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The RB1 gene is frequently mutated in human cancers but its role in tumorigenesis
remains incompletely defined. Using an induced pluripotent stem cell (iPSC) model of
hereditary retinoblastoma (RB), we report that the spliceosome is an up-regulated target
responding to oncogenic stress in RB1-mutant cells. By investigating transcriptomes
and genome occupancies in RB iPSC–derived osteoblasts (OBs), we discover that both
E2F3a, which mediates spliceosomal gene expression, and pRB, which antagonizes
E2F3a, coregulate more than one-third of spliceosomal genes by cobinding to their pro-
moters or enhancers. Pharmacological inhibition of the spliceosome in RB1-mutant
cells leads to global intron retention, decreased cell proliferation, and impaired tumori-
genesis. Tumor specimen studies and genome-wide TCGA (The Cancer Genome Atlas)
expression profile analyses support the clinical relevance of pRB and E2F3a in modulat-
ing spliceosomal gene expression in multiple cancer types including osteosarcoma (OS).
High levels of pRB/E2F3a–regulated spliceosomal genes are associated with poor OS
patient survival. Collectively, these findings reveal an undiscovered connection between
pRB, E2F3a, the spliceosome, and tumorigenesis, pointing to the spliceosomal machin-
ery as a potentially widespread therapeutic vulnerability of pRB-deficient cancers.
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The retinoblastoma gene family, also known as pocket proteins, includes three mem-
bers, RB1 (p105), RBL1 (p107), and RBL2 (p130) (1). In contrast to RBL1 and RBL2,
which are very rarely mutated in human cancers, RB1 mutations are commonly found
in various cancer types (2). Patients with hereditary retinoblastoma (RB), an inherited
autosomal dominant cancer disorder caused by germline mutations/deletions in the
RB1 tumor suppressor gene, have a >400-fold increased incidence of osteosarcoma
(OS) (3, 4), suggesting a strong mechanistic link between pRB loss and osteosarcoma-
genesis. By regulating E2F1/2/3 function, pRB fine-tunes the cell cycle (1) and cellular
senescence (5). In addition to suppressing E2F transcriptional activities, pRB also mod-
ulates multiple cellular processes including apoptosis (6), centromeric and pericentro-
meric structure maintenance (7–9), homologous recombination (10), nonhomologous
end joining (11), telomere preservation (12), and silencing of repetitive regions (13).
These findings may contribute to some of the oncogenic phenotype associated with
pRB loss, though the complete picture of pRB function in tumor suppression remains
incompletely defined.
Alternative RNA splicing is a widespread biological process that allows for the

expression of multiple RNA and protein isoforms from a single gene, contributing to
structural transcript variation and proteome diversity in eukaryotes (14). Cancer cells
exploit this process to express remarkable variation in transcriptome and splicing pat-
terns (15, 16), often expressing unique cancer-specific splicing isoforms whose encoded
proteins drive cancer progression or contribute to specific oncogenic features of the
malignant cells. Expression levels of 261 known splicing factors were significantly more
variable across 10 of 11 cancer types compared with normal noncancer controls (15).
This altered variance supports the notion that dysregulation of spliceosomal genes is
positively selected among cancers.
Several studies have revealed that pRB/E2F signaling regulates and is regulated by

spliceosome function. A Drosophila study found that SR protein splicing factor B52
controls dE2F2 pre–messenger RNA (mRNA) splicing, suggesting that the spliceosome
regulates pRB/E2F–mediated cell cycle control (17). Large-scale RNA interference
screening in Caenorhabditis elegans revealed that partial inactivation of splicing-related
genes overlaps with the pRB inactivation phenotype (18). Consistently, short hairpin
RNA (shRNA) and CRISPR-Cas9 screening revealed that knockdown and/or knock-
out of RNA splicing factors induce lethal effects in pRB-deficient cancers (19, 20).
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Investigation of pRB-interacting protein complexes also revealed
that pRB physically interacts with RNA-binding proteins, implying
that the pRB/E2F pathway may modulate RNA processes through
posttranscriptional regulatory machinery (21). Although these studies
imply the potential for regulation between pRB/E2F and spliceo-
some function, the involvement of pRB/E2F as a global regulator of
spliceosomal gene expression, culminating in cancer development
following pRB loss, has not been previously established.
In this study, we established RB induced pluripotent stem

cells (iPSCs) and mutation-corrected isogenic control iPSCs
and applied them to elucidate the pathological mechanisms of
osteosarcomagenesis caused by RB1 mutation. By integrating
iPSC and cancer cell studies, we unexpectedly find that pRB
loss leads to increased expression of numerous spliceosomal
genes and that the spliceosome is a therapeutic vulnerability in
RB1-mutant cancers.

