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Abstract: Because of the advantageous characteristics of strong integrity, lightweight, high performance,
and various designs, woven spacer fabric (WSF) and its composite are extensively used in construction,
traffic, and aerospace, among other fields. This paper first describes the WSF structure, including core
yarns and cross-linking, and then discusses the influence of the processing parameters, among angle
of the wall decisive the failure mode on the plate properties. Moreover, we summarize the molding
and filling technology of WSF composite sandwich panels and discuss the process order, resulting in a
significant effect on the stiffness of the sandwich composite plate; the current processing is mostly hand
lay-up technology. In addition, we introduce the core and matrix material of the sandwich composite
plate, which are mainly polyurethane (PU) foam and epoxy resin (70% of matrix material), respectively.
Finally, the mechanical properties of WSF composite sandwich panels are summarized, including bending,
compression, impact, shear, and peel properties. Factors influencing the mechanical properties are analyzed
to provide a theoretical basis for future plate design and preparation.

Keywords: core yarn structure; cross-linking structure; filling process; molding process; sandwich structure;
mechanical property

1. Introduction

A sandwich composite plate is made up of reinforcing textiles and core materials, which
are lightweight and have high production efficiency, excellent performance, and energy-
conservation properties. Consequently, it has been widely used in many fields, including
civil and mechanical engineering and biological engineering, as well as in aerospace planes,
wallboards, ships, cars, and cold chain cars. Depending on the reinforced structure (two-
dimensional (2D) and three-dimensional (3D)), the carrying capacity of the sandwich com-
posite plates varies. The traditional sandwich composite plates are made up of 2D upper
and lower surface layers and a core layer, which is prone to the debonding problem [1] in
the loading, leading to the failure of the plate. Therefore, Kamble et al. [2], Neje et al. [3],
Drake et al. [4], and Che et al. [5] studied the suture structure. In a study by Che et al. [5],
the suture structures were found to have higher shear stiffness and extra-facial compressive
strength than the traditional sandwich structures. However, compared with the cross-linking
structure of the WSF, the joint point strength of the suture structure is relatively low and prone
to failure [2]. Additionally, the WSF sandwich composite plate has very high cementation
strength [2] and skin-core layered resistance [6], which solve the stratification problem of tra-
ditional sandwich composite materials. It has potential applications in heat/sound insulation
performance [7,8], construction [9], electronic textiles [10], shock absorbers [11], biomedical
engineering [12], fan blades, vehicles [13], and so on.

For the structure and weaving of WSF, Geerinck et al. [11], Manjunath et al. [14], and
Neje et al. [15] tested the bending and compression properties of woven structures, such as
“T” type, “8” type, rectangle, “X” type, and hexagon. They showed that the mechanical
properties of the composites are determined by the geometry and structure of the WSF. With
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the preparation system constantly improving, Geerinck et al. used a standard VSi42 loom
with 24 heddle frames for 3D Weaving [11], moving from manual weaving to automatic
industrial processing, which promoted the diversity preparation of WSF.

WSF has received a lot of attention in various fields because of its superior integrity and
stable structure [16]. In recent years, the preparation methods and mechanical properties of
WSF sandwich composite plate have been extensively investigated. From fiber selection to
composite plate preparation, the process of producing the WSF sandwich composite plate
is long, and there are many factors affecting the final performance of the plate, so most
researchers only analyzed the macroscopic influence of a single factor for a performance
index of WSF sandwich composite plate, such as reinforcing fiber material, core material,
the structure design and weaving of the WSF, processing technology, and mechanical-
properties testing, as shown in Table 1. In order to systematically analyze the influence
of the mechanical properties of the WSF sandwich composite plate, the reinforcement
structure, processing technology, and mechanical tests of WSF sandwich composite plate
are reviewed and analyzed in this paper. This paper will provide new research directions
and ideas for the research and application of WSF sandwich composite plates and also lay
a certain theoretical foundation for the microscopic analysis of the loading failure mode
and damage mechanism of the plate by our subject group.

Table 1. The studies of WSF sandwich composite plate.

