
Berbar  
Health Information Science and Systems           (2022) 10:14 
https://doi.org/10.1007/s13755-022-00181-z

RESEARCH

Features extraction using encoded local 
binary pattern for detection and grading 
diabetic retinopathy
Mohamed A. Berbar*   

Abstract 

Introduction: Reliable computer diagnosis of diabetic retinopathy (DR) is needed to rescue many with diabetes who 
may be under threat of blindness. This research aims to detect the presence of diabetic retinopathy in fundus images 
and grade the disease severity without lesion segmentation.

Methods: To ensure that the fundus images are in a standard state of brightness, a series of preprocessing steps 
have been applied to the green channel image using histogram matching and a median filter. Then, contrast-limited 
adaptive histogram equalisation is performed, followed by the unsharp filter. The preprocessed image is divided into 
small blocks, and then each block is processed to extract uniform local binary patterns (LBPs) features. The extracted 
features are encoded, and the feature size is reduced to 3.5 percent of its original size. Classifiers like Support Vector 
Machine (SVM) and a proposed CNN model were used to classify retinal fundus images. The classification is abnormal 
or normal and to grade the severity of DR.

Results: Our feature extraction method was tested on a binary classifier and resulted in an accuracy of 98.37% and 
98.84% on the Messidor2 and EyePACS databases, respectively. The proposed system could grade DR severity into 
three grades (0: no DR, 1: mild DR, and 5: moderate, severe NPDR, and PDR). It obtains an F1-score of 0.9617 and an 
accuracy of 95.37% on the EyePACS database, and an F1-score of 0.9860 and an accuracy of 97.57% on the Messidor2 
database. The resultant values are dependent on the selection of (neighbours, radius) pairs during the extraction of 
LBP features.

Conclusions: This study’s results proved that the preprocessing steps are significant and had a great effect on 
highlighting image features. The novel method of stacking and encoding the LBP values in the feature vector greatly 
affects results when using SVM or CNN for classification. The proposed system outperforms the state of the artwork. 
The proposed CNN model performs better than SVM.
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Introduction
Diabetic Retinopathy (DR) is a severe microvascular com-
plication of diabetes disease. DR is diagnosed by detec-
tion of lesions, haemorrhages, microaneurysms (MAs), 
and exudates [1, 2] or diagnosed directly without lesions 

segmentation by detecting abnormalities [3]. Haemor-
rhages (HEM) are mostly caused by the leakage of weak 
vessels and are characterized as big red spots. Micro 
aneurysms (MAs) are round, small, and have a dark red 
colour. Exudates are the third symptoms of DR that are 
yellowish, irregular in shape, and shiny. Exudates are 
due to the leaking of lipoproteins and proteins out of the 
retinal vessels. MAs are the earliest features that could 
be detected in DR. MAs can cause blockage of blood 
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vessels in the retina and may herniate, causing haemor-
rhages. MAs are features that can always be detected 
in the early stages, while haemorrhages can be found in 
more advanced stages. Many computerised DR detection 
methods are suggested for the detection and removal of 
optical disc (OD) (Rathod et al. [4]; Sekar and Nagarajan 
[5], Lu and Lim [6], Acharya et al. [7], Trucco et al. [8]) 
because its colour is the same as the other features of ret-
inal images like exudates. The rapid increase of diabetic 
patients requires the development of diagnostic systems. 
These systems are necessary to help with the manual 
diagnosis of related issues. Automated detection of DR 
can be achieved using image processing and machine 
learning techniques that will computerise the diagnosis 
process and decision-making. The computerised diagno-
sis system could be used to sort the DR patient from dia-
betic patients, and then the doctors could follow him up. 
Unfortunately, fundus images are suffering from noise. 
The images in the same database are not of the same 
brightness or contrast. In this paper, a new method for 
balancing the contrast and brightness of the funds’ image 
is proposed. Traditional methods with the segmentation 
stage are excluded because they introduce the possibil-
ity of segmentation stage error propagation to the rest 
of the DR system. Thus, detecting diabetic retinopathy 
in retinal images without the need for segmentation of 
DR components is our research goal, which is a challeng-
ing task that needs to be resolved. By looking for a good 
method for features extraction without the segmenta-
tion stage, we found that local binary pattern (LBP) has 
been applied in numerous pattern recognition systems 
and shows promising results for medical imaging, such as 
in breast cancer [9], DR detection [3, 10] and glaucoma 
[11]. Another extension of the LBP is the uniform LBP, 
which denotes the number of spatial transitions in a par-
ticular pattern. Uniform LBP has a power discrimination 
ability compared to the original LBP patterns due to the 
different statistical properties it has and the fact that the 
non-uniform patterns have a small proportion in com-
parison to uniform patterns that represent most of the 
fundamental texture properties. Uniform LBP and statis-
tical features, and transform methods have been imple-
mented and tested. Unfortunately, results from statistical 
features, wavelet, and discrete cosine transform methods 
were not promising. This paper proposes a new novel 
method based on uniform LBP for features extraction 
to provide a fast and robust computer diagnosis system 
for DR detection and grading DR severity. The proposed 
method for feature extraction is named “Uniform Local 
Binary Pattern Encoded Zeroes (ULBPEZ)”. The pro-
posed method reduced the feature size to 3.5% of its orig-
inal size. It jumps forward with a classification score of 
10% or more. For classification, SVM and the proposed 