Results

Generation, Characterization, and Mutation Correction of RB
iPSCs. To elucidate how RB1 mutation contributes to tumor
initiation and progression, we generated iPSCs from fibroblasts
obtained from members of a family including two affected RB
patients (mother and daughter) and one unaffected individual
(father) (Fig. 1A). The mother developed retinoblastoma and
the daughter developed both retinoblastoma and OS. Whole-
exome sequencing (WES) of these family members revealed
that the two affected patients harbor a heterozygous c.1531-
1532 ins A that causes a D511fs mutation, which was con-
firmed by Sanger sequencing (SI Appendix, Fig. S1 A and B).
This D511fs mutation results in premature mRNA termination
and decreased total pRB protein expression (SI Appendix, Fig.
S1C). Using nonintegrating Sendai virus (SeV)–based cell
reprogramming, we established iPSC clones from the affected
and unaffected family members. These iPSC clones demon-
strated human embryonic stem cell (hESC) morphology and
expressed pluripotency factors (NANOG and OCT4), hESC
surface markers (TRA-1-81 and SSEA4), and alkaline phospha-
tase (AP) (Fig. 1B). The lines also showed expression of pluri-
potency markers at levels comparable to H1 and H9 hESCs by
qRT-PCR (SI Appendix, Fig. S1D). Consistent with their geno-
type, RB iPSCs demonstrated lower pRB protein than wild-
type (WT) iPSCs (SI Appendix, Fig. S1E). We further verified
the loss of SeV and exogenous OCT4, SOX2, KLF4, and MYC
transgenes (SI Appendix, Fig. S1F), demonstrating that these
WT and RB iPSCs have zero genetic footprints from reprog-
ramming. Both WT and RB iPSC lines were karyotypically
normal (SI Appendix, Fig. S1G) and demonstrated the capacity
to differentiate into all three germ layers in teratomas (SI
Appendix, Fig. S1H). Together, our results indicate that somatic
cells from RB patients can be properly reprogrammed, maintain
a pluripotent state, and be effectively differentiated. The char-
acteristics of WT and RB iPSCs are summarized in SI
Appendix, Table S1.
In order to generate isogenic controls and correct RB1 muta-

tion in RB iPSCs, we applied CRISPR-Cas9 nickase constructs
targeting the RB1 genome locus. The CRISPR-Cas9 nickase
system minimizes off-target mutations by 50- to 1,500-fold
compared with a CRISPR system inducing double-stranded
breaks in cultured cells (22). The paired nickase plasmids were
designed to target RB1 intron 16 (c.1531-1532 ins A located in
RB1 exon 17) (Fig. 1C). The T7E1 assay validated on-target
CRISPR-Cas9 editing events following treatment with
CRISPR-Cas9 nickase plus single-guide RNA (sgRNA) pairs

(SI Appendix, Fig. S1I). The CRISPR-Cas9 plasmids and donor
vector containing an FNF/NeoR selection cassette (Frt-EM7-
NeoR-Frt) with 1-kb homologous arms were constructed and
electroporated into RB iPSCs and selected with G418. Resis-
tant clones were examined for FNF insertion in intron 16 of
the RB1 genomic locus by PCR (SI Appendix, Fig. S1J). South-
ern blot analysis confirmed the unique FNF insertion in the
RB1 genomic locus (SI Appendix, Fig. S1K). Once the corrected
clones were confirmed by Sanger sequencing, we excised the
FNF/NeoR cassette by Flp recombinase (SI Appendix, Fig.
S1L). Mutation-corrected iPSC lines (corrected RB [cRB]
iPSCs) demonstrated a corrected RB1 gene sequence (Fig. 1D)
and expression of the restored pRB protein (Fig. 1E). The effi-
ciency of correcting the RB1 gene mutation with this CRISPR-
Cas9 nickase system was 0.5 to 2.3% (SI Appendix, Fig. S1M).

RB iPSC-Derived Osteoblasts Demonstrate a Premalignant
Phenotype. RB patients are susceptible to developing second
cancers such as sarcomas, melanomas, and brain cancers.
Among them, OS is the leading cause of death in RB survivors
(3, 4). One RB patient in our studied family had already devel-
oped OS (Fig. 1A). The RB1 gene is also frequently mutated in
OS from patients without RB1 germline mutations (4). We
applied the RB iPSC model to understand the pathogenesis of
OS caused by RB1 mutation. Prior studies have suggested that
OS likely arises from the acquisition of malignant features
within osteoblasts (OBs) (4, 23). Since human OBs can be
induced from multipotent mesenchymal stem cells (MSCs),
our iPSC model could be used to assess the effects of RB1
mutation in OBs. We first differentiated WT, RB, and cRB
iPSCs to their corresponding MSCs. These iPSC-derived
MSCs expressed the MSC surface markers CD105 and CD166
but not pluripotent marker CD24 (SI Appendix, Fig. S2A). In
comparison with cRB MSCs, RB MSCs showed higher mRNA
expression of numerous pRB/E2F targets CCNA2, CDC6,
CDK1, BRCA1, and RAD51 (SI Appendix, Fig. S2B) and E2F
transcriptional reporter activity (SI Appendix, Fig. S2C). These
studies demonstrate that RB MSCs maintain comparable cell-
surface marker expression to WT and cRB MSCs and that RB
MSCs partially lack pRB function while mutation-corrected
cRB cells have restored pRB function.

MSCs were then induced to OBs as the osteogenic differentia-
tion process was monitored over time (23–25). Consistent with
mouse studies showing enhanced osteogenic differentiation upon
loss of pRb (26), RB OBs showed increased bone-associated AP
activity at day 6 (SI Appendix, Fig. S2D), mineral deposition at
days 15 and 24 (SI Appendix, Fig. S2E), and expression of skele-
tal system development genes ANKH, CLEC3B, and IGF2 at
day 24 (SI Appendix, Fig. S2F). We compared expression levels
of core transcriptional/epigenetic regulators in RB and cRB cells
during osteogenic differentiation. None of the core osteogenic
regulators, including ATF4, CEBPD, RUNX2, ZEB1, and
ZNF521, showed impaired expression during osteogenic differ-
entiation (SI Appendix, Fig. S2G), indicating that loss of pRB
has a limited impact on the osteoblastic transcription factor net-
work. To investigate whether RB OBs are able to recapitulate
tumorigenic potential, we performed in vitro anchorage-
independent growth (AIG) assays and in vivo xenografts. AIG
assays showed clonal growth in soft agar by RB OBs but not
WT and cRB OBs (Fig. 1F). In vivo xenograft assays demon-
strated in vivo cell proliferation abilities in RB OBs but not WT
and cRB OBs (Fig. 1G). The characteristics of WT, RB, and
cRB iPSC-derived MSCs and OBs are summarized in SI

2 of 11 https://doi.org/10.1073/pnas.2117857119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2117857119/-/DCSupplemental


Appendix, Table S1. In summary, our findings demonstrated a
premalignant phenotype for RB iPSC-derived OBs.

