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ABSTRACT
Shoreline armoring is prevalent around the world with unprecedented human

population growth and urbanization along coastal habitats. Armoring structures,

such as riprap and bulkheads, that are built to prevent beach erosion and protect

coastal infrastructure from storms and flooding can cause deterioration of habitats

for migratory fish species, disrupt aquatic–terrestrial connectivity, and reduce

overall coastal ecosystem health. Relative to armored shorelines, natural shorelines

retain valuable habitats for macroinvertebrates and other coastal biota. One question

is whether the impacts of armoring are reversible, allowing restoration via armoring

removal and related actions of sediment nourishment and replanting of native

riparian vegetation. Armoring removal is targeted as a viable option for restoring

some habitat functions, but few assessments of coastal biota response exist. Here, we

use opportunistic sampling of pre- and post-restoration data for five biotic measures

(wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate

abundance and richness) from a set of six restored sites in Puget Sound, WA, USA.

This broad suite of ecosystem metrics responded strongly and positively to armor

removal, and these results were evident after less than one year. Restoration

responses remained positive and statistically significant across different shoreline

elevations and temporal trajectories. This analysis shows that removing shoreline

armoring is effective for restoration projects aimed at improving the health and

productivity of coastal ecosystems, and these results may be widely applicable.

Subjects Biodiversity, Conservation Biology, Ecology, Marine Biology, Natural Resource

Management

Keywords Shoreline, Armoring, Macroinvertebrates, Restoration, Effect size, Coastlines, Biota,

Response, Cohen’s D, Restoration trajectory

INTRODUCTION
Worldwide, shorelines adjacent to bodies of fresh and salt waters face faster urbanization

and population growth than other geographic regions (Neumann et al., 2015). Coastal

regions have always experienced high immigration rates because of their ease of access

How to cite this article Lee et al. (2018), Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound.

PeerJ 6:e4275; DOI 10.7717/peerj.4275

Submitted 4 August 2017
Accepted 29 December 2017
Published 23 February 2018

Corresponding author
Timothy S. Lee,

leeti17@students.ecu.edu

Academic editor
James Reimer

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.4275

Copyright
2018 Lee et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.4275
mailto:leeti17@�students.�ecu.�edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.4275
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


to domestic and international shipping, military and defense uses, tourism, access to

recreational activities, access to valuable ecosystem services, and employment

opportunities (Bulleri, Chapman & Underwood, 2005; MEA, 2005; Gittman et al., 2015;

Neumann et al., 2015). About 50% of the world’s population lives within 200 km from

the coastlines and half of the world’s major city centers are located within 50 km

from coasts (Stegeman & Solow, 2002; MEA, 2005). Many of these heavily populated

coastal regions are in low-lying elevations. In 2000 these low-elevation coastal zones

included nearly 11% of the world’s total coastal population, but by 2060 it is estimated

that the population in these low-elevation coastal zones will be as great as 1.4 billion,

or 12% of the world’s population (Neumann et al., 2015).

Coastal infrastructure and urban centers are exposed to various hazards including

storms, large waves, flooding, sea level rise, and erosion (Jones & Hanna, 2004;

McGranahan, Balk & Anderson, 2007). As a response, many coastal communities have

established hardened structures such as bulkheads, jetties, riprap revetments and seawalls,

a practice commonly called “shoreline armoring” that is part of ocean sprawl

(Chapman, 2003; Bulleri & Chapman, 2010; Chapman & Underwood, 2011; Heerhartz

et al., 2014; Gittman et al., 2015; Firth et al., 2016b). In some large urban centers such

as San Diego Bay, Chesapeake Bay, Sydney Harbor, and Hong Kong’s Victoria Harbor,

over 50% of shorelines have been armored, and the continuing growth of coastal

immigration and urbanization is expected to increase the rate of shoreline armoring

(Davis, Levin & Walther, 2002; Dugan et al., 2008; Lam, Huang & Chan, 2009; Patrick,

Weller & Ryder, 2016). In the United States alone, about 14% of the lower 48 states’

shorelines are armored, and 64% of these armored shorelines are adjacent to estuaries

and coastal rivers (Gittman et al., 2015).