CNN model are used. The SVM classifier and the CNN 
are trained with 70% of the extracted and encoded fea-
tures and evaluated using the remaining 30%. This paper 
also presents a creative way to represent the extracted 
ULBPEZ features as an image. That image can be classi-
fied later by the proposed CNN.

Related research works
Traditional studies have concentrated on detecting exu-
dates in the retina as in [1] and [12]. Since the exudates 
appear as white or yellow spots in retinal images, Kumar 
et al. [1] emphasised the brighter regions by performing 
gamma correction on both the red and green channels to 
extend both histograms. The exudates candidate region 
is then detected using histogram analysis. The method 
validated only 158 retinal images. The sensitivity for 
detecting abnormal cases was 88.45%. Rajput and Patil 
[12] presented a supervised method for identifying and 
classifying the exudates. The candidate regions of exu-
dates were detected using the k-means clustering tech-
nique, which provides a good result when the retinal OD 
is fully visible and fails if only a portion of the OD is vis-
ible. Some researchers confirm the need for pre-process-
ing to improve the image quality [13, 14]. Pazmino et al. 
[13] presented a method for processing fundus images to 
improve the visibility of the vascular network. Luangru-
angrong [14] used contrast limited adaptive histogram 
equalization (CLAHE) for image enhancement, then 
optic disk and blood vessel detection followed by classi-
fying exudates using hierarchical fuzzy-c-mean cluster-
ing. Wang et  al. [15] detect DR stages in their database 
and the Messidor-1 database by using a modified R-FCN 
method based on R-FCN method (Dai et al. [16]). Image 
augmentations were applied. The obtained sensitivity 
for detecting DR grades was 92.59% in the Messidor-1 
database. Their study did not detect exudates and only 
detected HEM and MAs.

Some researchers like Ramachandran et  al. [17], Sze-
gedy et al. [18], Alex et al. [19], Johari et al. [20], and Lam 
et al. [21] used pre-trained CNN models like GoogleNet 
and AlexNet. Others who used their proposed CNN 
architecture included David et al. [22], Gargeya and Leng 
[23], Li et al. [24, 25], and Shaban et al. [26].

The pre-trained models fixed the input image to a small 
size of around 224 × 224 while DR images are big-sized 
images. These CNN models use filter sizes suitable for 
objects in the ImageNet database and hyperparameters 
that may be not compatible with the small details in fun-
dus image texture. Resizing DR images to that small size 
and ignoring the special nature of the medical image may 
lead to losing important features of small local details. 
Li et al. [25] used an algorithm based on CNN to extract 
fundus image features. They replaced the max-pooling 
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layers with fractional max-pooling. Two CNNs with 
a different number of layers are trained to extract fea-
tures. The metadata of the image is combined with the 
extracted features from CNNs. A support vector machine 
(SVM) classifier is used for classifying the fundus images 
of the Kaggle dataset into DR grades. Their accuracy was 
86.17%. Shaban et  al [26] introduced their CNN to dis-
tinguish grades of DR into three levels of severity (Level 
0. no DR, level 1: (i.e., a combination of mild (grade 1) 
and moderate (grade 2) Non-Proliferative DR (NPDR)) 
and level 2: (i.e., a group of severe NPDR (grade 3), and 
Proliferative DR (PDR) (grade 4)) with an accuracy of 
88–89%, a sensitivity of 87–89%). David  et al. [22] used 
multiple CNNs for the automatic detection of DR lesions 
on the Messidor-2 dataset. The system outputs three 
classes: Class 1 (no or mild DR present), class 2: referral 
DR is present, and class 3: vision-threatening DR is pre-
sent. Their paper obtained results with 96.8% sensitivity. 
Gargeya and Leng [23] used a deep CNN model based 
on deep residual learning. The dataset Messidor-2 was 
used for evaluation. The model achieved 93% sensitivity 
as a binary classifier. Katada et  al. [27] implemented an 
AI model for grading DR images. They trained a CNN 
and an SVM using a data set of American clinical fun-
dus images. The AI model scored a sensitivity of 81.5% 
for the American validation data set and a sensitivity of 
90.8% for the Japanese data set. Manojkumar et  al. [10] 
presented a DR detection system using LBP. They sepa-
rated the fundus colour image into RGB channels, and 
then LBP is applied to each channel for the extraction 
of LBP features. The statistical features are calculated as 
mean, standard deviation, entropy, kurtosis, and skew-
ness for each channel of the LBP image. A random for-
est algorithm is used for classification. Colomer et al. [3] 
used LBPs and granulometric patterns to extract the tex-
ture and morphological features of fundus images. Com-
binations of these features feed the classifier. With SVM 
their accuracy range is (82.05%:85.33%) and with Gauss-
ian processes for classification, they got 87.62% of accu-
racy and 83.48% of sensitivity.