RB OBs Demonstrate an Up-Regulated RNA Spliceosomal Gene
Signature. In order to gain insights into pRB loss–induced
oncogenic effects, we investigated and compared global tran-
scripts among WT, RB, and cRB OBs. mRNAs were isolated at
three differentiation time points (day 0, MSCs; day 15, pre-
OBs; day 24, OBs) and analyzed by RNA sequencing (RNA-
seq). Spearman’s correlation demonstrated that gene expression
profiles from MSCs are distinct from pre-OB and OB samples

(Fig. 2A), suggesting successful osteogenic differentiation in
WT, RB, and cRB cells. As expected, levels of numerous known
pRB/E2F targets were up-regulated in RB OBs compared with
both WT and cRB OBs (SI Appendix, Fig. S3A). Gene set
enrichment analysis (GSEA) of transcription factor targets and
oncogenic signatures identified E2F chromatin immunoprecipi-
tation (ChIP) targets and a pRB/E2F–associated oncogenic sig-
nature as enriched in RB OBs (SI Appendix, Fig. S3 B and C).
Consistent with loss of pRB facilitating osteogenic differentia-
tion (SI Appendix, Fig. S2 D–F), genes up-regulated in RB OBs
compared with WT and cRB OBs at day 24 were most highly
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Fig. 1. Generation of a premalignant RB patient–derived iPSC platform. (A) The RB family tree includes two RB patients (mother: RB-M; daughter: RB-D)
with a heterozygous pRB(D511fs) mutation and one unaffected relative (father: WT-F). Arrow, proband. (B) SeV-4F (OCT4, SOX2, KLF4, and MYC)–reprog-
rammed RB and WT iPSCs highly express hESC pluripotency factors (NANOG and OCT4) and hESC surface markers (TRA-1-81 and SSEA4) and have high AP
activity. (Scale bars, 100 μm.) (C) Schematic overview of correcting RB1 mutation by CRISPR-Cas9 nickase in the RB1 genomic locus (13q14.2). CRISPR-Cas9
sgRNA target sites are labeled in blue. RB1 exon 17 is labeled in pink. The c.1531-1532 ins A site is labeled in green and the affected GAT nucleotide encod-
ing aspartic acid (D) is colored red. (D) Sanger sequencing indicates the RB1 c.1531-1532 ins A mutation is corrected in cRB iPSCs. (E) Western blot reveals
comparable pRB protein levels in WT and cRB iPSCs and lower levels in RB iPSCs, indicating restoration of pRB protein upon correction of RB1 gene muta-
tion. (F) AIG assay demonstrates in vitro tumorigenic ability for RB OBs but not WT and cRB OBs. Colonies larger than 50 μm after 1 mo of growth are
considered positive. (Scale bars, 100 μm.) Representative photographs show positive colonies from RB-M2 and RB-D2 OBs. (G) Tumor xenograft experiments
by subcutaneous transplantation in NU/NU mice demonstrate that RB but not WT or cRB OBs recapture in vivo cell proliferation ability. The numbers of
xenografts are indicated. Results are expressed as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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expressed in more terminally differentiated (day 21) mouse OB
gene profiles as well as in an RB gene-associated cancer signa-
ture (SI Appendix, Fig. S3D).
Genomic alterations and rearrangements are commonly

found in human OS (27, 28). To investigate if RB iPSC-
derived OBs also harbor these rearrangements, we applied in
silico cytogenetic region enrichment analysis (CREA) (23) to
RB OB samples to identify the potential presence of rearranged
regions frequently found in human OS. CREA revealed that
chromosomal rearrangements are uncommon in these RB
iPSC-derived OBs (SI Appendix, Fig. S3E), suggesting that RB
iPSC-derived OBs can model the early stages of OS initiation
and progression caused solely by RB1 mutation prior to the
acquisition of secondary genomic alterations. Furthermore,
GSEA demonstrated that differentially expressed genes in OS

compared with normal OBs are specifically enriched in RB
OBs compared with WT and cRB OBs at day 24 (SI Appendix,
Fig. S3F), indicating that RB OBs nonetheless acquire genes
associated with an OS signature in the absence of additional
gene alterations.

