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Abstract

Background: Traditional biomonitoring approaches have delivered a basic understanding of biodiversity, but they cannot support the
large-scale assessments required to manage and protect entire ecosystems. This study used DNA metabarcoding to assess spatial
and temporal variation in species richness and diversity in arthropod communities from 52 protected areas spanning 3 Canadian
ecoregions.

Results: This study revealed the presence of 26,263 arthropod species in the 3 ecoregions and indicated that at least another 3,000–
5,000 await detection. Results further demonstrate that communities are more similar within than between ecoregions, even after
controlling for geographical distance. Overall α-diversity declined from east to west, reflecting a gradient in habitat disturbance. Shifts
in species composition were high at every site, with turnover greater than nestedness, suggesting the presence of many transient
species.

Conclusions: Differences in species composition among their arthropod communities confirm that ecoregions are a useful synoptic
for biogeographic patterns and for structuring conservation efforts. The present results also demonstrate that metabarcoding enables
large-scale monitoring of shifts in species composition, making it possible to move beyond the biomass measurements that have been
the key metric used in prior efforts to track change in arthropod communities.

Background
Terrestrial organisms are exposed to diverse anthropogenic stres-
sors, including climate change, resource extraction, and agricul-
ture. Habitat degradation, pesticide use, invasive species, and as-
sociated shifts in food webs have provoked major reductions in the
diversity and abundance of terrestrial arthropods [1–4]. These de-
clines have led to calls for more comprehensive biosurveillance to
inform environmental management and conservation. Long-term
monitoring of species composition is essential to quantify biolog-
ical change, but efforts using morphological diagnostics have tar-
geted a small set of indicator species [5] because of the need for
taxonomic experts for each group. As a consequence, they can-
not support the broad assessments needed to manage and pro-
tect ecosystems, let alone forecast human impacts on them by in-
tegrating statistical modelling. The latter methods demand com-
prehensive data on species distributions and abundance [6], infor-
mation that is currently unavailable because of the prior focus on
selected biotic compartments at limited geographic scale.

Two methodological advances promise to meet the need for
comprehensive biodiversity data. First, identification systems
based on the analysis of sequence variation in short, standard-
ized gene regions (i.e., DNA barcodes) enable species discrimina-
tion [7]. Second, high-throughput sequencers (HTS) permit the
inexpensive acquisition of millions of DNA barcode records [8].
These advances now enable biodiversity surveys at speeds and
scales that were previously inconceivable. In particular, the cou-

pling of HTS with DNA barcoding, known as metabarcoding [9],
has a compelling advantage over traditional approaches for track-
ing shifts in species presence. It can generate georeferenced oc-
currence data from bulk samples at low cost, and a single instru-
ment can process hundreds of bulk samples each week. Because
the sequencing output of HTS is doubling every 9 months [10, 11],
analytical costs are certain to sharply decline, allowing produc-
tion to soar. This augmented capacity for data generation has al-
ready enabled large-scale biotic surveys of aquatic and terrestrial
arthropods [12–15], vertebrates [16], pollen [17], diatoms [18], and
fungi [19–21].

Access to large collections of specimens is essential to capital-
ize on the analytical capacity provided by DNA metabarcoding.
Among the many approaches used to sample terrestrial arthro-
pods, Malaise traps [22] have gained wide adoption because they
collect large, diverse samples with little effort [23]. Although most
effective for sampling flying insects, they also collect ground-
active arthropods. By coupling DNA barcoding with Malaise trap-
ping [24, 25], high-resolution monitoring networks for arthropods
are within reach, but there are challenges. Data interpretation re-
quires a well-parameterized DNA barcode reference library for the
region under investigation, creating the need for a system to aid
site selection. Ecoregions are designed to serve as spatial frame-
work for the research, assessment, and monitoring of ecosystems
and therefore represent a good candidate [26–29], although their
boundaries are rarely sharply defined and they are based on dis-
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tributional data for a narrow range of taxa. Despite these limita-
tions, ecoregions have been widely and successfully used to guide
management decisions and to explore species and community di-
versity patterns [30, 31]. As a result, they are a good candidate to
serve as the backbone for a large-scale monitoring network. The
most widely adopted schema partitions the world’s 14 terrestrial
biomes into 846 ecoregions [31].