Armored shorelines overall are associated with lower biodiversity, vegetation cover, and

abundances of invertebrate and fish species (Moreira, Chapman & Underwood, 2006;

Bilkovic & Roggero, 2008; Peterson et al., 2000; Firth et al., 2016a;Dugan et al., 2008;Morley,

Toft & Hanson, 2012; Peters, Yeager & Layman, 2015; Gittman et al., 2016a). Armored

shorelines can accelerate beach erosion as waves are reflected from armored structures

(Heatherington & Bishop, 2012; Gittman et al., 2016b). They can reduce the overall

ecological health of coastal ecosystems by degrading shallow intertidal habitats valuable

for survival of juvenile fish and aquatic invertebrates (Bilkovic & Roggero, 2008; Seitz et al.,

2006; Gittman et al., 2016a). Armored shorelines can also disrupt the transition between

terrestrial and aquatic habitats as the gradual shoreline slope is abruptly steepened, which

in turn can result in reduction of salt marsh habitats and submerged aquatic vegetation.

Similarly, armoring also reduces deposition of woody debris and “wrack” or organic

matter deposition on shorelines. This loss of organic debris can affect the aquatic–

terrestrial food web, including fishes, macroinvertebrates associated with wrack and

vegetated habitats, and birds (Bozek & Burdick, 2005; Dugan et al., 2008; Heerhartz et al.,

2014; Harris, Strayer & Findlay, 2014; Heerhartz & Toft, 2015; Dethier et al., 2016;Wensink

& Tiegs, 2016).

Recently, alternatives to shoreline armoring, including armoring removal, have

emerged to simultaneously protect coastal urban infrastructure and restore ecological
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health (Davis et al., 2015; Gittman et al., 2016a; Bilkovic et al., 2017). Approaches include

living shoreline techniques such as the creation of marsh sills in lieu of armoring

shorelines in North Carolina (Bilkovic & Mitchell, 2013), restoring oyster reefs in

Chesapeake Bay (Lawless & Seitz, 2014), restoring red mangrove colonization on riprap

revetments in Biscayne Bay, Florida (Peters, Yeager & Layman, 2015), and managed

realignment in Europe (Esteves & Williams, 2017). Few studies have assessed the

effectiveness of armoring removal on restoring coastal ecosystems, but they generally

demonstrate that shorelines without armoring can host higher abundances and diversity

across different taxonomic groups. For example, marsh sills have higher abundance and

diversity of fish and bivalves in shorelines of North Carolina (Gittman et al., 2016a)

and introducing native riparian vegetation and logs after armoring removal can facilitate

rapid response of macroinvertebrate assemblages in shorelines of Puget Sound,

Washington (Toft, Cordell & Armbrust, 2014).

In Puget Sound, Washington, USA, there has been recent momentum to restore

armored shorelines through removal of armoring structures, nourishment of sediments,

re-planting native riparian vegetation, and addition of logs and woody debris (Toft et al.,

2013b; Toft, Cordell & Armbrust, 2014). Such restoration efforts are driven by the need to

protect Pacific salmon species such as endangered populations of Chinook salmon

(Oncorhynchus tshawytscha) that are of cultural, ecological, and economic importance to

the region (Rhodes et al., 2006;Munsch, Cordell & Toft, 2015). Juveniles of these and other

salmon species use shallow intertidal areas as nursery habitats (Munsch, Cordell &

Toft, 2016). Macroinvertebrate prey, both aquatic and terrestrial, are a vital part of

Chinook diets and coastal food webs. Changes in their populations can negatively

impact food availability for many fish species (Sobocinski, Cordell & Simenstad, 2010).

Therefore, it is essential to ask whether shoreline restoration is having its intended effect,

and to date, relatively little such analysis has been done.