Gene ontology (GO) analyses revealed that RB OBs are
enriched for genes involved in DNA replication and repair, cell
cycle (e.g., cell cycle process and G1/S phase transition), RNA
processing (e.g., RNA splicing and mRNA processing), and bone
development (e.g., bone morphogenesis, bone growth, and OB
differentiation) (Fig. 2B). Surprisingly, the enrichment of RNA
processing pathways was not clearly noted in previous studies.
qRT-PCR verified that numerous spliceosomal genes (e.g.,
CHERP, HNRNPA0, HNRNPD, HNRNPM, HNRNPUL1,
SF3A2, SNRPA, and RBMX) are enriched in RB OBs (Fig. 2C).
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Fig. 2. Enrichment of RNA splicing and spliceosomal genes in RB iPSC-derived OBs. (A) Heatmap demonstrating a pairwise comparison of gene expression
levels from WT, RB, and cRB RNA-seq during the time course of differentiation by Spearman’s correlation. The pairwise correlation coefficients range from
0.94 (blue) to 1 (orange). (B, Left) Enrichment of GO biological processes identified by EnrichmentMap analysis. Network visualization of enriched gene sets
in RB OBs compared with WT and cRB OBs at day 24 indicates that GO biological processes involved in DNA replication and repair, cell cycle, RNA process,
and bone development are enriched in RB OBs. Enriched gene sets in RB OBs are displayed in orange and enriched gene sets in WT and cRB OBs are shown
in blue. FDR, false discovery rate. (B, Right) Enriched GO biological processes in RB vs. WT and cRB OBs are analyzed by GSEA and summarized by a heatmap.
Nonsignificant GOs are shown in light gray. (C) qRT-PCR indicates that expression of spliceosomal genes is enriched in RB iPSC-derived OBs but not LFS
iPSC-derived OBs compared with their corresponding WT controls. (D) qRT-PCR demonstrates that depletion of pRB in WT OBs leads to up-regulation of spli-
ceosomal genes. (E) qRT-PCR indicates that H1-pRBKO hESC-derived OBs demonstrate increased spliceosomal gene expression compared with H1 hESC-
derived OBs. Results are expressed as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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The enrichment of spliceosomal genes is unique to RB but not
Li–Fraumeni syndrome (LFS) OBs, despite the fact that the
hereditary cancer syndrome LFS also carries an OS predisposition,
indicating a pRB-specific effect. shRNA-mediated pRB knock-
down in WT iPSC-derived OBs led to increased expression of
numerous spliceosomal genes (Fig. 2D). To verify if the regulation
of spliceosomal genes by pRB is a common phenomenon, we gen-
erated pRB-knockout (pRBKO) hESC H1 lines by CRISPR-
Cas9 and differentiated these cells to OBs (SI Appendix, Fig.
S3G). Compared with H1-derived OBs, H1-pRBKO–derived
OBs consistently expressed elevated spliceosomal genes (Fig. 2E).
In contrast, overexpression of pRB resulted in the down-
regulation of spliceosomal gene expression in RB OBs (SI
Appendix, Fig. S3H). In comparison with normal retinal tissues,
GSEA of retinoblastoma revealed enrichment of GO biological
process RNA splicing and Kyoto Encyclopedia of Genes and
Genomes (KEGG) spliceosome (SI Appendix, Fig. S3I). In sum-
mary, these findings demonstrate that pRB negatively regulates
spliceosomal gene expression across multiple OB and OS lines
and tissues and emphasize that spliceosomal dysregulation is
involved in pRB loss–induced oncogenesis.

pRB Selectively Binds to E2F3a-Targeted Spliceosomal Genes.
pRB functions as a transcriptional corepressor and many of its
tumor-suppression functions have been attributed to its ability to
negatively regulate E2F-mediated cell cycle gene programs.
Among pRB-interacting E2F family members, E2F3a, but
not E2F1 and E2F2, is predominantly expressed in OBs (SI
Appendix, Fig. S4A). We hypothesized that pRB binds to E2F3a
and negatively modulates E2F3a-regulated spliceosomal gene
expression. To address this hypothesis, we carried out pRB and
E2F3a chromatin immunoprecipitation followed by next-
generation sequencing (ChIP-seq) to determine whether the selec-
tive up-regulation of spliceosomal genes in RB OBs is due to
preferential binding of pRB and E2F3a to the promoters of these
genes. ChIP-seq analyses revealed a striking degree of genome-
wide overlap between pRB and E2F3a sites (Fig. 3A). More than
one-third of pRB-only (2,889), pRB/E2F3a–cotargeted (4,096),
and E2F3a-only (6,539) peaks were detected at promoters and
transcription start sites (TSSs) (SI Appendix, Fig. S4B), indicating
preferential binding of pRB and E2F3a to gene-proximal regions
of transcription initiation. De novo motif analyses revealed that
the top motif enriched in pRB/E2F3a–co-occupied sites is identi-
cal to the E2F family motif (SI Appendix, Fig. S4C). In addition,
pRB ChIP-seq read densities of pRB/E2F3a–co-occupied peaks
were significantly higher than those of pRB-only peaks, suggest-
ing that the localization of pRB to chromatin is dependent on
E2F3a (SI Appendix, Fig. S4D).
To determine specific functional categories modulated by pRB

and E2F3a simultaneously, we performed functional enrichment
analysis on the enriched genomic regions co-occupied by pRB
and E2F3a. pRB/E2F3a–cotargeted genes were highly enriched
for ontologies of processing of capped introns containing pre-
mRNA, mRNA splicing, and RNA processing (Fig. 3B). These
cotargeted gene ontologies were even better enriched than well-
known pRB- and E2F-modulated ontologies such as the cell cycle
and telomere maintenance (Fig. 3B). We then analyzed the pro-
moter/TSS regions of 134 critical spliceosomal proteins for
potential pRB and E2F3a binding. More than one-third (50 of
134) of spliceosomal gene promoter/TSS regions were cobound
by both pRB and E2F3a (Fig. 3 C, Upper), and expression of
these spliceosomal genes was increased in RB OBs compared
with cRB OBs (Fig. 3 C, Lower). These findings confirm the

critical function of pRB and E2F3a in regulating global spliceoso-
mal gene expression.