Databases under processing
Messidor‑2
The proposed system has been proven on fundus images 
obtained from the original Messidor-2 Decencière (2014) 
[28]. Messidor-1 is excluded after a while of research 
because it has some repeated samples and some mistaken 
classifications. Overall, Messidor-2 is an update of Messi-
dor-1. The images within the database have significant 
variability in colour, illumination, resolution, and qual-
ity. It contains 874 examinations (1748 images). Three 
images were excluded because we didn’t have their clas-
sification. The study’s experiments utilised 1745 fundus 

images, 1012 of which have no DR lesions and 733 of 
which have DR lesions graded into five grades accord-
ing to the severity (0: no DR, 1: mild DR, 2: moderate, 3: 
severe DR, Non-Proliferative DR (NPDR), 4: Prolifera-
tive DR (PDR)). The number of images that have lesions 
is considered small compared to the number of normal 
images, and they are distributed over the four abnormal 
grades (1:4). The Messidor-2 database was doubled at 
the beginning of the research work by adding the vertical 
mirroring version of the database before processing it to 
be 3490 images.

Kaggle EyePACS database
The EyePACS database [29] is also used for the evalua-
tion of the proposed system. It is a large dataset of fundus 
images taken under a variety of imaging conditions. Each 
image is graded for the severity of diabetic retinopathy 
on a scale of 0 to 4 as in the Messidor-2 database. The 
images have noise and contain artifacts. They may be out 
of focus, underexposed, or overexposed. The images were 
collected from multiple clinics using a variety of cam-
eras over an extended period. About 3301 images were 
selected to be used for the evaluation of our proposed 
system. The Messidor-2 is relatively much better in qual-
ity than the EyePACS database. This may be because it 
has been created by a fixed camera. The developed code 
for pre-processing, feature extraction, and classification 
were written using Matlab-19.

Methodology
Pre‑processing
The pre-processing stage has been carried out and 
applied before extracting features to standardise the 
brightness and contrast of the image. Among the RGB 
channels, the blue channel has the lowest contrast and 
even suffers from undersaturation and noise, while the 
red channel suffers from oversaturation [30]. On the 
other hand, the green channel has the best contrast 
between the retinal components and the background, 
providing more structural information [1, 30]. Thus, 
the study’s proposed method utilises the green channel. 
Standardization of image quality is achieved when using 
histogram matching with the selected reference image. A 
reference image should have balanced brightness and col-
our, and thus, careful selection is necessary. The output is 
an image with a brightness that is comparable to that of 
the reference image. The median filter and contrast lim-
ited adaptive histogram equalisation (CLAHE) method 
are subsequently utilised on the green image, which will 
be followed by the unsharp filter as shown in Fig. 1.

CLAHE is used for improving the image contrast 
and was originally given by Zuiderveld [31]. Figure  2 
shows the results of pre-processing. When comparing 
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Fig. 1 Pre-processing

Fig. 2 Pre-processing results: original green channel and green channel after correction
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the original image with the enhanced one, a significant 
improvement is observed in the information content of 
the enhanced image.

The black corners are detected, and then the image is 
divided into blocks of pixels. To avoid redundant data 
and noisy features not related to the retina itself, any 
block or part of it belonging to the black background at 
the corners of the image will be avoided in the features 
extraction process.

Features extraction using ULBPEZ method
The fundus image has been resized to a fixed size of 
512 × 512 pixels. The images are divided into blocks (sub-
images), and each block is processed as an input image 
for the uniform LBP feature extraction stage. The LBP 
coefficients are computed based on the circular neigh-
bourhood (P) with radius (R). The uniform LBP features 
extracted from each block, are concatenated with the 
previously calculated LBP values from the previous block 
(see Fig. 3).

After the extraction of the uniform LBP features from 
all image blocks, the extracted LBP features from all 
blocks have been stacked, and then the zero coefficients 
are replaced by encoding them using the theory of the 
popular RLE algorithm (see Fig. 4). This process reduces 
the original size of the feature vector to 3.5% of its length 
before encoding zeros.