This study demonstrates the feasibility of using metabarcoding
for the comparison of temporal and spatial patterns of arthropod
communities in 3 of Canada’s 47 terrestrial ecoregions: the East-
ern Canadian Forest–Boreal Transition (ECF; 75,000 km2), the East-
ern Great Lakes Lowland Forests (EGL; 63,000 km2), and the South-
ern Great Lakes Forests (SGL; 22,000 km2) (Fig. 1). Forest cover de-
clines from 77.7% in the ECF to 30.1% in the EGL and just 12.1%
in the SGL, while cropland/pastures cover 78% of the SGL, 57% of
the EGL, and 3% of the ECF [31]. The EGL and SGL are the most
populated ecoregions in Ontario, with developed land (e.g., urban,
road networks) encompassing >7% of the SGL [32]. As such, these
ecoregions provide a good basis for assessing the impacts of varied
disturbance regimes on biodiversity.

Data description
Collections were made by deploying a Malaise trap at 52 sites in
these 3 ecoregions, and samples were metabarcoded to examine
variation in their species richness (α-diversity), community com-
position (β-diversity), and phylogenetic diversity. Malaise traps
were deployed for 20 weeks at 15 sites in the ECF, 24 sites in the
EGL, and 13 sites in the SGL. Catches were harvested at 2-week
intervals, and 410 of the resultant 520 samples were designated
for metabarcoding (the others were reserved for single-specimen
barcoding). Analysis began with non-destructive lysis of the spec-
imens in each bi-weekly sample, followed by DNA extraction us-
ing a membrane-based protocol [33]. A 463-bp amplicon of cy-
tochrome c oxidase I (COI) was then PCR amplified, and the ampli-
con pools from each set of 10 samples were sequenced on an Ion
Torrent S5 using a 530 chip with a maximum read length output of
600 bp. This chipset usually produces 9–12 million reads of vary-
ing length at a 1–2% error rate. The sequences were subsequently
analysed using mBRAVE [34]. All raw HTS datasets were deposited
in the SRA [35] under the BioProject accession No. PRJNA629553.

Results
Sequence analysis of the 410 samples produced 367,823,207 reads
across 41 S5 runs (mean reads per run = 8.97 million, see Supple-
mentary Table S1). Two-thirds were filtered, leaving 126,253,260
reads that could be assigned to a BIN (Barcode Index Number [36])
on BOLD [37] (Supplementary Fig. S1). Nearly all reads (99.3%)
found a BIN match on BOLD, but those that failed were de novo
clustered using mBRAVE with a 99% similarity threshold. The lat-
ter analysis recognized an average of 28 additional operational
taxonomic units (OTUs) per sample, but >96% of them reflected
sequencing/PCR errors (e.g., chimeras, sequences with multiple
indels) or NUMTs so they were excluded from further analysis.
Consideration of the assigned reads revealed 26,263 BINs among
the 52 sites, with more than one-third (9,301) found at only 1 site,
respectively (Fig. 2b).

The Chao 1 [38] estimate for the total number of BINs present at
the 52 sites was 29,640 (Fig. 2a), while species richness extrapola-
tion based on the lognormal distribution (Fig. 2c [39]) suggested
the presence of 31,516 BINs. On average, 0.3 million sequences
were recovered per sample, and they revealed the presence of a

mean of 2,352 BINs per site (range 996–4,581 BINs, Supplementary
Table S2), with bi-weekly samples containing a mean of 619 (SE
14.3) BINs (range 60–1,666, Supplementary Table S3). Most low BIN
counts occurred in spring (May) or fall (September), with diversity
peaking in mid-summer (June/July) (Supplementary Fig. S2). Tax-
onomic composition at an ordinal level was similar among sam-
ples, with more than one-half of the BINs being flies (Diptera), fol-
lowed by Hymenoptera, Lepidoptera, Hemiptera, and Coleoptera
(Supplementary Fig. S3).