The spliceosomal genes cobound by pRB and E2F3a at
the promoter/TSS regions by ChIP-seq included CHERP,
HNRNPA0, HNRNPD, HNRNPM, HNRNPUL1, PRPF38A,
SF3A2, and SNRPA (Fig. 3D and SI Appendix, Fig. S4E).
ChIP-qPCR validated the binding of pRB and E2F3a to
HNRNPD, HNRNPUL1, SF3A2, and SNRPA promoter
regions but not to regions adjacent to and upstream of the peak
regions (Fig. 3E). pRB and E2F3a ChIP specificities were
further verified by exogenous Flag-tagged pRB and E2F3a
ChIP-qPCR (SI Appendix, Fig. S4F). Furthermore, E2F3a
increased the expression of these spliceosomal genes (SI
Appendix, Fig. S4G), supporting our hypothesis that pRB nega-
tively regulates spliceosomal gene expression by inhibiting
E2F3a. Taken together, these ChIP-seq studies provide a direct
mechanistic link between pRB/E2F3a transcriptional regulatory
machinery and global spliceosomal gene expression.

pRB and E2F3a Coregulate Distal Enhancers of Spliceosomal
Genes. The analysis of the genomic distribution of pRB/
E2F3a–cotargeted binding sites demonstrated that more than half
of RB1/E2F3a–cotargeted peaks were not located at promoter or
TSS regions (SI Appendix, Fig. S4B). For example, RBMX was
up-regulated in pRB-deficient cells, but ChIP-seq analysis showed
that both pRB and E2F3a barely bind the RBMX promoter and
TSS regions, suggesting that other regulatory mechanisms (e.g.,
enhancers) are involved in pRB/E2F3a–regulated RBMX gene
expression. We found that 31.0% of pRB- and 32.7% of E2F3a-
occupied peaks are marked by H3K27ac (a putative enhancer
marker) in OBs and multiple OS lines (SI Appendix, Fig. S5A).
These findings support a regulatory role for pRB and E2F3a on
distal enhancers. Indeed, pRB and E2F3a co-occupy putative
enhancer regions of some spliceosomal genes including RBMX
(SI Appendix, Fig. S5B). ChIP-qPCR validated the binding of
pRB and E2F3a to RBMX enhancer regions but not upstream of
the peak regions (SI Appendix, Fig. S5C). To demonstrate that
these putative pRB/E2F3a–bound distal elements represent
bona fide enhancers for RBMX, we performed CRISPR-
Cas9–mediated deletion on this upstream region of RBMX. Two
sgRNAs were designed to target upstream and downstream of the
putative RBMX enhancer regions, thus creating a 676-bp deletion
(SI Appendix, Fig. S5D). Sanger sequencing of sgRNA-
transduced RB OBs demonstrated that CRISPR-Cas9–mediated
on-target editing leads to a 676-bp deletion in the targeted pRB/
E2F3a–cobound peak region (SI Appendix, Fig. S5E). Deletion of
this RBMX upstream region indeed reduced expression of RBMX
(SI Appendix, Fig. S5F), suggesting its function as a distal
enhancer. Furthermore, the epigenomic perturbation of the
RBMX upstream region by CRISPR interference (CRISPRi)–
targeted inhibition (29) and CRISPR activation (CRISPRa)–
targeted activation (30) demonstrated that CRISPRi suppresses
RBMX expression (SI Appendix, Fig. S5G) while CRISPRa
increases RBMX expression (SI Appendix, Fig. S5H). These find-
ings demonstrate that pRB and E2F3a can modulate spliceosomal
gene expression through distal regulatory elements. Collectively,
our results emphasize that pRB and E2F3a coordinate the expres-
sion of spliceosomal genes across multiple transcriptional regula-
tory layers.

Spliceosome Perturbation in RB OBs Selectively Increases
Retained Intron Events and Hampers Cell Proliferation. To
further assess the effect of the spliceosomal perturbation on
global splicing patterns between RB and cRB OBs, we
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performed pairwise percent spliced-in (PSI) analyses of exons
among spliceosome inhibitor pladienolide B (PB)–treated cells.
Different splicing events, including alternative 50 splicing site
(A5), alternative 30 splicing site (A3), alternative first exon
(AF), alternative last exon (AL), mutually exclusive exon (MX),
retained intron (RI), and skipped exon (SE), were examined.