Author Research Institute Reinforcement
Material

Filling
Material Primary Content Testing Reference

Karen De
Clerck Ghent University

Polyester,
para-aramid,
glass yarns

PU WSF of structure
design

Bending and
compression [11]

Jia Lixia
Hebei University of

Science and
Technology

Polyester or
glass PU

WSF of structure,
weaving, and

process technology

Compression,
bending, or

peel
[17–21]

Hassan Nahvi Isfahan University
of Technology Glass PU

Effect of natural
nano-structured

zeolite

Compression,
bending and

impact
[22]

Fan Hualin
Nanjing University
of Aeronautics and

Astronautics
E-glass foam ce-

mentitious

novel ductile
cementitious

sandwich
composites

Compression
and bending [9]

Farid Taheri Dalhousie
University Glass PU add magnesium

alloy sheets Impact [13]

Sayyed MAHDI
Hejazi

Isfahan University
of Technology E-glass PU curved Bending testing [23]

U.K. Vaidya
University of
Alabama at
Birmingham

Glass PU Effect of impact
energy Impact [24]

Shaokai Wang Beihang University E-glass PU WSF of structure
design

Shear and
compressive [25]

M.V. Hosur Tuskegee
University Glass fabric PU pressure strain

rates Compressive [26]

2. Research Progress of WSF
2.1. Material

The materials used in WSF are generally high-performance fibers (such as polyester
fiber, aramid, and polypropylene) and inorganic fibers (such as glass fiber and basalt).
Among carbon fibers, glass fiber and basalt fiber have good mechanical properties and
a higher modulus. Compared with these fibers, carbon fiber is more prone to brittleness
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fracture and integrity damage than glass fiber, but basalt fiber is less prone to fractures [17].
Polyester fiber, aramid, and polypropylene have higher strength and toughness and bet-
ter integrity than glass fiber [11]. To optimize the performance of a single fiber, many
researchers tried blending high-performance fibers with inorganic fibers to form mixed
yarn, producing a new arrangement in fabric geometry that will affect the mechanical
properties of composites [27–29]. For example, Zhong et al. [30] studied the core spun yarn
produced by polypropylene fiber and basalt filament and found that the breaking strength
of wrapped yarn gradually increased with an increase in twist levels within a certain range.

2.2. Structure of WSF

At present, the structural design of WSF can be divided into two categories. The first
one is the ground fabrics structure design, such as plain and twill. The second WSF design
is the internal connection design, including core yarn and cross-linking structure, which
is woven through a manual stacking process [8,25,31,32], as shown in Figure 1. The core
yarn structure includes an internal design “8” shape [7] (Figure 1a), “S” type, “1” shape, etc.
Meanwhile, cross-linking structures, such as internal design, are rectangular (single or double
walls (Figure 1f)), triangular (sawtooth) type (Figure 1b), trapezoidal type [3] (Figure 1c),
X type (Figure 1d), hexagonal shape (Figure 1e), I type, U type [27], H type [14], etc.
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Francis, Copyright 2019 Elsevier). 

Figure 1. Weaving route and model of WSF: (a) “8” core yarn spacer structure, (b) triangular (saw-
tooth) spacer structure, and (c) trapezoidal spacer structure (reproduced with permission from
Reference [15], Copyright 2019 Taylor & Francis); (d) x-spacer structure and (e) hexagonal spacer
structure (reproduced with permission from Reference [11], Copyright 2019 Elsevier); and (f) rectan-
gular spacer structure (reproduced with permission from References [15,33], Copyright 2019 Taylor &
Francis, Copyright 2019 Elsevier).

2.2.1. Ground Fabrics Structure Design

The WSF for upper and lower ground fabrics is generally woven through plain, twill,
and satin. The plain fabric has the characteristics of many interwoven points and a stable
structure, whereas twill and satin fabrics have fewer interwoven points and longer floating
lines. Compared with satin and twill structures, the plain fabric structure is tighter, not easy
to slip off yarn, has greater stability and symmetry, and has good mechanical properties
when woven in the same density [34]. By comparing the influence of different ground-
fabrics structures on WSF sandwich composite plates, our research group found that
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complex ground fabrics have higher bending strength than plain fabric. This conclusion
is consistent with a study of hollow WSF sandwich composite plates by Zhang et al. [7],
who illustrated that the core material has little effect on bending. It has been shown that
the complex ground fabrics–WSF sandwich composite plate can withstand more stress
than plain fabric during loading, leading to a higher carrying capacity and higher energy
absorption capacity.