Here we present an analysis of the effects of shoreline restoration, with the objective to

determine how coastal biota respond when shoreline armor is removed, sediments

nourished, and native vegetation planted. We assess responses across (a) study sites,

(b) coastal biota type, (c) shoreline elevations, and (d) trajectories in time. Understanding

these post-restoration dynamics can provide knowledge about factors that contribute to

biological recovery that can be useful along other armored shorelines regionally and globally.

MATERIALS AND METHODS
Study sites and sources of data
Puget Sound is a fjordal estuarine ecosystem comprising the southern part of the

Salish Sea, which encompasses over 30,000 km2 in the Pacific Northwest, overlapping

Washington, USA and British Columbia, Canada. This ecosystem comprises

cold-temperate waters, river deltas, and shorelines mainly composed of clay, sand,

mud, and gravel sediments originating from receded glaciers. Continued erosion of

coastal bluffs contributes this sediment mix to Puget Sound beaches (Shipman, 2001).

More than a quarter of the 4,000 km of shorelines in Puget Sound are armored

(Puget Sound Partnership, 2016).
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We assessed six sites in Puget Sound, along which armoring was removed, to determine

coastal biota responses (Fig. 1). These restored sites from north to south were Cornet

Bay of Deception State Park on Whidbey Island, Powel Property in Port Madison on the

north side of Bainbridge Island, Salmon Bay Natural Area which is a park downstream

from the Hiram M. Chittenden Locks of Seattle, Olympic Sculpture Park in downtown

Seattle, and two locations in Seahurst Park in the city of Burien, WA (Fig. 1; Table 1).

All sites were formerly armored with concrete or wooden bulkhead and riprap, and the

Salmon Bay Natural Area also had an overwater structure (Fig. 2). These sites were

restored from 2005 to 2014 (Table 1), and monitoring was accomplished opportunistically

depending on the year that sites were restored and the capacity for monitoring that

Figure 1 Map of the Puget Sound and the restored sites used for analysis. A, Cornet Bay; B, Powel Property; C, Salmon Bay Natural Area; D,

Olympic Sculpture Park; E, Seahurst Park I (restored 2005); F, Seahurst Park II (restored 2014). Map Background: ArcGIS 10.2 Ocean Basemap

(Credits: Esri, DeLorme, GEBCO, NOAA NGDC, and other contributors). Inset Map Background: ArcGIS Light Gray Canvas Map (Copyright:

©2013 Esri, DeLorme, NAVTEQ). Full-size DOI: 10.7717/peerj.4275/fig-1
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was available. All data analyzed herein were compiled from site-specific reports, as stated

in Table 1. Our analyses are new, building from previous technical reports and

publications that represent individual sites, to increase spatial and temporal scales

including the most recent post-restoration data.

Five ecosystem metrics were monitored before and after restoration, with one site

monitored up to 10 years after restoration (Table 1). Survey data varied by site due to

goals and characteristics of each restoration site, and included counts and richness

(number of individual taxa) of macroinvertebrates for both terrestrial and aquatic groups,

wrack % cover, number of logs (which have both biotic and physical attributes),

and saltmarsh % cover. Three sites were also monitored at two different shoreline

elevations (Table 1).

While we sampled macroinvertebrates at all six sites, we also sampled non-

macroinvertebrate ecosystem metrics at two sites, Cornet Bay and Powel Property

(Table 1). At Cornet Bay, we sampled five replicates of terrestrial and aquatic

macroinvertebrates before restoration (July 2012) and after restoration (July 2013)

across a 50 m transect parallel to the shore (Dethier et al., 2016). During those same

respective days, we also sampled 10 replicates of total wrack % cover and counted five

replicates of total number of logs before and after restoration (Dethier et al., 2016). We

collected wrack samples and the top 2.5 cm of sediment layer using a 15 cm diameter

benthic corer; all invertebrates were separated from the wrack and counted and identified

to the lowest possible taxonomic classification using a dissecting microscope (Dethier

et al., 2016). At Powel Property, we sampled three replicates of macroinvertebrates for one

year before restoration (2012) and two years after restoration (2013 and 2014). This

sampling design was replicated across low (3.05 m mean lower low water or MLLW) and

high (3.66 m MLLW) shoreline elevations (Adams, Padgham & Toft, 2015) corresponding

to the placement of the armoring. In addition, we also sampled for saltmarsh % cover

across three replicates for the same pre- and post-restoration years monitored for

macroinvertebrates.