The choice of the best block size to be processed for 
LBP extraction is an important issue. It depends on the 
smallest lesion in the fundus image and, subsequently, on 
the image size. Our manual examination of the fundus 
image reports that the smallest lesion (microaneurysm) 
is about 5 × 5 pixels at an image size of 512 × 512. A 
microaneurysm has a small size which constitutes less 
than 1% of the fundus image reported by Sarhan et  al. 
[32]. The block size should be small to match the small-
est lesion, so, our experiments started testing using R = 
2 and a block size 5 × 5 pixels. It is not recommended to 
increase the block size more than necessary to avoid los-
ing local details. Experimental results also prove this rec-
ommendation. The block size should be just surrounding 
the pixel’s neighbours to the processing pixel. The size of 
the block should be greater than (2 × radius (R)) of the 
circular neighbourhood (see Eq. 1). Then the image divi-
sions into blocks are calculated according to Eq. 2.

Originally, the number of neighbours P had a great 
effect on the number of returned LBP coefficients for 
each block (see Eq. 3).

The proposed LBP encoded zeros method changed 
this situation, and P no longer has an effect on the size 
of the features vector because of encoding zero values. 
The main parameter affecting feature vector size is radius 
R in inverse proportion. Increasing R will increase the 
block size, which will decrease image divisions and the 
number of blocks per image to be processed and, conse-
quently, the number of extracted features. This research 
avoids redundant data, any block or part that belongs 
to the black background at the corners of the image will 
be masked out in the features extraction process. This is 
also considered a reduction of feature vector size. The 
extracted features vector is reduced in size again after 
encoding zero values. For example: Dividing a 512 × 512 
image into 70 × 70 blocks with (P, R) = (8, 3) and block 
size 7 × 7, will produce a feature vector size of 233581 
coefficients after ignoring the blocks belonging to or 
touching the background at the corners. The feature vec-
tor size became 8200 values after encoding zeros at most. 
Experimentally, after getting rid of zeros in the features 
vector, the size of the features is found to be at its maxi-
mum, as shown in the following Table 1.

(1)Block size = 2× R+ 1

(2)
Divisions = 5× floor

(

image size/(5× Block size)
)

(3)
Number of uniformLBP coefficients for

each block = P × (P − 1)+ 3

Fig. 3 The proposed technique of extracting and forming the 
encoded uniform LBP (ULBPEZ) features

Fig. 4 Example to explain proposed technique (ULBPEZ) for encod-
ing zeros values in features vector
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The proposed CNN model for ULBPEZ
The pre-trained GoogleNet, ResNet-50, VGG-19, and 
AlexNet models fixed the input image to 224 × 224 × 3. 
We used the pre-trained models with resizing fundus col-
our images to 224 × 224 × 3 without feature extraction 
steps. Unfortunately, the resultant accuracy range was 
52:65%. Applying a histogram match with a good qual-
ity reference image on the red and blue channels of all 
images of the Messidor-2 dataset improves the resultant 
accuracy range to (72:75) which is not acceptable for us, 
and we decided to construct our own CNN model.

The extracted vector of ULBPEZ values has been 
reformed in a square matrix, then normalised and repre-
sented as a square image, and each ULBPEZ value is rep-
resented as a pixel. The image size was 91 × 91 in the case 
of R = 3. CLAHE is used to enhance the ULBPEZ image 
contrast. This process resulted in a new form of data-
base of ULBPEZ images representing the original fundus 
images (see Fig. 5). The ULBPEZ images have been used 
with our designed CNN architecture. The analysis of the 
proposed CNN model is shown in Table 2. All the filters 
used in the convolution layers are of size [1 5] as 1-D fil-
ters with stride 1 and padding 1. The number of filters in 
Conv1, Conv2, and Conv3 were 8, 16, and 8 respectively. 
Max Polling layers are used with stride 2 and padding 
0. The CNN was trained with 70% of the samples in the 
newly formed database and tested the remaining 30%.

Evaluation metrics
The confusion matrix is used for performance evaluation 
(see Fig. 6). The confusion matrix gives a clear measure 
to the system, and it does not mislead by only the total 
accuracy measure, especially when the number of classes 
is unbalanced as in our datasets under processing.

Results of binary classifier
In the beginning, we applied uniform LBP on the stand-
ard database Messidor-2 to extract features without using 
ULBPEZ in the extracted features stream. The result-
ant accuracy (Acc) was 85.1%, and the recall (sensitiv-
ity) was bad at about 71.7% with an F1 score of 0.8051. 
The proposed method ULBPEZ has been applied as 
local descriptors of each block (sub-image). All series of 
zeros in the features vector are encoded and the size of 
the features vector is reduced to 3.5% of its original size. 
Different values of R (2, 3, 4, 5) are tested with their cor-
responding block size (5 × 5, 7 × 7, 9 × 9, 11 × 11) with 
different neighbours P (8, 12, 16, 20, 24) to find the pair 
(P, R) giving the best recall and F1-score. The features 
extracted using ULBPEZ are tested using an SVM clas-
sifier at different kernel functions at (P, R) = (20, 3). The 
linear kernel results in the best outcome on Messidor-2 
as shown in Table 3.