Overlap in BIN composition was higher among parks in an
ecoregion than among those in different ecoregions, even after
geographical distance was considered (Fig. 3a). Sites in the ECF
had the highest mean phylogenetic diversity followed by EGL and
finally SGL (Fig. 3b), differences that were significant for all pair-
wise comparisons (Kruskal-Wallis and Dunn post hoc P < 0.005
for ECF/EGL, P < 0.003 for ECF/SGL, P < 0.05 for EGL/SGL). More
BINs were collected in the ECF (14,001) than in the EGL (12,787) or
SGL (10,958) (Fig. 3c). The Chao 1 estimates for the number of BINs
present in each ecoregion were 15,401 for ECF, 14,577 for EGL, and
12,602 for SGL. The 3 ecoregions shared 4,133 BINs, while roughly
one-third of those in each region were not collected elsewhere. A
2D non-metric multidimensional scaling (NMDS) ordination plot
revealed that BIN assemblages for sites in each ecoregion formed
cohesive groupings (Fig. 3d). Permutational multivariate analysis
of variance (PERMANOVA) analysis also suggested that commu-
nity structure varied between ecoregions (R2 = 0.141, P < 0.001)
and minimally with decreasing site elevation (R2 = 0.035, P =
0.03) (Supplementary Table S4).

Overall, α-diversity was highest in the ECF, intermediate in
the EGL, and lowest in SGL (Fig. 4). The α-diversity patterns
for the varied insect orders followed the overall trend, but
BIN richness for Collembola showed the opposite trend as it
peaked in the SGL, while spider α-diversity was highest in
the EGL.

Levels of turnover (Fig. 5) were generally high among sites
(species replacement by new species not found elsewhere) as well
as high nestedness levels (gain and loss of species also found else-
where). Lower levels of both turnover and nestedness were ob-
served for most taxa at sites in the ECF, while the highest values
were found in the SGL.

Discussion
This study used metabarcoding to examine the species repre-
sented in 410 Malaise trap samples derived from 52 protected
sites in 3 juxtaposed Canadian ecoregions. Metabarcoding re-
vealed 26,263 species of arthropods, while Chao 1 and Preston log-
normal extrapolations indicated that another 3,000–5,000 species
await detection. Because just 52 sites were surveyed, a more com-
prehensive sampling program in these ecoregions might reveal
as many as 50,000 species of arthropods. Nearly 5-fold varia-
tion (996–4,581) in BIN counts was detected among sites; counts
showed a similar range for the 30 sites where all samples were
analysed (996–4,508) and the 22 where just half were metabar-
coded (1,312–4,581). On average, 619 BINs were recovered from
each metabarcoded sample, a count that was 52.5% higher than
the mean BIN count (406) for samples that were barcoded using
the Pacific Biosciences Sequel platform (D. Steinke et al., in prepa-
ration). This difference suggests that more than half the BINs re-
covered from metabarcoded samples derive from environmental
DNA attached to specimens in the sample, from their gut con-
tents, or from sequence errors that escaped the stringent filtering
conditions.
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Figure 1: Map of sampling locations and ecoregion boundaries in Southern Ontario, Canada.

The 3 ecoregions examined in this study collectively span
160,000 km2, just 1.6% of Canada’s land surface, but 2 (SGL, EGL)
are among the most heavily populated areas in the country [32].
The ecoregions showed considerable overlap in species compo-
sition; 33.1% of the BINs recorded from ≥3 sites were shared by
the 3 ecoregions. BIN richness was lowest in the southernmost
ecoregion (SGL) and highest in the most northerly (ECF). This dif-
ference coincided with a disturbance gradient—from forested re-
gions with low human density in the ECF (78% forest cover) to dis-
turbed landscapes dominated by farmland/cities in the SGL (12%
forest cover). The decline in species richness in response to dis-
turbance is consistent with earlier studies [40–42], even though
our collections all derived from protected areas. Gray et al. [43]
reported that protected sites contain significantly higher species
counts than adjacent disturbed areas, perhaps because communi-
ties in protected areas include representatives of original habitats
and generalists from adjacent disturbed landscapes [44]. However,
protected areas in the SGL were small islands of remnant forest in
a landscape dominated by agricultural activity, so they were un-
doubtedly heavily exposed to pesticides, with agricultural fields
creating dispersal barriers that further reduced diversity.