Despite global increases in pRB/E2F3a–mediated gene tran-
scription events in RB OBs, PSI analyses identified no obvious
frequency differences in splicing events between RB and cRB
OBs (Fig. 4A), implying that the up-regulation of spliceosomal
genes following pRB depletion overcomes up-regulated RNA
transcription and prevents splicing defects. In contrast,
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Fig. 3. pRB and E2F3a directly cotarget spliceosomal genes. (A, Top) Venn diagram depicts the overlap between pRB and E2F3a binding peaks in cRB OBs
and defines pRB-specific (2,889), pRB/E2F3a–cotargeted (4,096), and E2F3a-specific (6,539) loci. (A, Bottom Left) Heatmaps depict pRB and E2F3a binding to
the 5-kb genomic loci surrounding the identified ChIP-seq peaks, grouped by cluster. (A, Bottom Right) Composite plots show the average binding of pRB and
E2F3a to the pRB-specific, pRB/E2F3a–cotargeted, and E2F3a-specific loci. (B) GO analyses of pRB-specific, pRB/E2F3a–cotargeted, and E2F3a-specific genomic
regions. pRB/E2F3a–cotargeted genes are overrepresented for numerous RNA splicing pathway genes, including those involved in the processing of capped
introns containing pre-mRNA, mRNA splicing, mRNA processing, and mRNA splicing minor pathway. (C) Increased expression of pRB/E2F3a–cotargeted spli-
ceosomal genes in RB OBs compared with cRB OBs. (C, Upper) Heatmaps of ChIP-seq peak intensities in pRB/E2F3a–cotargeted spliceosomal gene regions
(±5 kb from the TSS). Each box in the heatmap represents a 0.7-kb region. (C, Lower) Heatmap of spliceosomal gene expression in RB-D, RB-M, cRB-D, and
cRB-M OBs is examined by RNA-seq. (D) Integrative Genomics Viewer snapshot of pRB and E2F3a occupancy over promoter regions of spliceosomal genes
HNRNPD, HNRNPUL1, SF3A2, and SNRPA. (E) ChIP-qPCR validation of pRB and E2F3a binding peaks at identified spliceosomal genes. (E, Left) Schematic of
amplicon locations of spliceosomal genes and upstream controls used for ChIP-qPCR validation. (E, Right) ChIP-qPCR at spliceosomal TSS peak sites and
upstream controls to assess for pRB (Left), E2F3a (Right), or immunoglobulin G (IgG) enrichment (ChIP/input). ChIP-qPCR confirms specific enrichment of
HNRNPD, HNRNPUL1, SF3A2, and SNRPA at peak regions in RB OBs. Results are expressed as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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spliceosomal inhibition by PB increased RI events in RB OBs
compared with cRB OBs (Fig. 4 A and B). Interestingly, aber-
rant RIs were the primary alternative splicing event that
increased following inhibition of spliceosomal function by PB
in RB OBs compared with cRB OBs, while other alternative
splicing events remained comparable (Fig. 4B). RNA-seq dem-
onstrated that PB treatment increased aberrant RIs in tumor-
associated genes METTL2B, JAG1, ZC3HAV1, and BYSL in
RB OBs compared with cRB OBs (Fig. 4C). PCR confirmed
the increase of RIs on intron 1 in METTL2B mRNA, intron
12 in JAG1 mRNA, intron 3 in ZC3HAV1 mRNA, and intron
6 in BYSL mRNA (Fig. 4C). Neither treatment with PB nor
presence of RB1 mutation in OBs was associated with any sig-
nificant difference in the intron length of transcripts containing
RIs or SEs (SI Appendix, Fig. S6A). PB-induced RI and SE
events were broadly observed in all transcripts and independent
of transcript lengths (SI Appendix, Fig. S6B). STREME
(sensitive, thorough, rapid, enriched motif elicitation)-enriched
motif analysis of the 50-bp intronic sequence from each end of
an RI event in PB-treated RB and cRB OBs demonstrated an
enriched ACTYAC motif in RI-affected transcripts upon PB
treatment (SI Appendix, Fig. S6C). Suppression of spliceosomal
function by PB preferentially enhanced splicing events in pRB
and pRB/E2F3a targets (Fig. 4D). Transcripts with RIs that
were pRB/E2F3a targets were more highly expressed than
global transcripts (with or without RIs) (Fig. 4E). Together,
these results suggest that pRB and pRB/E2F3a targets are rela-
tively vulnerable to spliceosome inhibition.
Interestingly, the transcripts with lower RIs in RB OBs had

a significant increase in RIs upon spliceosome inhibition (SI
Appendix, Fig. S6D), indicating that an increase in pRB/E2F3a
onco-spliceosome signature (REOSS) gene expression in RB1-
mutant OBs prevented RI events from occurring in certain
transcripts, but that these transcripts showed impaired splicing
and increased RIs upon spliceosome inhibition. Examination of
47 previously identified cancer-related alternatively spliced iso-
forms (15, 16) including MCL1, MDM2, and CD44 revealed
that only MDM2 AF decreased in PB-treated RB OBs com-
pared with PB-treated cRB OBs (SI Appendix, Fig. S6E). Nota-
bly, MDM2 alternative splicing isoforms were suggested to
convey p53-dependent and independent tumor-promoting abil-
ities (31). Pathway analysis of genes with perturbed splicing
events revealed that gene transcripts involved in OS-associated
signaling pathways, such NOTCH, TGFβ, α5β3-integrin, and
NF-κB, were markedly more likely to have RIs in RB OBs com-
pared with cRB OBs upon PB treatment (Fig. 4F). These results
suggest that inhibition of spliceosomal function preferentially
impairs RIs and OS-associated oncogenic gene functions in RB
OBs. We further examined if pharmacological inhibition of the
spliceosome also impaired the cell proliferation potential of RB
OBs. Compared with cRB OBs, RB OBs were significantly more
sensitive to spliceosome inhibitors SD6 (32) and PB (Fig. 4 G
and H). These findings imply that, in contrast to cRB OBs, pre-
malignant RB OBs confer hyperdependency on spliceosome
function for proliferation and survival.