Table 1 Sites used for analysis listed by pre-restoration year monitored (PR year), restoration year (Rest. year), post-restoration monitoring

years and the types of coastal biota monitored.

Site PR year Rest. year Post-restoration monitoring year Coastal biota monitored Elev. Reference

<1 1 2 3 4 5 10 W % L # SM % MIC MIR

CB 2012 2013 – X – – – – – X X – X X – Dethier et al. (2016)

PP 2012 2012 – X X – – – – – – X – X X Adams, Padgham & Toft (2015)

SBNA 2004 2010 X – X – – – – – – – X X – Toft et al. (2013a)

OSP 2005 2006 – X – X – X – – – – X X – Toft et al. (2013b) and

Cordell et al. (2017)

SHP I 2004 2005 – X – X – X X – – – X X X Toft, Cordell & Armbrust (2014)

and Toft (2016)

SHP II 2010 2014 – X – – – – – – – – X X X Toft (2016)

Notes:
CB, Cornet Bay; PP, Powel Property; SBNA, Salmon Bay Natural Area; OSP, Olympic Sculpture Park; SHP I, Seahurst Park restored in 2005; SHP II, Seahurst Park
Restored in 2014; W%, wrack % cover; L #, number of logs; SM%, saltmarsh% cover; MIC, macroinvertebrate counts; MIR, macroinvertebrate richness; Elev., shoreline
elevation sampling.
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For the other four sites, we used macroinvertebrate counts and richness metrics for

both aquatic and terrestrial types (Toft et al., 2013a, 2013b; Toft, Cordell & Armbrust, 2014;

Toft, 2016; Cordell et al., 2017). At Salmon Bay Natural Area, we sampled seven replicates

of aquatic invertebrates using sediment cores and terrestrial insects using plastic bin fall

traps for one year before restoration (2004) and two post-restoration years (2010 and

2012) across April, May, June, and July (Toft et al., 2013a). We repeated this sampling

approach in two shoreline elevations, 0.3 and 2.44 m MLLW. At Olympic Sculpture Park,

we sampled seven replicates of aquatic invertebrates using an epibenthic pump that

sampled the water–sediment interface, and terrestrial insects applying the same

sampling gear used in the Salmon Bay Natural Area for one year before restoration (2005)

and three post-restoration years (2007, 2009, 2011) across April, May, June, and July

(Toft et al., 2013b). In Seahurst Park, we sampled two shorelines, one restored in

2005 and the other restored in 2014 (Table 1). For both the 2005 and 2014 restored

Figure 2 Three of the six restored sites used for this analysis. Frames (A, C, and E) show shorelines armored prior to their respective restorations

and frames (B, D, and F) show shorelines in their restored state. Left to right: Cornet Bay (A, B), Salmon Bay Natural Area (C, D), Seahurst Park I

(E, F). Photo Credit for frame (A): Sarah Schmidt. Photo Credit for frame (B): Lisa Kauman. Photo Credit for frames (C–F): Jason D. Toft.

Full-size DOI: 10.7717/peerj.4275/fig-2
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shorelines, we sampled aquatic and terrestrial macroinvertebrates using the same

sediment core and fallout trap sampling gear as the previous sites (Toft, Cordell &

Armbrust, 2014; Toft, 2016). In the 2005 restored shoreline, we sampled seven replicates

of one year before restoration (2004) and four separate years after restoration

(2006, 2008, 2010, 2015) across the months of June, July, and September (Toft, 2016).

Our sampling design for the 2014 restored shoreline was the same, except that we

monitored one year before restoration in 2010 and one year after restoration in

2015 (Toft, 2016).