To evaluate the effect of the value of R on the results, 
neighbourhood P is fixed at eight neighbours, and R 
equals one value of (2, 3, 4, 5). The results of applying 
ULBPEZ to Messidor-2 are presented in Table 4. The fea-
ture extraction method’s performance with R = 3 or 5 is 
much better than with R = 2 or 4. The focus will be on 
using R = 3 as it has the highest performance, and it is 
recommended to use the smaller R to decrease the block 
size as much as possible to detect features of small local 
details.

Table 1 Effect of radius R on features size

R Block size Divisions Features size

2 5 × 5 100 × 100 16,150

3 7 × 7 70 × 70 8200

4 9 × 9 55 × 55 4950

5 11 × 11 45 × 45 3300

Fig. 5 Original image and ULBPEZ image
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Table 2 The analysis of the proposed CNN for classifying the ULBPEZ image

Name Type Activations Learnable

1 Image input Image 91 × 91 × 1 –

2 Conv 1: 8 1 × 5 × 1 convolution with stride [1 1] padding [1 1 1 1] Convolution 93 × 89 × 8 Weights 1 × 5 × 1 × 8
Bias 1 × 1 × 8

3 Batchnorm1 batch normalization with 8 channels Batch Normalization 93 × 89 × 8 Offset 1 × 1 × 8
Scale 1 × 1 × 8

4 Relu_1 ReLU 93 × 89 × 8 –

5 Max pool 1: [1 × 2] max pooling with stride [2 2] and padding [0000] Max Pooling 47 × 44 × 8 –

6 conv2: 16 1 × 5 × 8 convolution with stride [1 1] padding [1 1 1 1] Convolution 49 × 42 × 16 Weights 1 × 5 × 8 × 16
Bias 1 × 1 × 16

7 Batchnorm2: batch normalization with 16 channels Batch Normalization 49 × 42 × 16 Offset 1 × 1 × 16
Scale 1 × 1 × 16

8 Relu_2 ReLU 49 × 42 × 16 –

9 Max pool 2: [1 × 2] max pooling with stride [2 2] and padding [0000] Max Pooling 25 × 21 × 16 –

10 Conv 3: 8 1 × 5 × 1 convolution with stride [1 1] padding [1 1 1 1] Convolution 27 × 19 × 8 Weights 1 × 5 × 16 × 8
Bias 1 × 1 × 8

11 Batchnorm_3: batch normalization with 8 channels Batch Normalization 27 × 19 × 8 Offset 1 × 1 × 8
Scale 1 × 1 × 8

12 Relu_3 ReLU 27 × 19 × 8 –

13 Maxpool_3: 1 × 2 max pooling with stride [2 2] and padding [0000] 14 × 9 × 8

14 fc_1 Fully connected layer 1 × 1 × 100 Weights 100 × 1008, Bias 100 × 1

15 fc_2 Fully connected layer 1 × 1 × 5 Weights 5 × 100, Bias 5 × 1

16 SoftMax Softmax 1 × 1 × 5 –

17 Class output Classification Output – –

Fig. 6 Confusion matrix
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The proposed uniform ULBPEZ has been evaluated 
on Messidor-2 and EyePACS using different circular 
neighbourhoods P and with the SVM "Linear" kernel 
and our CNN model. All results at neighbourhoods P 
= 8, 20, and 24 are acceptable performance on Messi-
dor2 and all of them got the highest F1-score and AUC 
values with SVM or with the CNN model. The pairs 
(20, 3) and (24, 3) got the highest F1-score and AUC 
values on EyePACS. According to the EyePACS results, 
the pair (24,3) provides the best F1-scare. Figure  7 
shows the confusion matrix of the binary classifier 
at four of the most successful pairings of (P, R). The 
performance of our proposed CNN is competing with 
SVM, as shown in Table 5.