pRB-Deficient OS Lines Are Sensitive to Spliceosome Perturbation.
Since up-regulation of spliceosomal genes in pRB-deficient cells
may overcome the final bottleneck to osteosarcomagenesis, we
thus investigated whether the spliceosome is an exploitable vulner-
ability in pRB-deficient cancers. We labeled the 51 spliceosomal
genes coregulated by pRB and E2F3a as the REOSS. Knockdown
of REOSS genes (HNRNPUL1, RBMX, SF3A2, and SNRPA) but
not non-REOSS genes (BUD31, SRSF9, U2AF2, and XAB2)

selectively reduced cell numbers in HOS-pRBKO cells compared
with HOS-Ctrl (control) cells (Fig. 5 A and B). Ectopic expres-
sion of REOSS genes (HNRNPUL1, RBMX, SF3A2, and
SNRPA) promoted cell proliferation and increased colony-
forming activity in HOS cells (Fig. 5 C and D). These findings
indicate that up-regulation of REOSS genes, at least
HNRNPUL1, RBMX, SF3A2, and SNRPA, plays a role in pro-
moting tumor growth in pRB-deficient OS. Cell viability assay
and fluorescence-based competition assay indicated that both
SD6 and PB selectively suppress HOS-pRBKO cells compared
with HOS-Ctrl cells (Fig. 5E and SI Appendix, Fig. S7A). Con-
sistently, the colony-forming assay demonstrated sensitivity of
pRBKO and pRB-knockdown 143B cells to PB-mediated inhi-
bition (SI Appendix, Fig. S7 B and C). Stable transfection of
pRB in Saos2 cells led to resistance to spliceosome inhibitors (SI
Appendix, Fig. S7D). Treatment of OS xenografts from the
143B OS line with SD6 potently restrained in vivo tumorigene-
sis in 143B-pRBKO cells but less so in 143B-Ctrl cells, empha-
sizing that the spliceosome is essential for tumorigenicity of
pRB-deficient OS (Fig. 5F).

To determine the clinical relevance of the pRB/E2F3a–regu-
lated REOSS in osteosarcomagenesis, we examined the expres-
sion of selected REOSS genes (SNRPA, CHERP, HNRNPD,
and RBMX) across 74 human OS specimens by immunohisto-
chemical (IHC) staining. CHERP was detected in 15 (38.5%)
of 39 specimens with low pRB expression but in only 6
(17.1%) of 35 specimens with high pRB expression, indicating
that CHERP expression is associated with low levels of pRB
(P < 0.05; Fig. 5G). In contrast, CHERP was detected in 18
(36%) of 50 specimens with high E2F3a expression but in only
3 (12.5%) of 24 specimens with low E2F3a expression, suggest-
ing that CHERP expression is associated with high levels of
E2F3a (P < 0.05; Fig. 5H). Similarly, HNRNPD, SNRPA,
and RBMX were also negatively associated with pRB expression
(HNRNPD, P < 0.05; SNRPA, P = 0.058; RBMX, P < 0.05;
Fig. 5G) but strongly associated with E2F3a expression
(HNRNPD, P < 0.05; SNRPA, P < 0.001; RBMX, P <
0.001; Fig. 5H). We next analyzed the expression of these
REOSS genes in OS tumor tissues and correlated them with
reported patient survival data. The Kaplan–Meier overall sur-
vival curves showed that low pRB and high E2F3a, CHERP,
HNRNPD, SNRPA, and RBMX levels are associated with
poor survival (SI Appendix, Fig. S7 E–J). Taken together, OS
IHC studies suggest that pRB/E2F3a–regulated spliceosomal
genes contribute to osteosarcomagenesis and are associated with
poor clinical outcomes in OS patients.

pRB/E2F3a Regulate REOSS Gene Expression in Multiple
Cancer Types with High RB1 Mutation Rates. To determine
whether our findings can be generalized to other cancers, we
next explored pRB/E2F3a regulation of REOSS gene features
in other human cancers by analyzing the expression of REOSS
genes across 34 human cancers in The Cancer Genome Atlas
(TCGA) pan-cancer datasets. TCGA pan-cancer transcriptome
data revealed that expression of a group of REOSS genes is sig-
nificantly elevated in pRB-low cancers (e.g., TGCT, UVM,
DLBC, BRCA, UCS, GBM, LUAD, LUSC, SARC, ACC,
OV, BLCA, ESCA, UCEC, CHOL, THCA, PAAD, LIHC,
CESC, and HNSC) (SI Appendix, Fig. S8A) and E2F3-high
cancers (e.g., SKCM, UVM, THYM, UCEC, GBM, TGCT,
BRCA, COAD, LUSC, OV, LGG, LIHC, READ, STAD,
LUAD, LUNG, BLCA, ESCA, PRAD, SARC, CESC, and
HNSC) (SI Appendix, Fig. S8B). These pRB/E2F3a–regulated
cancers included multiple cancer types characterized by high
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rates of RB1 gene mutation, including BLCA, BRCA, ESCA,
HNSC, LIHC, LUAD, LUNG, LUSC, SARC, and OV (33).
These pan-cancer transcriptional analyses using TCGA data fur-
ther support the notion that the pRB/E2F3a–REOSS regulatory
axis is a common pathway underlying cancer development.