2.2.2. Internal Connection Design of WSF

(1) Core yarn structure design

WSF consists of upper and lower layers connected with core yarn, which divides them
into weft and warp junctions. For the weft junction, the woven field was only recently studied,
but no test analysis has been performed on its mechanical properties because of the complex
process and poor design flexibility. The warp junction is more extensive and is woven by
controlling the feeding of warp yarn (ground warp and junction warp) under uniform tension
and at the proper rate, using a 3D weaving loom, sample weaving machine, rapier loom, and
so on [8]. The warp junction yarn has the “8” type (double junction) and “S” type (single
junction) structures. The anisotropy of the “S” structure [9,35] is much greater than the “8”
structure [32,36], producing an “8” structure with higher stress concentration, disposing it to
damage. In contrast, in the “S” structure, stress is more dispersed, which increases the stiffness
in loading. In addition, the high compliance and instability along the warp direction could
enhance stiffness [37]. Therefore, a weft direction plate has a better bending performance
than a warp direction plate [38]. The process parameters that were set for the “8” and “S”
structures in previous studies are shown in Table 2.

An analysis of the WSF sandwich composite plate shows that the core yarn height,
core yarn density, and thickness of ground fabrics have a certain effect on its performance.
Increasing the core yarn density is associated with more overlap and coordination, thus
bringing a higher bearing capacity [21]. According to Figure 2e, due to the special charac-
terization mode of multiple fractures of the pile yarns, the strength was increased during
compression [8]. For low-core yarn with a high distribution density to achieve improved
stiffness, the results revealed that it has good compression resistance, shear strength, and
higher unit height energy absorption. Moreover, when the pile yarn height increases, the
Young’s modulus and shear modulus are reduced, thus decreasing plate stiffness [35]. In
addition, increasing the ground fabrics’ thickness affects the mechanical properties and
tensile failure resistance of the WSF sandwich composite plate [39]. Li et al. [40] showed
that the ground fabrics thickness can significantly improve the anti-bending load capacity
of the WSF sandwich composite. Notably, in addition to the core yarn structural design,
Kim et al. [41] studied a way of weaving Truss woven Sandwich by using yarn interleaved
between the two panels (Figure 2f I), demonstrating that its strength and elastic modulus
were much higher than that of the “8” type structure. This is because the Truss woven
Sandwich could provide excellent resistance of WSF sandwich composite, which broke
perpendicular to the longitudinal direction, but hardly broke at the intersections adhesively
bonded to the neighboring struts during loading (Figure 2f II). Thus, the Truss woven
Sandwich achieved improved compression resistance and shear strength performance.
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Figure 2. Structure performance comparison: (a) comparison of the cross-linking structures (repro-
duced with permission from Reference [33], Copyright 2019 Elsevier); (b) the influence of layers for
stress–strain (reproduced with permission from Reference [11], Copyright 2019 Elsevier; (c) fiber
volume fraction with angle and height (reproduced with permission from Reference [15], Copyright
2019 Taylor & Francis; (d) bending load–displacement for different structures (reproduced with
permission from Reference [6], Copyright 2020 John Wiley and Sons; (e) stress–strain curve of the
core pile structure and (f) truss woven structure and sandwich failure (reproduced with permission
from Reference [41], Copyright 2015 Elsevier).

The 3D double-layer WSF uses an interlayer design in its weaving that needs to solve
the inclination directions in the two adjacent spaces by applying forces opposite to the
external and internal fabric in the weft direction [31]. Chinese researchers found that the
core height of a double-layer structure affected the performance of the plate, with a height
of 4 cm + 8 cm producing higher stress core yarn of 6 cm + 6 cm [42]. In addition, a double-
layer structure had a better energy absorption capacity and stronger bearing capacity than a
single-layer structure. Compared with bonded double-layer WSF, the integral double-layer
WSF has higher specific stiffness and compressive strength [31].

Table 2. Process parameters of core yarn–WSF.

Structure Height (mm)
Core Yarn
Density

(ends/cm)

Ground
Fabrics

Thickness
(mm)

Type of
Plate Mechanical Property (MPa) Reference

“8” type 4,6,8,10 P: 8.14–8.24 - H

FC:1.23–8.16
EC:20.52–33.50 (P);

332.84–65.05 (F)
S:0.58–2.91 (P); 0.76–6.03 (F).

[35]

5,10,15,20,25 1.58–2.08, 0.46–0.75 H - [43–45]

30 1.33–1.54 0.5 F; H B:34.9–69.5 (Hollow); 89.6
(filling) [23]
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Table 2. Cont.