Results of multi‑classes classifier
The best classification rate for grading DR into five 
classes on Messidor2 and EyePACS databases was at 
pair (P, R) = (24, 3) using the proposed CNN model and 
SVM. Figures 8 and 9 present the confusion matrixes of 
the obtained results at pair (24, 3). Figure  8 shows the 
failure of SVM to classify grade 3 (Severe Non-Prolifer-
ative DR (NPDR)) and grade 4 (Proliferative DR (PDR)) 
on Messidor2 and the failure of CNN to classify grade 
4 on Messidor2. It is noticeable that in all databases of 
DR, the number of samples in grade 3 and grade 4 is too 
limited compared to grade 0, which has been classified 
correctly by 100%. The unbalanced results among differ-
ent DR severity grades are because the number of sam-
ples of abnormal grades (1:4) is not enough for training 
the classifier properly. One of the solutions is to double 

the number of samples in each grade (1:4) by adding the 
vertical mirrored version of the images before processing 
them for feature extraction. Results showed that CNN 

Table 3 Results of Messidor‑2 with SVM classifier and with different kernel functions, (P, R) = (20, 3)

SVM Kernel Formula Precision Specificity Recall (Sensitiv‑
ity)

F1‑score Accuracy 
(Acc) (%)

Linear K(xn , xi) =
(

xn
′

, xi

)

100% 100% 96.3% 0.9810 98.37

Gaussian RBF K(xn , xi) = exp(−γ ||xn − xi ||
2) 100% 100% 94.4% 0.9710 97.70

Polynomial
K(xn , xi) =

(

1+ xn,
′

xi

)q 100% 100% 94.9% 0.9737 97.90

Gaussian K(xn , xi) = exp(−
||x_n−x_i||2

2σ
) 100% 100% 93.8% 0.9679 97.61

Table 4 Uniform ULBPEZ results on Messidor‑2 using SVM 
with Linear kernel and P = 8

R Precision (%) Specificity (%) Recall (Sensi‑
tivity) (%)

F1‑score

2 84.9 92.3 61.3 0.7123

3 100 100 94.9 0.9740

4 98.6 99.3 68.2 0.8066

5 98.8 99.2 90.1 0.9422

Fig. 7 shows the confusion matrix results of ULBPEZ on Messidor2/
EyePACS using the SVM and CNN model
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model performance is much better than SVM in grad-
ing the severity of DR into 5 classes. After doubling the 
images of grades (1:4) in the EyePACS database, its size 
became 4400 images. That is the cause of getting bal-
anced results among different DR severity grades with 
the EyePACS database as shown in Fig. 9.

Many researchers (Shaban et  al. [26]; and David et al. 
[22]) regrouped the grades as a solution to the problem 
of the low classification rate of grades (2:4). We imple-
mented the following two proposals for the new group-
ing: The first is our proposal. The grades of DR are 
divided according to three levels of severity: 0: “no DR,” 
1: “mild,” and 5: “Moderate and Sever.” The images of old 
grades 2, 3, and 4 are grouped into one new grade named 

"5". This forms a database of the new three grades (0, 1, 
and 5). The second proposal for grading DR is proposed 
and presented by Shaban et al. [26]. The grades of DR are 
divided into three levels of severity (0, M, and S). Grade 
0 means “No DR”. The samples from grades 1 “Mild”, and 
2 “Moderate” are grouped into one grade named “Grade 
M”. The samples of grades 3 (Severe Non-Proliferative DR 
(NPDR)), and 4 (Proliferative DR (PDR)) are grouped into 
one grade named “Grade S”.

The DR diagnosis system performs well with our pro-
posal of DR grading (0, 1, and 5) using SVM on Messi-
dor-2 and EyePACS databases (see Fig.  10). From the 
results of the multiclass SVM classifier and grouping 

Table 5 Classification into 2 classes results of ULBPEZ using SVM and CNN model

Dataset (P, R) 
pair

Precision Specificity Recall 
(Sensitivity) F1-score Accuracy (Acc) AUC

CNN SVM CNN SVM CNN SVM CNN SVM CNN SVM CNN SVM

Messidor-
2

(8,3) 100.0% 100% 100.0% 100.0% 86.0% 95% 0.9247 0.9740 94.15% 97.9% 0.9329 0.9740
(16, 3) 96.0% 100.0% 100.0% 100.0% 94.3% 95.1% 0.9707 0.9722 97.61% 97.43% 0.9716 0.9710
(20, 3) 96.2% 100% 97.2% 100% 100.0% 96.3% 0.9808 0.9810 98.37% 98.37% 0.9864 0.9753
(24, 3) 96.2% 100% 97.2% 100% 100.0% 94.6% 0.9808 0.9722 98.37% 97.23% 0.9837 0.9710

EyePACS (20,3) 96.1% 100% 93.6% 100% 99.6% 93.9% 0.9780 0.9683 97.27% 97.47% 0.9605 0.9691
(24, 3) 96.2% 100% 93.8% 100% 100.0% 93.0% 0.9805 0.9636 97.57% 96.36% 0.9720 0.9666

Fig. 8 Confusion matrix results of grading DR on Messidor-2 at (P, 
R) = (24, 3): a Making use of the proposed CNN, b using SVM

Fig. 9 Confusion matrix results of grading DR on EyePACS at (P, 
R) = (24, 3) and with a doubling number of samples of grades (1:4): a 
Making use of the proposed CNN, b Using SVM
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of the databases’ grades according to our grouping pro-
posal, the best pair is (24, 3) for EyePACS and Messi-
dore-2 databases. The performance of the proposed 
CNN model outperforms SVM performance in classify-
ing DR grades into 3 classes. The F1 score is 0.9860 with 
an accuracy of 98.84% for Messidore-2 and the F1 score 
is 0.9617 with an accuracy of 95.37% for EyePACS. 