Our results indicate that α-diversity for major insect orders
of flying insects (Diptera, Hymenoptera, Hemiptera, Lepidoptera)
peaked in the least disturbed ecoregion (ECF). By contrast, 2
groups of arthropods (Araneae, Collembola) lacking flight showed
a different trend, with their diversity peaking in other ecore-
gions. Aside from potential random sampling effects this differ-
ence might also reflect the fact that Malaise traps only sample
flightless taxa with resident populations near the trap but capture
flying insects from distant habitats. As such, biodiversity patterns
for flying insects provide a regional perspective while those for
taxa without flight provide a local perspective [25, 45]. If so, the re-

duction in diversity of Collembola from the most southerly (SGL)
to northerly (ECF) ecoregion might reflect the expected latitudi-
nal gradient in biodiversity, undisrupted by disturbance because
of the local source of specimens in each sample.

The present study establishes the feasibility of monitoring
changes in species composition of arthropod communities [46,
47]. For all 3 ecoregions, temporal turnover was high, reflecting
the seasonal succession of species. Species richness was lower
at the beginning and end of the season and peaked in the sum-
mer months (Supplementary Fig. S2). β-diversity was lowest for
most taxonomic groups at sites in the ECF and highest in the SGL.
Species turnover was generally higher than nestedness, suggest-
ing the presence of many transient species [48]. As many species
were only collected at 1 or 2 sites (Fig. 2b), many samples likely in-
cluded transients passively transported by the wind [49]. Wingless
and small insects generally depend on air currents to carry them
to new sites, and the Malaise trap can function as a windbreak.

Metabarcoding can already provide cost-effective biosurveil-
lance as the present study analysed ∼856,000 specimens and gen-
erated 223,860 species occurrence records for $82,000, an analyt-
ical cost of <$0.50 per record. By adopting simpler analytical pro-
tocols (e.g., destructive processing of samples) with ongoing re-
ductions in sequencing costs [11], costs can be reduced by an or-
der of magnitude, delivering species occurrence records for $0.04
apiece in the ecoregions targeted in this study. In settings with
higher α-diversity, the cost could be halved. Aside from its cost-
effectiveness for data acquisition, the digital format of metabar-
coding results aids their curation, validation, and preservation.
Current metabarcoding protocols cannot estimate the total abun-
dance of each species in a sample. However, they have been used
to provide relative abundance [50, 51] or relative biomass [52, 53].
This situation shifts when multiple samples are analysed because
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Figure 2: (a) BIN accumulation curve for the 410 Malaise trap samples collected in 51 Ontario provincial parks. (b) Fisher log series fit to the number of
sites where each BIN was observed. (c) Preston lognormal species abundance curve showing the total BINs within each log2 abundance interval.

the abundance of a species can then be estimated from its fre-
quency of occurrence in these samples (rare species will be re-
covered less frequently than abundant taxa).

Because the 846 currently recognized ecoregions [31] were
largely delineated on the basis of distributional data for vascu-
lar plants and vertebrates, there remains a need to ascertain how
well they represent diversity patterns in other taxa. Smith et al.
[54] found that arthropods showed weak adherence to ecoregion
boundaries and proposed this might reflect dispersal limitations
linked to their small body size or to the biased assemblage of
arthropod species with data. Our much larger dataset shows ev-
idence of structuring by ecoregion as both phylogenetic diversity
and BIN composition were significantly different among ecore-
gions, even when comparisons extended to widely separated sites.
This result suggests that ecoregions do provide a useful structural
framework, reinforcing results from earlier studies [55, 56]. How-
ever, a third of species in this study crossed ecoregion boundaries
and more extensive sampling would raise the incidence of shared
species. The latter results make it clear that high sampling effort
is required to better understand species distributions. In looking
to the future, it is apparent that there is an immediate need for a
more detailed understanding of the levels of species overlap be-
tween adjacent ecoregions. Is, for example, the pattern of high
overlap in species composition among neighbouring ecoregions

detected in this study a general pattern or are some ecoregion
boundaries sharply delineated? Such information is critical in de-
signing an effective global biomonitoring network to inform con-
servation efforts [57, 58].