Quantitative analysis
To measure the effectiveness of shoreline restoration on coastal biota, we used

Cohen’s D Effect Size (Cohen, 1992). This effect-size statistic has been widely used,

for example to measure effects of stream engineering on increasing salmon abundances,

pine forest restoration on native understory vegetation, and invasive vegetation

removal on restoring native woody plants (Taylor, Smith & Haukos, 2006; McGlone,

Springer & Laughlin, 2009; Stewart et al., 2009). Cohen’s D is calculated with the

following equation:

D ¼ mA � mBð Þ
s

where mA is the mean value of measured variable (e.g., counts, richness, percent cover)

after restoration, mB is the mean value of measured variable before restoration, and s is

the pooled standard deviation. Although values of D are likely to vary with context, as a

general guideline, whenD less than 0.2, the restoration is considered to have had no effect,

while 0.2–0.8 indicate moderate effect, and 0.8 or greater indicates substantial effect

(Rosnow, Rosenthal & Rubin, 2000). In our analysis, the greater the values of D, the greater

positive response to restoration, in contrast to the armored state and presumably more

toward a pre-disturbance natural state.

We calculated D for restoration effects in the following four major categories:

(1) separately for each study site, (2) specific to each monitored type of coastal biota,

(3) at the two elevations of the base and placement of armoring, and (4) trajectory in

time of post-restoration years. For the study sites category, we calculated the effect

sizes of all the respective coastal biota monitored for each site individually. For the

monitored coastal biota, we calculated the effect sizes for the five types of coastal biota:

wrack % cover, number of logs, saltmarsh cover, macroinvertebrate counts, and

macroinvertebrate richness. For the shoreline elevation, we calculated effect sizes for

the elevation at the base of the armoring and at the elevation where armoring

formerly stood. Lastly, for the trajectory in time we calculated effect sizes for the

six post-restoration monitoring years. To test for statistical significance of D, we

performed one-sample two-tailed t-tests (a = 0.05), comparing the observed data

against the null hypothesis (H0: m = 0). Where comparing the means of two different

elevations, we used a two-sample two-tailed t-test.
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RESULTS
All six sites demonstrated positive responses with the mean effect size varying between

1.07 and 1.79 (Fig. 3). Four of the six sites had statistically significant responses (Fig. 3).

These four sites were the Salmon Bay Natural Area, Olympic Sculpture Park, and the two

Seahurst Park sites (Salmon Bay: t0.05(2),54 = 9.9, p < 0.001, 95% CI = 0.95, 1.43; Olympic

Sculpture Park: t0.05(2),83 = 6.69, p < 0.001, 95% CI: 1.14, 2.12; Seahurst Park Restored

2005: t0.05(2),55 = 8.49, p < 0.001, 95% CI = 1.37, 2.22; Seahurst Park Restored

2014: t0.05(2),27 = 8.23, p < 0.001, 95% CI: 0.8, 1.34). Among sites and elevations, all

five coastal biotic measures showed similarly positive effects, and two of the three that

could be analyzed with t-tests were significant (Figs. 4 and 5). These two biotic measures

were macroinvertebrate counts and richness (Macroinvertebrate Counts: t0.05(2),140 = 10,

p < 0.001, 95% CI: 1.23, 1.84; Macroinvertebrate Richness: t0.05(2),144 = 12.01, p < 0.001,

95% CI: 1.58, 2.20). Mean effect size was stronger in higher shoreline elevations where

armoring had previously been directly placed (Base of the Armoring: t0.05(2),73 = 8.44,

p < 0.001, 95% CI: 1.14, 1.85; On the Armoring: t0.05(2),73 = 10.24, p < 0.001,

95% CI: 1.98, 2.93).

All of the post-restoration years demonstrated positive and statistically significant

responses (p < 0.001 for all post-restoration years), with year 10 showing the greatest

positive response (�X ¼ 3:34) and year <1 showing the lowest (�X ¼ 1:07) (Year

<1: t0.05(2),27 = 6.07, p < 0.001, 95% CI: 0.71, 1.43; Year 1: t0.05(2),91 = 8.02, p < 0.001,

95% CI: 1.16, 1.93; Year 2: t0.05(2),31 = 6.5, p < 0.001, 95% CI: 0.95, 1.81; Year 3: t0.05(2),55 =

6.71, p < 0.001, 95% CI: 1.30, 2.40; Year 5: t0.05(2),55 = 9.2, p < 0.001, 95% CI: 1.22, 1.89;

Year 10: t0.05(2),27 = 6.25, p < 0.001, 95% CI: 2.24, 4.43) (Fig. 6).

