadriceps muscle shown pre-
viously is promising for the application of the automated 
method in future studies, in particular for muscle and adi-
pose tissue of the thigh that are in focus in knee OA [2, 13].

A potential limitation of the study is that the proposed 
fully automated segmentation method was trained only for 
a particular anatomical location (33% level of the femoral 
bone: distal–proximal) and not for other CSAs or a volu-
metric analysis. However, muscle CSAs acquired at the 
33% level were shown to be strongly correlated with 3D 

Fig. 5   Side differences using manual und U-Net segmentation tech-
niques of thigh MRI (33% distal–proximal) in bilateral knees with the 
same radiographic disease stage, but unilateral frequent pain; pain-
ful knee (right side); painless knee (left side); manual segmentation 
(upper) and U-Net segmentation (lower)

Table 3   Measured side 
differences in muscle and 
adipose tissue cross-sectional 
areas (CSA) between manual 
und U-Net segmentation 
techniques of thigh MRI 
(33% distal–proximal) in OAI 
participants with the same 
radiographic disease stage 
in both knees, but unilateral 
frequent pain; painful knee vs. 
painful knee

Bold signifies p < 0.001

Painful knee Painless knee Differences painful vs. painless

Mean SD Mean SD Mean% SD% p value

Manual
 Quadriceps 50.79 12.26 53.79 13.45 − 5.73 7.92  < 0.001
 Hamstrings 33.27 7.97 33.67 7.93 − 1.21 8.03 0.292
 Adductors 14.15 5.61 14.33 5.8 − 1.24 22.6 0.71
 SCF 77.81 38.34 76.66 37.88 − 1.38 6.91 0.158
 IMF 16.88 3.9 17.19 4.42 1.84 10.96 0.137

Automated
 Quadriceps 51.83 12.32 54.83 13.72 − 5.63 7.64  < 0.001
 Hamstrings 33.76 7.93 34.09 7.92 − 0.98 6.56 0.299
 Adductors 13.92 5.21 14.15 5.76 − 1.62 23.29 0.63
 SCF 78.83 39.43 78.01 39.25 − 0.96 6.28 0.137
 IMF 14.58 3.54 14.77 3.64 1.23 10.63 0.435
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muscle volume [46] and found to be sensitive to longitudi-
nal change or cross-sectional differences in several clinical 
studies [12, 47, 48]. In addition, a longitudinal reduction 
of CSAs acquired at 33% of the femoral length was shown 
to be associated with muscle strength loss in patients with 
concurrent increase in KOA pain [10].

Another potential limitation is that the fully automated 
method showed a bias toward manual segmentation for the 
IMF that was greater when the method was applied to data 
from a 2nd reader (14.6%, DSC: 0.80), whose segmenta-
tions were not part of the training and validation set, than 
when applied to data from the 1st reader (− 3.0%, DSC: 
0.90) whose data were used to train the U-Net. This differ-
ence between two readers is consistent with results from 
previous studies that reported an interobserver variability 
between manual segmentations of two different readers of 
18.4/ 14.7% for the IMF, before/after quality control, respec-
tively [45]. Yet, the DSC observed for IMF using data from 
the same reader compares quite favorable to the literature, 
while the DSC achieved with data from the 2nd reader is still 
comparable with the best achieved results of 0.80 in a study 
of Yang et al. using DIXON MRIs [22]. Further, since the 
observed effect was systematic and therefore similar for all 
patients, measuring (side) differences or longitudinal change 
in the IMF may not be strongly affected. Yet, future studies 
will have to establish the sensitivity to change for IMF and 
SCF, for instance during weight gain or loss.

The strength of the current study was that it not only 
assessed the agreement between manual and automated seg-
mentation, but it also showed that the results of a clinical 
study could be reproduced using this new method.

Conclusion

Our novel approach of muscle segmentation based on a 
U-Net is shown to be accurate and can thus be applied to 
fully automated evaluation of large datasets considerably 
faster (< 1 s) than for current (semi-) automated (3–6 min) 
or manual segmentation techniques (60–90 min). More 
importantly, the effect shown in a clinical study that knees 
with unilateral frequent pain demonstrate lower CSAs of 
the quadriceps (but not of other thigh muscles) compared 
with contralateral knees without knee pain was reproduced 
and showed a comparable effect size to that of manual 
segmentation.
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