Structure Height (mm)
Core Yarn
Density

(ends/cm)

Ground
Fabrics

Thickness
(mm)

Type of
Plate Mechanical Property (MPa) Reference

1.94–2.15 - 0.65–1.59 H

B: 233.64–326.55 (P)
239.38–363.09 (F)

FC: 109.42–199.01(P)
164.79–214.85(F)

[12]

- 21 - H B: 20–60;
FC: 4.2–5.1 [7]

3,5,8,10,12 - 0.36,0.58 H
B: 14–144;

T: 12.98–44.18;
EC: 8.99–32.08.

[39]

3,6,10 P: 2.08–2.31
F: 23.26–26.32 0.44–0.58 H - [46]

- 0.45–2.08 - F B: 1–2.5 (P) [19]

30 - 0.6 H B: 3.73 [33]

20.8 - 0.6 F; H - [24]

4.06,4.08 2.14,2.16 0.38–0.92 H - [40]

10.35,9.62,9.68 2,3,6 0.91,1.01,0.77 H FC:3.9–24.6 [8]

“S” type 10 P: 8.25 - H
FC:3.21

EC: 21.89 (P); 59.26 (F)
S: 0.81 (P); 1.27 (F)

[35]

“H” is a hollow WSF sandwich composite plate, “F” is a filling WSF sandwich composite plate. “P” is Warp, and
“F” is Weft. “FC” is flatwise compression, and “EC” is edgewise compression. “B” is bending, “S” is shear, and
“T” is tensile.

(2) Cross-linking Structures’ Design

The WSF of internal fabric connection belong to cross-linking structures, and each
fabric part of its cross-linked structure is a 2D fabric that is woven with a pass sword
loom [14,15,28], 3D loom [11], and other equipment. Its length can be controlled by chang-
ing its weft insertion [47], whereas the thickness and weaving pattern can be controlled by
changing the weaving mode [11]. Furthermore, the warp yarn is divided into two groups,
one is weaving upper and lower ground fabrics, and the other is weaving the middle layer.
For aside inserts, the wall thickness of the cross-linking structures–WSF differs from the
surface thickness due to the weaving route of the hexagonal WSF (shown in Figure 1e),
resulting in a thicker middle layer compared with other parts [15]. The common struc-
tural shapes of cross-linking structure–WFS include rectangular, triangular, trapezoidal,
X-shaped, and hexagonal. There process parameters are shown in Table 3. Among them,
height and angle are jointly designed to prove the influence of fiber volume content, as
shown in Figure 2c [15]. Moreover, for wall thickness, the stress or bearing capacity of
bilayer wall structures is greater than that of single-layer walls [33].

A comparison of the properties of rectangular, triangular, and trapezoidal WSF showed
that the overall mechanical properties of rectangular WSF are greater than those of tri-
angular and trapezoidal WSF but smaller than those of the “8” core pile structure [33].
This may be mainly because of the angle at which the load-bearing walls were aligned
along the loading axis, resulting in an increase in bearing capacity with increasing sepa-
ration force on the axis (Figure 2d) [3]. A comparison of the performance of single-layer
and bilayer structures demonstrated that the performance of bilayer structures was poor.
Ghanshyam et al. [6] found that bilayer structures had lower stress but higher bending
resistance than single-layer structures (Figure 2d). Additionally, for a multilayer WSF, an
investigation of its tensile property on the warp and weft direction found that the number
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of layers had a significant effect on stress for the warp but did not considerably influence
the weft (Figure 2b) [11].

Table 3. Process parameters of cross-linking structures–WFS.

Layers Structure Height
(mm) Angle (◦) Width

(mm)

Ground
Fabrics

Thickness
(mm)

Type of
Plate

Mechanical
Property

(MPa)
Reference

single rectangular 30,40,51 90 43,53,64,38,28 - H - [15]

29 90 50 0.9 (SW),0.9 or
0.6 (DW) H

B:17.09
(SW), 41.64

(BW)
[33]

21,29,36.5,47.5 90 33,44.5,50,63 0.9 H B:20–50 [47]
32,29 90 34,50 0.6 [2]

triangle 26,28 35,42.5,47 - 0.6 H B:7–15 [47]
26 47 - 0.6 or 0.9 H B:14.51 [33]

trapezoidal 36,30 70,53,67 38,33 - H - [15]
27.5 50.5 0.6 or 0.9 H B: 10.72 [33]