Potential implications
Past monitoring programs have provided limited insights into the
shifting distributions and abundances of arthropod species [59].
By coupling the use of an efficient collection method with the ca-
pacity of DNA metabarcoding to determine the species composi-
tion of bulk samples, this study confirms that compositional shifts
in arthropod communities can be tracked using DNA metabar-
coding [60]. The present results also indicate that the ecoregion
concept not only furthers understanding of foundational biogeo-
graphic principles and improves their potential application to con-
servation efforts, but also provides a logical scaffold for large-
scale monitoring networks.

Methods
Sample collection
An ez-Malaise trap (BioQuip Products, Compton, California, USA)
was deployed to collect arthropods at 1 site in each of 50 provin-
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Figure 3: BIN compositional differences among 3 Ontario ecoregions: (a) Relationship between geographical distance and mean community similarity
(Sørensen similarity coefficient) within and between ecoregions. (b) Box plots comparing Faith Phylogenetic Diversity for the 3 ecoregions. Significant
differences between pairs are indicated with different lowercase letters (a: ECF/EGL; b: ECF/SGL; c: EGL/SGL). (c) Venn diagram depicting BIN overlap
among ecoregions. (d) Non-metric multidimensional scaling (NMDS) plot using Bray-Curtis index coefficient. Colour coding is based on ecoregion.

cial parks, while 2 sites were sampled in the final park (Algonquin)
because of its large size. Trap catches were harvested every sec-
ond week from early May through September, producing 10 sam-
ples per site, for a total of 520 samples. These samples were pre-
served in 95% ethanol and held at −20◦C until DNA extraction.

Five samples (weeks 1+2, 5+6, 9+10, 13+14, 17+18) from each
of 22 sites were used for single-specimen barcoding (D. Steinke
et al., in preparation), while the other 410 samples were anal-
ysed in this study. A direct count indicated that 230,000 specimens
were present in the 21.2% of the samples that were barcoded. On
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Figure 4: Comparison of α-diversity (± SE) in 3 Ontario ecoregions for all BINs and for 10 arthropod taxa using 12 random sites from the total sites for
each ecoregion. Statistical tests are based on Kruskal–Wallis followed by Mann–Whitney post hoc comparisons with Bonferroni correction. Significant
differences between pairs are indicated with different lowercase letters (a: ECF/EGL, b: ECF/SGL, c: EGL/SGL).

this basis, the remaining samples (78.8%), those examined in this
study, included ∼856,000 specimens.

DNA extraction and PCR
DNA extraction used a membrane-based protocol [33] modified
for bulk samples. Specimens were removed from ethanol by fil-
tration through a sterile Microfunnel 0.45 μM Supor Membrane
Filter (Pall Laboratory, Port Washington, New York, USA) using a
6-Funnel Manifold (Pall Laboratory, Port Washington, New York,
USA). The wet weight of each sample was then ascertained to
allow volume adjustment (Supplementary Table S5) of the lysis
buffer [33]. Each sample was then incubated overnight at 56◦C

while gently mixed on a shaker. Eight 50-μL aliquots (technical
replicates) from each of the 410 lysates were then transferred
into 3,280 separate wells in 96-well microplates and DNA extracts
were generated using Acroprep 3.0-μm glass fiber/0.2-μm Bio-
Inert membrane plates (Pall Laboratory, Port Washington, New
York, USA). Each plate contained 80 lysate samples, 8 technical
replicates of a positive control (lysate from a bulk sample whose
component specimens were individually Sanger sequenced; pub-
lic BOLD dataset [77]) and 8 negative controls. Each lysate was
mixed with 100 μL of binding mix, transferred to a column plate,
and centrifuged at 5,000g for 5 min. DNA was then purified with
3 washes; the first used 180 μL of protein wash buffer centrifuged
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Figure 5: Total β-diversity (solid lines) and turnover (dotted lines) for 3 Ontario ecoregions. Values were computed using 1,000 bootstrap samples of 12
random sites from each ecoregion. Significant differences between ecoregions are detected when the peaks of the density plots do not overlap.

at 5,000g for 5 min. Each column was then washed twice with 600
μL of wash buffer centrifuged at 5,000g for 5 min. Columns were
transferred to clean tubes and spun dry at 5,000g for 5 min to re-
move residual buffer before their transfer to clean collection tubes
followed by incubation for 30 min at 56◦C to dry the membrane.
DNA was subsequently eluted by adding 60 μL of 10 mM Tris-HCl
pH 8.0 followed by centrifugation at 5,000g for 5 min.