Figure 3 Cohen’s D Effect Sizes (±SE for error bars) across six restored sites of Puget Sound used in

the analysis (site acronyms same as in Table 1). Data labels show the number of coastal biota types

monitored and the sample sizes (the number of effect sizes for each site). Effect sizes with asterisks were

significantly different from zero. Full-size DOI: 10.7717/peerj.4275/fig-3
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Figure 4 Cohen’s D Effect Sizes (±SE for error bars) by five major types of coastal biota monitored.

Data labels show number of restored sites that were monitored and the sample sizes (the number of

effect sizes for each biota type). Coastal biota labeled in orange were not integrated for individual t-tests

due to lack of replicates. Coastal biota effect sizes with asterisks were significantly different from zero.

Full-size DOI: 10.7717/peerj.4275/fig-4

Figure 5 Cohen’s D Effect Sizes (±SE for error bars) by elevation monitored. Data labels show the

number of restored sites and the sample sizes (the number of effect sizes for each elevation type). Both

elevations’ effect sizes were significantly different from zero.

Full-size DOI: 10.7717/peerj.4275/fig-5
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DISCUSSION
Armoring removal in Puget Sound has resulted in diverse, positive responses by coastal

biota. All four major effect categories (restored sites, coastal biota, shoreline elevation, and

trajectory in time) showed substantially positive responses (effect size >0.8; Rosnow,

Rosenthal & Rubin, 2000). Furthermore, there was clear evidence that coastal biota

responded quickly (within a year after restoration), with subsequent post-restoration

years maintaining or even increasing biotic and abiotic gains. Of the five major types of

coastal biota, recovery was strongest for macroinvertebrates; the responses of wrack cover,

number of logs, and saltmarsh cover were also positive but they had smaller sample sizes

and therefore had weaker statistical inferences.

The strong significant responses of macroinvertebrates were consistent with previous

work on restoration of individual marine sites (Toft et al., 2013b; Toft, Cordell & Armbrust,

2014) and other aquatic habitats, most of which are in freshwater ecosystems. Some

macroinvertebrate restoration response studies come from rivers and channelized

streams, where restoring some habitat complexity results in greater abundances and

diversity of macroinvertebrates (Korsu, 2004; Muotka & Syrjänen, 2007; Miller, Budy &

Schmidt, 2010). Wetlands that have been restored or newly created can be quickly

colonized by macroinvertebrates, especially those with greater dispersal capability such as

aerial insects (Brown, Smith & Batzer, 1997; Stewart & Downing, 2008). Our analysis

similarly showed that overall, macroinvertebrate responses to restoration in coastal

ecosystems are positive and substantial, which in turn can enhance prey availability for

migratory fishes and seabirds and improve ecosystem health as a whole (Dugan et al.,

2003; Heerhartz & Toft, 2015).

Figure 6 Cohen’s D Effect Sizes (±SE) by post-restoration years monitored. Effect sizes reflect

comparisons between pre-restoration and post-restoration for each respective post-restoration year

monitored. Data labels show the number of restored sites and sample sizes (the number of effect sizes for

each post-restoration year monitored). Effect sizes of all post-restoration years were significantly dif-

ferent from zero. Full-size DOI: 10.7717/peerj.4275/fig-6
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With regards to pace of response, we found that coastal biota can quickly and

positively respond to shoreline armor removal and that this trend can continue across

multiple post-restoration years. Biotic recovery can be similarly rapid after restoration

of channelized streams, saltmarsh habitats, and oyster reefs (Warren et al., 2002; Miller,

Budy & Schmidt, 2010; La Peyre et al., 2014). However, this is not always the case,

because abundances and diversity of macroinvertebrates can initially drop significantly

after restoration of a channelized stream (Muotka & Syrjänen, 2007; Korsu, 2004).