28,27.5,29,28.5 45,50.5,57,65 30.5,28 0.6 H B: 8–18 [47]
H B: 8–19

X-type 35 - 66 - H FC: 0.5–0.7 [14]
bilayer trapezoidal 56.8 45 30 0.9 [2]

54.5,52,57.5,53.5 45,50.5,57,65 30.5,28 0.6 H B: 7–16 [6]

hexagon 56.8 60 30 0.9 F; H

B: 6 (H),8
(F)

FC: 40
(H),55 (F)

[11]

13.2,22,30.8,39.59 60 - 7.62,12.7,17.78,22.86 H - [2]

“H” is a hollow WSF sandwich composite plate, “F” is a filling WSF sandwich composite plate, “FC” is flatwise
compression, and “B” is bending. “SW” is the single wall, and “BW” is the bilayer wall.

3. Processing Technology for WSF Sandwich Composite Plate

At present, the dominant processing technology for the WSF sandwich composite
plate includes preparing a composite of resin and filling of foam. This process begins with
composite preparation, followed by filling, or filling first and then preparing the composite.
The main difference is that the core layer in the first method is impregnated with resin,
which can effectively improve the bearing capacity in the loading process, but the internal
connection structure combined with the interface with foam is poor, which worsens the
integrity of the plate, resulting in shear failure [22,24,44,48]. The second preparation process
can produce excellent integrity and good synergy between the filling material and the
internal connection structure, but the carrying capacity is worse compared with that of the
first preparation method [18,19]. In the actual preparation process, fiber stiffness depends
on the choice of the preparation method. For fiber with greater stiffness (such as carbon
fiber [12], glass fiber [22], and basalt fiber), the method of first preparing the composite
and then filling is generally adopted. In contrast, for fibers with high flexibility (such
as polyester fiber [19], aramid, and polypropylene), the method of filling first and then
preparing the composite is adopted. This paper summarizes the latest research on the
filling process and composite process. The filling and molding process commonly rely
on hand lay-up technology, but because of its lower automation and industrialization, it
cannot guarantee the uniformity and stability of plates. In particular, the process of filling
hollow WSF sandwich composite panels needs to be further improved.

3.1. Filling Process for WSF Sandwich Composite Plate
3.1.1. Core Material

Polyurethane (PU) foam, phenolic foam, concrete, and cementation materials are
widely used as core materials, but their choice depends on the application field for the
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WSF sandwich composite plate. Because of its lightweight, high strength, and low thermal
conductivity, PU foam composites have been reported to be useful energy-efficient materials
in construction, traffic, and cold-chain transportation.

To enhance the mechanical properties of PU foam, Hamid et al. [22] added natural
nanostructured zeolite particles to the polyurethane foam, and this greatly enhanced the PU, as
shown in Figure 3a. Concrete foam is ordinarily applied in infrastructure construction because,
compared with conventional concrete, it is lightweight and more economical; however, this
results in low infrastructural stability and strength [49]. Comparing PU foam with concrete
foam, Wang et al. [48] found that the performance and energy absorption capacity of PU was
generally better than those of concrete foam. However, the fire grade of PU foam is lower. In
subsequent studies, Wang et al. [9] used a mixture of cemented foam and mortar to fabricate
novel ductile cementitious composites with low thermal conductivity and high fire grade
in building fire prevention. In addition, the phenolic foam is exceedingly flame retardant
(refractory, low toxicity, and low smoke), exhibits heat resistance and heat preservation, and
its bubble hole size reduces while its rigidity increases with increasing foam density. The
brittleness, high powder rate, and poor impact resistance properties of phenolic foam is offset
by the toughness provided by fiber or polyamide resin. If the polyamide resin toughens
the phenolic foam, the compression strength is reduced, but the adopted fiber is different
patterns [50] due to the agglomeration of fibers, as shown in Figure 3b.
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3.1.2. Filling Technology