Table 6 shows the details of classification into 3 classes 
of results using SVM and our proposed model.

Shaban et al. [26] proposal has limited success with the 
EyePACS database and failed with Messidore-2 to classify 
severe class (S) (see Fig.  11). It obtained an F1 score of 
0.930 and an accuracy of 93.98% on the Kaggle EyePACS 
database.

Comparison with other ultramodern techniques
The proposed method ULBPEZ applies the uniform LBP 
mapping features without performing any image segmen-
tation step. It reduces the size of the features to a very 
small size. The achieved results outperform the results of 
comparable ultramodern techniques. To the best of the 
author’s knowledge, no other system analyses the texture 
of the retina background and detects DR without image 
segmentation. The proposed feature extraction method is 
novel and superior in producing very small feature sizes 
and it may be the best in its results scores compared with 
others that used the same database (Ramachandran et al. 
[17]; Johari et al. [20]; Lam et al. [21]; Usman et al. [30]; 
David et al. [22]; Gargeya and Leng [23]).

Some of these researchers (Ramachandran et  al. [17]; 
Usman et  al. [30]; David et  al. [22]; Gargeya and Leng 
[23]) are using deep learning classifiers, feeding the deep 
learning classifiers with the image directly after some 
pre-processing. Table  7 summarises the performance, 

Fig. 10 The best outcomes of ULBPEZ using SVM and our CNN 
model with grouping using our proposal

Table 6 Classification into 3 classes results of ULBPEZ using SVM and CNN model

Dataset (P, R) pair
Specificity Grade Sensitivity 

(CNN)
Grade Sensitivity 

(SVM) F1 score Accuracy (Acc)

CNN SVM Grade 1 Grade 5 Grade 1 Grade 5 CNN SVM CNN SVM

Messidor-2
( 8,3)  100% 100% 100% 89.1% 100% 89.6% 0.9647 0.9674 97.13% 97.31% 
(20, 3) 94.7% 92.2% 89.3% 95.0% 93.2% 95.5% 0.9489 0.9505 93.15% 93.86% 
(24, 3) 100% 100% 95.1% 98.5% 90.4% 79.3% 0.9860 0.9097 98.84% 92.9% 

EyePACS ( 20,3) 94.7% 92.2% 89.3% 95.0% 93.2% 95.5% 0.9489 0.9505 93.15% 93.86%
(24, 3) 95.9% 94.3% 96.7% 94.3% 100% 84.7% 0.9617 0.9262 95.37% 91.13%

Fig. 11 The best outcomes of SVM using ULBPEZ on Messidor-2 and EyePACS databases with grouping as Shaban et al. (2020) [26] proposal using 
SVM
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Table 7 Performances of existing DR detection methods

Cited papers Database Methodology Result

Ramachandran et al. [17] Otago Deep neural network software called Visiona Sensitivity: 84.6%

Messidor-1 Sensitivity: 96.0%

Johari et al. [20] 580 images Messidor-1 AlexNet Acc = 88.3%

Manojkumar et al. [10] NA LBP is applied to each channel. The statistical features are 
calculated for each channel of the LBP image. A random 
forest algorithm is used for classification

True Positive Rate: 0.856
True Negative Rate: 0.897

Colomer et al. [3] E-OPHTHA LBPs and granulometric patterns SVM: Acc range is (82.05%:85.33%)
Gaussian processes: Acc: 87.62%
Sensitivity: 83.48%

Wang et al. [15] Messidor-1 R-FCN method by Dai et al. [16] after modification
Classification of DR stages

Sensitivity: 92.59%

Li et al. [24] Messidor-1 Grading DR severity using attention Deep Learning Network 
based on ResNet50

Acc: 92.6%,
Sensitivity: 92.0%,

Shaban et al. [26] EyePACS (3,648) images The system outputs only three classes by merging mild 
and moderate in one class and severe NPDR and PDR in 
one class then using (CNNs) for classification to Grade DR 
severity

Sensitivity: 87%-89%
Acc: 88%-89%
for only 3-classes

David et al. [22] Messidor-2 The system outputs only three classes by merging no DR, 
mild in one class and moderate and severe NPDR in one 
class, and PDR in one class then using (CNNs) for classifica-
tion to Grade DR severity