PCR reactions used a standard protocol [62]. Briefly, each re-
action included 5% trehalose (Honeywell, Charlotte, North Car-
olina, USA), 1× Platinum Taq reaction buffer (Invitrogen), 2.5 mM
magnesium chloride (Invitrogen, Waltham, Massachusetts, USA),
0.1 μM of each primer (Integrated DNA Technologies, Coralville,
Iowa, USA), 50 μM of each dNTP (KAPA Biosystems), 0.3 units of
Platinum Taq (Invitrogen, Waltham, Massachusetts, USA), 2 μL of

DNA extract, and Hyclone ultra-pure water (Thermo Fisher Sci-
entific, Waltham, Massachusetts, USA) for a final volume of 12.5
μL. Two-stage PCR was used to generate amplicon libraries for se-
quencing on an Ion Torrent S5 platform. The first round of PCR
used the primer combination AncientLepF3 [63] and LepR1 [64] to
amplify a 463-bp fragment of COI. Prior to the second PCR, first-
round products were diluted 2× with ddH2O. Fusion primers were
then used to attach platform-specific unique molecular identifiers
(UMIs) along with the sequencing adaptors required for Ion Tor-
rent S5 libraries. Both rounds of PCR used the same thermocycling
conditions: initial denaturation at 94◦C for 2 min, followed by 20
cycles of denaturation at 94◦C for 40 sec, annealing at 51◦C for
1 min, and extension at 72◦C for 1 min, with a final extension at
72◦C of 5 min.
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HTS library construction
For each plate, labelled products were pooled prior to sequencing.
In total, 41 libraries were assembled. Each included 8 technical
replicates of 10 samples plus 8 technical replicates of an extrac-
tion negative and a positive control, respectively (i.e., 96 samples).
The 10 samples from each of the 30 sites that were only metabar-
coded, together with positive and negative controls, were pooled
after UMI tagging to create a library that was analysed on a 530
chip (30 chips in total). Five samples were available from each of
the other 22 sites (where half the samples were retained for bar-
coding). The UMI-tagged amplicons from 5 samples from each of
2 sites were pooled with positive and negative controls to produce
a single library. Amplicon libraries were prepared on an Ion Chef
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) and se-
quenced on an Ion Torrent S5 platform at the Centre for Biodiver-
sity Genomics following the manufacturer’s instructions (Thermo
Fisher Scientific, Waltham, Massachusetts, USA).

Sequence analysis
Reads from the 8 replicates for each sample were concate-
nated using a bash script and uploaded to mBRAVE [34] for
quality filtering and subsequent queries using several ref-
erence libraries in an open reference approach. All reads
were queried against 5 system libraries on mBRAVE: bac-
teria (SYS-CRLBACTERIA) to screen for potential contamina-
tion, e.g., by endosymbionts such as Wolbachia, chordates (SYS-
CRLCHORDATA), insects (SYS-CRLINSECTA), non-insect arthro-
pods (SYS-CRLNONINSECTARTH), and non-arthropod inverte-
brates (SYS-CRLNONARTHINVERT). All non-arthropod reads were
discarded from further analysis. Sequences were only included in
this analysis if they possessed a minimum length >350 bp and
met the following 3 quality criteria (mean QV > 20; <25% po-
sitions with QV < 20; <5% positions with QV < 10). Reads were
trimmed 30 bp from their 5′ terminus with a set trim length filter
of 450 bp. Reads were matched to the sequences in each reference
library with an ID distance threshold of 3% but were only retained
for further analysis when ≥5 reads matched an OTU in the refer-
ence database. This number is based on earlier benchmarking of
the assignment algorithm on mBRAVE, and IonTorrent-generated
sequences provided the best compromise between removing er-
ror and retaining real matches. All reads failing to match any
sequence in the 5 reference libraries were clustered at an OTU
threshold of 1% with a minimum of 5 reads per cluster, again a
value based on initial benchmarking. All raw data are available in
the NCBI SRA (BioProject accession No. PRJNA629553).