The filling technology for the WSF sandwich composite plate is mostly hand lay-up
technology. This technique is composed of two methods: filling-the-foaming-agent method
and setting-the-temperature-for-the-foaming method. In the foaming-agent method, the
fabric is placed in the mold (using molds Figure 4b or not Figure 4a) first, and then
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the volume expansion of the liquid during the foaming process pushes the two surfaces
apart [26,51]. Although this method allows for control of the foaming speed and uniformity
of cell size and shape, the design flexibility of the plates is poor, and it is not easy to achieve
a large-scale and optimal production level. In addition, few studies report the vacuum-
assisted molding process. Vaidya et al. [24] used a 25.4 mm–diameter infusion tube to
quickly inject the foam, and it properly controlled the amount of foam injected. However,
like temperature foaming, such as epoxy foams, this process is rigorously controlled by
using foaming temperature [52] to achieve the desired cell size and shape, uniformity, and
improved foam density [53]. In addition, other process parameters such as pressure and
concentration of components could also be applied.
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3.2. Molding Process of WSF Sandwich Composite Plate
3.2.1. Resin Matrix

In the preparation of the WSF sandwich composite plate, epoxy resin, polyester resin,
and phenolic resin are generally used, but polyester resin is preferred because of its low
price and ease of handling [54–56]. Compared with polyester resin, epoxy resin is a
widely used polymer, accounting for about 70% of the entire thermosetting resins market,
because of its excellent thermal stability, fairly low thermal conductivity, outstanding
electrical insulation, and chemical resistance [57–59]. The results demonstrated that epoxy-
based composites had a stronger bending modulus, core shear stress, and bending stress,
but appeared more brittle (Figure 5a) [60,61]. In comparison, polyester resin was prone
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to deformation and fiber/matrix-interface-layer separation. The brittle and weak shear
resistance of the core layer has a significant effect on the properties of the WSF sandwich
composite plate. Therefore, in the molding process, epoxy resin is customarily used as
a composite material. Phenolic resins are a less-used resin system, except in the high-
temperature field and anti-corrosion engineering because of their characteristics of high
acid resistance, high-temperature resistance, dimensional stability, etc. [62,63]. However,
it is hard to prepare, resulting in WSF sandwich composite plates with poor mechanical
strength and toughness. To improve phenolic resin toughness, Ferhat et al. [64] used
multi-walled carbon nanotubes and nano-SiO2 nanofillers (Figure 5b) within a resin, which
improved toughness by 30%.
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3.2.2. Molding Technology

The molding technology of WSF includes the hand lay-up process, vacuum infusion
process (VIP), RTM process, and slot-coating technology. The hand lay-up process uses two
methods to complete the processing: spraying and impregnation. Low-viscosity epoxy resin
was sprayed on fabric, and then it was placed in a vacuum chamber and degassed and
gassed three times to enhance the infiltration of the resin and remove any bubbles in the wet
assemblies [41]. In the process of impregnation, the resin was applied to the ground fabric by
using a spray gun, which was convenient for full permeation of both the piles and ground
fabric [35] (Figure 6a). It is a method widely applied in the molding process of WSF and WSF
reinforcement core (it is a filling, but not complete molding, process). However, hand lay-up
process has some limitations, including poor adhesion with fabric, easy penetration in the
internal structure of the fabric, and uneven coating thickness. Consequently, the slot-coating
technology was proposed by Doyen et al. [66] for use as a positive pump to control the
thickness of the coating layer on upper and lower ground fabric through simultaneous coating
(Figure 6b) [66] during the WSF molding process.
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The VIP is divided into vacuum conditions and semi-vacuum conditions. In vacuum
conditions (Figure 6c I), VIP is currently only applied in the molding process of hollow WSF
sandwich composite plate, and not in the process for the WSF reinforcement core, which is
difficult because incomplete impregnation easily emerges. Then, in the molding process of
WSF, the core bar inserted into the hollow of the fabric is wrapped with non-porous Teflon
sheets after the impregnating and curing of WSF [47]. This process requires a core bar to
maintain its 3D shape and prevent damage to the internal structure. Although this method
has more advantages, including lower fiber stiffness, it is limited by the characteristics of
poor design flexibility and high specification and size of the core bar. For semi-vacuum
conditions (Figure 6c II), WSF was impregnated with resin before the vacuum bag was
removed to relax the piles to obtain a 3D hollow WSF sandwich composite plate, which
potentially has uneven resin thickness and instability on the upper and lower ground
plates. Thus, in the curing process, Ghanshyam et al. [33] used a metal frame to hold the 3D
structure and avoid instability. Wang et al. [8] combined the hand lay-up process and the
VIP. The method is a novelty, which involved coating of the WSF with resin, using the hand
lay-up process for the pre-curing step, and then uniformly infusing resin to the fabrication
plate by using VIP.