Sensitivity: 96.8%
for only 3-classes

Costa and Galdran [33] Messidor-1 Grade DR severity using Multiple Instance Learning AUC: 0.9

Dutta et al. [34] EyePACS Grading DR severity using VGGNet 16 Acc: 86.30%

Chetoui et al. [35] Messidor-1 Detecting DR using CNNs (binary classifier) to normal and 
abnormal

AUC: 0.963

EyePACS AUC: 0.986, Sensitivity: 0.958

Kwasigroch et al. [36] EyePACS VGGNet Model Acc: 81.70%, Sensitivity: 89.50%

Chowdhury et al. [37] EyePACS Inception v3 Model (binary classifier) in normal and abnor-
mal

Acc: 61.3%

Sayres et al. [38] EyePACS
2000 images

Grading DR severity using customized networks CNN Acc: 88.4%, Sensitivity: 91.5%,

Sengupta et al. [39] EyePACS Inception-v3 Model Acc: 90. 4%, Sensitivity: 90%

Pao et al. [40] EyePACS Bi channel customized CNN Acc: 87.83%, Sensitivity:77.81%
Specificity: 93.88%, AUC: 0.93

Samanta et al. [41] EyePACS DenseNet121 based Acc: 84.1%

Thota and Reddy [42] EyePACS VGGNet Model Acc: 74%, Sensitivity: 80.0%
Specificity: 65.0%. AUC: 0.80

Ludwig et al. [43] Messidor-2 Detect referral-warranted diabetic retinopathy (RDR) using 
DenseNet201

Acc: 87%
Sensitivity: 80%

Proposed method ULBPEZ Messidor-2 Methodology: Uniform LBP Encoded Zeros features (ULBPEZ)

Results of Binary Classifier:

(SVM) SE: 96.3%, F1-score: 0.9810, Acc: 98.37%, AUC: 0.9753 at (P, R) = (20, 3)

(SVM) SE: 94.6%, F1-score: 0.9722, Acc: 97.23%, AUC: 0.9710 at (P, R) = (24, 3)

(CNN) SE: 100.0%, F1-score: 0.9808, Acc: 98.37%, AUC: 0.9864 at (P, R) = (20, 3)

(CNN) SE: 100.0%, F1-score: 0.9808, Acc: 98.37%, AUC: 0.9837 at (P, R) = (24, 3)

Results of Multi-classes Classifier:

(CNN) Specificity: 100.0%, F1-score: 0.9860, Acc: 98.84% at (P, R) pair equal (24, 3)

(CNN) Specificity: 100.0%, F1-score: 0.9947, Acc: 97.13% at (P, R) pair equal (8, 3)

EyePACS Methodology: Uniform LBP Encoded Zeros features (ULBPEZ)

Results of Binary Classifier:

(SVM) SE: 93.9%, F1-score: 0.9683, Acc: 97.47%, AUC: 0.9691 at (P, R) = (20, 3)

(CNN) SE: 100.0%, F1-score: 0.9805, Acc: 97.57%, AUC: 0.9720 at (P, R) = (24, 3)

Results of Multi-classes Classifier:

(CNN) Specificity: 95.9%, F1-score: 0.9617, Acc: 95.37% at (P, R) pair equal (24, 3)
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method, and database information of DR detection sys-
tems compared to the proposed method. This work 
showed that reliable computer diagnosis of DR could be 
accomplished for diabetics using robust enhancement 
steps and ULBPEZ.

Conclusion
In this paper, a new method for feature extraction from 
fundus images is presented and evaluated on the Messi-
dor-2 and EyePACS databases for DR detection and 
grading. The proposed method differs from those in the 
literature in terms of the method of pre-processing and 
its novel technique to extract features. Compared to 
ultramodern feature extraction methods, the proposed 
method is superior to other methods as revealed by its 
small feature vector and its high score of accuracy and 
sensitivity. The used technique proved excellent for dif-
ferentiating the normal and abnormal fundus image. The 
proposed system partially and incorrectly classifies severe 
NPDR, and PDR. Regrouping the DR grades into new 
grading (0: no DR, 1: mild, 5: moderate, severe NPDR, 
and PDR) enhances the outcome of grading and it dif-
ferentiates excellence among the new grading 0, 1, 5. The 
differences in results between Messidore-2 and EyePACS 
databases due to differences in the quality of their images 
prove that we could get a high-performance DR diagnos-
ing system if we could fix the quality of the fundus image 
by fixing all surrounding conditions (lighting, camera 
specification, focus, and exposure). Researchers should 
give more effort to the improvement of retinal fundus 
images for good DR screening. The proposed system out-
performs the state of the artwork. The proposed CNN 
model performs better than SVM.
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