Using mBRAVE, we generated BIN (and OTU) tables including
all library queries for each individual plate/run (10 samples, plus
a negative and positive control [61] for each run). Read counts for
any BINs recovered from the negative control on a plate were sub-
tracted from the counts for the same BIN in the 80 non-control
wells in the run. When this subtraction reduced the read count
for a BIN to zero, its occurrence was removed. This step reduced
the effects of rare tag switching on data integrity [65] and reduced
background contamination.

Ecoregion analysis
OTU tables were converted to presence/absence matrices. To de-
termine the completeness of sampling, we calculated accumula-
tion curves and the Chao 1 estimator for total diversity [38] using
the vegan package [66]. For further extrapolation of species rich-
ness, we used the lognormal species abundance distribution [39].
The fit of the Fisher Logseries [67] was used to determine relative

BIN abundance. Both methods are implemented in vegan (fish-
erfit, prestonfit) [66]. We calculated the Sørensen similarity co-
efficient to ascertain whether differences in species assemblages
were greater between or across ecoregion borders. Differences in
BIN composition among the 3 ecoregions were examined using
NMDS with the Bray-Curtis index coefficient as implemented in
vegan [66]. The adonis function of the vegan package was used
to conduct a PERMANOVA to partition distance matrices among
sources of variation (factors such as elevation and ecoregion).

A maximum likelihood phylogeny was inferred for a BIN se-
quence alignment using RAxML Black box (RAxML, RRID:SCR_006
086) [68] on XCEDE via the CIPRES portal (CIPRES Science Gateway,
RRID:SCR_008439) [69]. This system uses a GTRCAT model, which
is recommended for larger datasets. The resulting phylogeny com-
prising 26,263 BIN sequences was used to calculate the Faith phy-
logenetic distance (PD) [70] using the picante package [71]. Be-
cause this measure is influenced by polytomies in a phylogeny
[72], only 1 representative was included per BIN to avoid bias in-
troduced by variation in the number of records for each BIN. A
Kruskal–Wallis test followed by a Dunn post hoc analysis was used
to determine whether significant PD differences existed between
ecoregions.

The α-diversity was quantified as the number of BINs observed
at a site. It was calculated using 12 random sites from the to-
tal sites for each ecoregion. Pairwise BIN diversity among ecore-
gions was evaluated using the nonparametric multiple compari-
son function implemented in the R package dunn.test 1.2.4 [73].
dunn.test is equivalent to the Kruskall–Wallis and pairwise Mann–
Whitney post hoc tests with Bonferroni correction. The β-diversity
was computed as multi-site Sorensen and Simpson indices using
the betapart 1.3. package [74]. β-diversity calculations between
pairs of ecoregions were computed using 12 random sites from the
total pool of sites for each ecoregion, and resampled 1,000 times.
We then split among-site β-diversity into turnover and nested-
ness.

All analyses were performed in R v.3.4.4 [75].

Data Availability
All raw HTS datasets underlying this article are available in the
SRA [76] and can be accessed with BioProject accession No. PR-
JNA629553. Additional supporting data and materials are avail-
able on the GigaScience database [77].

Additional Files
Supplementary Figure S1: Relationship between filtered read
count and number of BINs for 410 metabarcoded samples from
3 ecoregions
Supplementary Figure S2: Bar plot showing α-diversity per month
for all 52 sites
Supplementary Figure S3: Patterns of α-diversity and read abun-
dance per major arthropod group and site
Supplementary Table S1: mBRAVE project codes as well as sam-
ples analyzed and read coverage for each 530 chip analyzed on
the Ion Torrent S5
Supplementary Table S2: GPS coordinates, elevation (m), and
ecoregion assignment for the 52 sampling sites and the number
of BINs recovered from each site
Supplementary Table S3: Sampling dates, pre- and post-filtering
read counts, BIN and OTU counts for the 410 samplesResults
of PERMANOVA to partition distance matrices among sources of
variation

https://scicrunch.org/resolver/RRID:SCR_006086
https://scicrunch.org/resolver/RRID:SCR_008439
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Supplementary Table S4: Results of PERMANOVA to partition dis-
tance matrices among sources of variation
Supplementary Table S5: Wet weight (g) to insect lysis buffer vol-
ume (mL) ratios for Malaise trap bulk samples.
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