The RTM process involves infusing low-viscosity resin to a vacuum mold to a produce
a composite [20]. Compared with the hand lay-up process and the VIP, the RTM is a less
studied method, because it requires very high precision for the mold. Low precision will
affect the uniformity of the resin distribution for preform when the vacuum is not enough
or bubbles exist in the resin fluid, which produces heavy and hard-to-operate plates with
limited design flexibility [67]. However, composite plates produced through the RTM
process have excellent performance compared to those produced by using the hand lay-up
process [20]. The RTM process is inclined to form an interphase between the resin matrix
and reinforcement in the vacuum-pressure-improving property [68], but this interphase is
not obvious in atmospheric pressure for the hand lay-up process.
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4. Mechanical Properties of WSF Sandwich Composite Plate

The WSF sandwich composite plate is mainly used in carriages, construction materials,
shock absorbers, wind-turbine blades, etc., which require WSF sandwich composite plates
with bending, compression, impact, shear, and peel performance. These properties are
reviewed in this section. Future mechanical research on WSF sandwich composite panels
should use non-destructive testing technology.

4.1. Bending Property

In regard to bending performance, the core pile structure–WSF sandwich composite
plate is generally reported, including its core material, curvature, additional panels, core pile
density, core pile height, and fiber material. The fiber material is diverse in regard to stiffness,
modulus, and toughness. Consequently, the fiber-reinforced material studied, similar to glass
fiber and carbon fiber, is inclined to breakdown and shear failure, but polyester fiber is easy
to stratify. A combination of glass fiber and polyester fiber was studied by Jia [17] in which
polyester fiber and woven glass fiber were used for ground fabric and core yarn, respectively.
These methods improved core yarn stiffness, kept back the toughness of the ground layer, and
improved the properties of the WSF sandwich composite plate. Moreover, the core pile height
and density were considered. The regression analysis revealed an optimal bending strength in
1.99 ends/cm2 for polyester fiber, and an increase in the core pile height decreased its bending
strength, ultimately increasing its bearing capacity [19]. The property of the core material is
the difference between PU foam and industrial core materials (such as concrete foam): the
PU foam is flexible [22], but industrial materials cause shear fracture failure, which is more
obvious with the narrowing of span [9]. A test diagram of the minimum span is shown in
Figure 7c. Tohid et al. [23] tested the effect of different curvatures and additional panels on
bending performance. The results reported in this study showed that the bending property
is optimal when the curvature is 0.014 cm−1, and an additional panel has a more significant
effect on layers, as shown in Figure 7b.
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bending property (reproduced with permission from Reference [23], Copyright 2018 SAGE Publications);
(c) load-displacement and experimental diagram showing the industrial filling material (reproduced with
permission from Reference [9], Copyright 2016 Elsevier); and (d) non-crimped and crimped structure
(reproduced with permission from Reference [29], Copyright 2011 SAGE Publications).

At the present stage, the cross-linking structures–WSF sandwich composite plate has
attracted less research attention than the cross-linking structures–hollow WSF sandwich
composite plate. Specifically, the effects of ground-fabric structure, cell density, and height
were examined for the cross-linking structures–hollow WSF sandwich composite plate. In
the ground fabric structure, the crimped and non-crimped (Figure 7d) were researched.
The results revealed that non-crimped structures yield a higher flexural resistance than
crimped because of the stretched thread arrangement in the fabric structure, both in the
warp and weft directions [29]. In addition, the cell wall is a major load-bearing unit [47].
The cell wall of a rectangular structure–hollow WSF sandwich composite plate has better
optimal stress than trapezoidal and triangular ones, and when the space between the cell
wall and height decreases, the stress increases [33,47]. A study of four types of structures
(Figure 7a) by Manjunath et al. [14] found that the H-type structure’s stress was higher than
that of the rectangular type.

4.2. Compression Property

This section discusses core pile structure and cross-linking structure–WSF sandwich
composite plates and the effect of compression properties. The specific properties that have
been studied include flatwise compression, edgewise compression, and dynamic compres-
sive for core pile structure–WSF sandwich composite plate and flatwise compression and
edgewise compression for cross-linking structure–WSF sandwich composite plates.