Muotka & Syrjänen (2007) found that macroinvertebrate recovery was not pronounced

until four to six years, but the variability appeared to stabilize after eight years. Biotic

recoveries in restored wetlands were also slow when compared with reference sites across

the same temporal scales, and the richness of invertebrates and fishes did not approach

their peak trajectories until three to five years after restoration (Simenstad & Thom, 1996;

Morgan & Short, 2002). Similar perceptions have been recorded for seagrasses, as

restoration shows a greater response when monitored for seven versus three years (Bell,

Middlebrooks & Hall, 2014). While our sites experienced rapid recovery, the same might

not hold for other similar coastal restoration projects outside the Puget Sound. As is the

case with restored wetlands, restored coastlines may not replace the full natural functions

of healthy coastlines, and may take longer than their respective monitoring periods to

reach fully self-sustaining ecosystem functioning status (Zedler & Callaway, 1999).

We also found that coastal biota directly affected by armoring placement (higher

shoreline elevations) responded more positively than biota that were indirectly affected

(lower shoreline elevations). Toft, Cordell & Armbrust (2014) came to similar conclusions,

with less response seen in biota below the footprint of armoring. This is an interesting

comparison to eco-engineering of armoring, where diversity can be higher at lower

elevations (Firth et al., 2016b), contrasting the expectations from hard versus soft

restoration approaches. In rivers, biota within sections directly affected by dam

impoundment can respond positively to dam removal within days to a few years; these

biotic parameters include but are not limited to recolonization by native riparian plants

and lotic organisms (Hart et al., 2002). Upstream areas that were indirectly affected by

dam impoundment may not experience full recovery of aquatic–terrestrial ecosystem

linkages until years to decades after the dam removal (Hart et al., 2002). In contrast,

previous work on ecological responses to removal of dikes in estuarine tidal wetlands

found that habitats indirectly affected by dikes are just as likely to respond positively

during a similar temporal scale to habitats directly affected in terms of marsh vegetation,

benthic macroinvertebrates, fish, and other megafauna (Hood, 2004).

One of the challenges in our analysis was the small sample size in certain parameters.

Quantified effect responses of wrack % cover, saltmarsh % cover, and number of logs

were weaker than for parameters with larger sample sizes. Small sample sizes can increase

error rate and potentially distort response interpretations (Raudys & Jain, 1991), so we

cannot necessarily generalize our results to other shorelines restored through similar

means. However, it is important to note that wrack % cover can increase abundances

and diversity of macroinvertebrates, facilitate saltmarsh growth, and support megafauna

such as seabirds (Dugan et al., 2003; Chapman & Roberts, 2004; Smith, 2007;
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Harris, Strayer & Findlay, 2014; Heerhartz et al., 2014). Natural shorelines have higher

woody debris counts and densities than armored shorelines, and these can enhance and

retain wrack % cover but also reduce beach erosion (Angradi et al., 2004; Eamer &Walker,

2010; Harris, Strayer & Findlay, 2014; Heerhartz et al., 2014). Based on the suspected

functions that wrack, saltmarsh, and logs provide in healthy coastlines, it is essential to

increase the geographical scope and number of studies of these coastal biota types to assess

the successful recovery of restored coastal ecosystems. Related to this is the added benefit

that before–after control-impact (BACI) techniques would have in aiding interpretation

(Underwood, 1994), emphasizing that increased sample size of restored and reference sites

over time will be essential to fully understand restoration effectiveness.

While our sample size at the site scale was limited to six, this opportunistic sampling

can be advantageous to efficiently produce information-rich results (Palinkas et al., 2015).