Discussion

Recent studies have highlighted that several molecular subtypes
of cancers are highly dependent on splicing function for cell
survival and that pharmacological inhibition of the spliceosome
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is a viable potential oncotherapeutic strategy (34–36). In con-
trast to most gene mutations, spliceosomal genes are frequently
up-regulated in numerous cancers, suggesting that tumors rely
on the spliceosome to produce cancer-associated splicing var-
iants and overcome RNA transcriptional stress. The abundant
up-regulation of spliceosomal genes observed in pRB-deficient
cells likely represents tumor evolution to compensate for pRB
loss–induced stress. The preferential lethality of RB OBs and
pRB-deficient OS to pRB/E2F3a–regulated spliceosomal gene
down-regulation and spliceosome inhibitors PB and SD6 com-
pared with cells with intact pRB underscores the dependence of
pRB-deficient tumors on spliceosome function. Our findings
strongly suggest that spliceosome inhibitors should be consid-
ered in conjunction with current antineoplastic strategies to
treat pRB-deficient associated malignancies.
Moreover, systemic chemotherapy and radiation therapy are

independent risk factors for developing OS in RB patients (37).
Chemotherapy and radiation treatments induce cancer cells to
decrease the expression of spliceosomal genes, leading to intron
retention in various genes (38). Inhibition of the spliceosome
significantly impairs cellular response to DNA damage, which
increases the selective lethality of cancer cells to chemotherapy.
We suspect that the increase of spliceosomal genes in pRB-
deficient cancers provides them with an indispensable advan-
tage to repair chemo- and radiation-induced DNA damage,
promote resistance to genotoxic stress, and survive following
treatment.
Importantly, our findings show that pRB-deficient cells sig-

nificantly lose growth and tumor formation potential upon
REOSS gene knockdown or pharmacological inhibition of
the spliceosome by either PB or SD6. pRB-deficient tumors
appear exquisitely dependent on the spliceosomal machinery
for growth and survival. In agreement with our findings, spli-
ceosomal factors SRSF1 (39), PRPF6 (40), SRSF6 (41), and
BUD31 (42) are either amplified or up-regulated in multiple
cancers and function as oncoproteins by promoting tumorigen-
esis. Genetic or pharmacological inhibition of the spliceosome
also selectively suppresses the proliferation and survival of
cancers with elevated expression of these splicing factors,
highlighting how inhibition of spliceosomal function is a
general therapeutic strategy to treat cancers with dysregulated
spliceosomal gene expression. Nonetheless, the full antitumor
effects of spliceosome inhibitors on pRB-deficient cells may
also involve genes not directly up-regulated by RB1 inactiva-
tion. Together, we suggest that a large cohort of cancers driven
by pRB deficiency, including OS, lung cancer, retinoblastoma,
sarcoma, and breast cancers, are likely dependent on the spli-
ceosome pathway for growth. pRB may also prove to be a use-
ful biomarker for personalized therapeutics using spliceosome
inhibitors.

Materials and Methods

Please see SI Appendix, Materials and Methods for a detailed description of
materials and methods.

RNA-Seq. Time course samples of WT, RB, and cRB iPSC-derived MSCs and OBs
were collected on days 0, 15, and 24. RB and cRB OBs were treated with 100
nM PB or dimethyl sulfoxide (DMSO) for 6 h. Cell samples were lysed in TRIzol
reagent. RNA sample preparation and RNA-seq data analyses were performed as
described previously (23).

ChIP-Seq and ChIP-qPCR. ChIP was performed using modified previous meth-
ods (5). For ChIP of pRB and 3×Flag-pRB, cells were prefixed for 30 min in 1.5
mM disuccinimidyl glutarate (Thermo Fisher Scientific, 20593) followed by

fixation in 4% paraformaldehyde (Thermo Fisher Scientific, 28906) at room tem-
perature for 10 min. For ChIP of E2F3a and 3×Flag-E2F3a, cells were cross-
linked in 1% formaldehyde at room temperature for 10 min. After glycine
quenching, cell pellets were collected and lysed and then subjected to sonication
using a Branson Sonifier 450 (sonication conditions: 210 cycles, power 25%, 10
s on and 10 s off for pRB and 3×Flag-pRB; 150 cycles, power 25%, 10 s on and
10 s off for E2F3a and 3×Flag-E2F3a). The supernatant was then diluted in the
same sonication buffer, and subjected to immunoprecipitation with correspond-
ing antibodies at 4 °C overnight. The beads were then washed and DNA was
reverse–cross-linked and purified. Following ChIP, DNA was quantified by qPCR
using standard procedures. Sequencing libraries were prepared using the KAPA
HyperPrep Kit (Roche, KK8502). The DNA was sequenced on an Illumina X10
platform using a PE150 Kit. ChIP-qPCR was performed using a CFX96 machine
(Bio-Rad Laboratories). The 20-μL PCR solution was composed of 500 ng ChIP
product, 1 μL, respectively, of 10 μM forward and reverse PCR primers for ampli-
fying the peak region, 10 μL SYBR Green PCR Master Mix (Bio-Rad Laboratories,
1725124), and 7 μL RT-PCR–grade water. Primer sequences are listed in SI
Appendix, Table S2.

Quantification and Statistical Analysis. All experiments were performed in
at least biological triplicate, and all results are expressed as mean ± SEM. No
statistical methods were used to predetermine sample size. Multiple t test,
Student’s t test, and one-way ANOVA followed by Student’s t test (Tukey’s
multiple-comparison test) were applied to determine statistical significance in
the experiments. Excel and GraphPad Prism 7.0 were used for the statistical anal-
ysis. ns, nonsignificant; *P < 0.05, **P < 0.01, ***P < 0.001.

Data Availability. The RNA-seq, ChIP-seq, and WES data reported in this article
have been deposited in the Gene Expression Omnibus repository under acces-
sion number GSE145235. Previously published data were used for this work
(accession nos. GSE125903, GSE14827, and GSE36001). The data supporting
the findings of this study are available within the article and SI Appendix.
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