Opportunistic sampling can also detect presence of certain ecosystem metrics in regions

where systematic sampling would not detect them (De Barba et al., 2009). As our results

have now demonstrated that armoring removal can elicit rapid ecosystem recovery, and

site-specific studies that use BACI analysis have shown similar results (Toft et al., 2013b;

Toft, Cordell & Armbrust, 2014), applying BACI in future monitoring studies will be

helpful to increase the scale of inference. Furthermore, continuing to monitor the metrics

through additional post-restoration years and expanding the pre- and post-restoration

monitoring approach to other shorelines may reduce bias caused by opportunistic

sampling, such as unequal sample sizes and preferential sampling (De Barba et al., 2009).

This will be essential to expand the temporal scale, as most of our sites were restored for

less than five years, with only one site restored for 10 years.

Coastal biota recovery after armoring removal may also be hindered or facilitated by

abiotic variables and their responses to restoration, which we did not address in our

analysis. Beach profiles and sediment grain size may change slowly in response to the

placement of shoreline armoring (Dethier et al., 2016), which suggests that these two

variables may likewise experience slow recovery across seasons to years after armoring

removal. Furthermore, sediment changes following armor removal, such as increasing

or decreasing deposition of fines, likely affect recovery patterns of biota. Lower

shoreline elevations are also more susceptible to disturbances by hydrological and

oceanographic processes, which in turn may prevent rapid recovery of associated

coastal biota (Harris, Strayer & Findlay, 2014).

The responses of coastal biota observed in our analysis may be attributed to “passive”

ecosystem management post-recovery. The passive approach does not require further

action to be taken after a restoration project is completed (Simenstad, Reed & Ford, 2006).

Instead, it allows disturbances to occur, potentially influencing the recovery trajectory of

ecosystem components. Shorelines are exposed to frequent disturbances such as waves,

flooding, and storm-related events (Gittman et al., 2016b). This can enhance recovery by

depositing wrack along shorelines, providing habitats for grazing arthropods and

saltmarsh vegetation (Dugan et al., 2003; Chapman & Roberts, 2004). Reestablishing the

natural cycle of disturbance and recovery driven by various oceanographic processes has

the potential to elicit positive responses by coastal biota for years after initial restoration.
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CONCLUSION
Here we have shown that biotic metrics can respond strongly and positively to armor

removal and restoration of beaches. Even with our pronounced results, reversing shoreline

armoring is and will continue to be a management challenge. Coastal habitats around the

world face unprecedented urban growth (Gittman et al., 2015). In the United States,

shoreline armoring is primarily driven by development of residential properties, attempts

to improve domestic and international shipping traffic, and protection against storm

events (Gittman et al., 2015). With nearly half of the world’s population expected to live

within 100 km from shorelines by 2030, it is safe to assume that armoring will continue to

increase within and outside the United States in the next few decades (MEA, 2005;

Gittman et al., 2015, 2016b). However, it is critical to recognize that shorelines without

armoring can function as natural erosional barriers. For example, large woody debris

protects from beach erosion but also enhances wrack accumulation, which in turn can

enhance saltmarsh growth and improve aquatic–terrestrial connectivity (Chapman &

Roberts, 2004; Eamer & Walker, 2010; Heerhartz et al., 2014). Removing shoreline

armoring and improving aquatic–terrestrial connectivity is not only beneficial to the

ecosystem but also can help coastal communities and livelihoods (Firth et al., 2016b),

because ecosystem components that are harvested (such as fishes) rely on ample

availability of macroinvertebrate prey for survival.

It is therefore critical for policymakers to consider numerous benefits of shoreline

armoring removal before undertaking new shoreline development. While removal of

armoring is not feasible in all cases due to financial or safety concerns, it is clear from this

study that restoring shorelines through armoring removal can potentially benefit coastal

ecosystem health and coastal populations by increasing ecosystem services. Furthermore,

many shoreline homeowners are increasingly recognizing environmental impacts of

shoreline armoring and express a preference for natural shoreline structures, as they can

be aesthetically appealing and have many ecological benefits (Scyphers, Picou & Powers,

2014). Existing and new shoreline management policies should encourage homeowners

and other stakeholders to protect natural shorelines and embrace shoreline restoration

when it can simultaneously protect properties, coastal populations, biodiversity, and

retain ecosystem services.
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