(1) Core pile structure–WSF sandwich composite plate

In regard to flatwise compression, the core pile height, core density, and additional
panels have been investigated in the literature. For a higher core pile height, the composite
plate is inclined to instability, resulting in decreased compression strength [25]. As the
stiffness with core density increases, the flatwise compression strength is also increased.
It is also strengthened by toughening the core material or additional panels. Chinese
researchers used resin and fiber to toughen the core material, concluding that the composite
plate had higher compression properties. In additional panels, Hosur et al. [26] investigated
glass fiber and carbon fiber plates to strengthen their dynamic compression, establishing
that glass fiber plate has higher stress than carbon fiber plate, and core and integrated
core pile provide a synergistic effect, but they are prone to shear deformation, causing
delamination between additional panels and core pile structure–WSF sandwich composite
plate (Figure 8b).

In regard to edgewise compression, a new type of core material was proposed by
Wang et al. [9] and Hamid et al. [22]. Wang et al. [9] tested the cementitious-reinforced
WSF sandwich composite plate and found that the peak load was sustained by the core,
though multiple shear failures occurred. Compared with edgewise compression, flatwise
compression had excellent properties because the enhancement plate and the core material
improved its strength. In contrast, Hamid et al. [22] investigated foam-core-reinforced WSF
sandwich composite plate and found that the composite had higher energy absorption
because of the existence of the foam core, and it had a superior peak load compared to
flatwise compression. The reason for these two different conclusions could be the difference
in core material. Moreover, our research group discussed the impact property before and
after, and the results indicate that, compared with the impact before, the impact of the WSF
sandwich composite plate after was extremely prone to stress concentration rather than
disperse, thus increasing the risk of integrity failure.
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(2) Cross-linking structure–WSF sandwich composite plates

For both flatwise compression and edgewise compression, only the hexagonal WSF
sandwich composite plates were investigated, which are elastic and have a cushion struc-
ture. In edgewise compression, Ruben et al. [11] investigated the effects of aromatic
fiber, polyester fiber, and glass fiber on WSF sandwich composite plates. They found
that aromatic fiber and polyester fiber–WSF sandwich composite plates contributed to
the ductile failure and wrinkling of walls, thereby improved the edgewise compression
strength. For the glass fiber, the failure pattern was the ductile buckling and the classic
brittle tearing/breaking of the wall which decreased the compression strength (Figure 8a).
For flatwise compression, Zhu et al. [69] examined the compression behavior of the WSF
sandwich composite plate by testing the cellular size and fabric layer. Based on the above
results, we concluded that the compression resistance was excellent, with a higher CV 65%
(compression stress value when strain reaches 65%) (Figure 8), which demonstrates the
high allowable safe stress and cushion energy absorption of the composite.

4.3. Impact Property

A low-speed impact was adopted to explore the performance of the WSF sandwich
composite plate. Several aspects of the core pile structure–WSF sandwich composite plate,
such as the aspect of core pile density, additional aluminum plate, core material, and impact
position, were explored. For core pile density, the WSF sandwich composite plate of carrying
capacity increases with the core pile density. Hamid et al. [22] showed the impact: the impact
property of the WSF sandwich composite plate layered phenomenon during the impact was
strengthened by addition of natural zeolite in core material. Our research group tested the
effect of impact position on the core pile and non-core pile properties. In this study, we found
that the core pile position had a larger depression diameter during impact, and the lower
ground plate was significantly damaged due to the impact energy passed down along the
core pile. In comparison, for the non-core pile impact position, the damage was concentrated
on the upper ground plate and small damage. Notably, the upper ground plate completely
was penetrated when the impact energy was increased (Figure 9a) [24]. The addition of the
aluminum plate caused delamination due to the increased impact energy, and the energy was
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absorbed mainly by crushing the vertical fibers and the supporting foam beneath the region
of impact for the WSF sandwich composite plate [13], as shown in Figure 9b.
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To date, cross-linking structure–WSF sandwich composite plates have not been inves-
tigated. Most studies have focused on the impact properties of the cross-linking structure–
hollow WSF sandwich composite plate. Mountasir et al. [29] tested the effect of ground
structure, warp, and weft density. They concluded that the impact property of the crimp struc-
ture was superior to the non-crimp structure, and it had better impact behavior. In addition,
the impact strength and energy absorption increased with the warp and weft density.

4.4. Shear and Peel Property

(1) Core pile structure–WSF sandwich composite plate

In the shear test, the stress increased linearly with the strain. Initially, the cracks
propagated along the interface between core material and ground plate and stopped when
they reached the core piles. The cracks increased tension on the piles, leading to fracture [25].
The study concluded that the shear and peel property resistance increased with ground
density because more densely interleaving points improved adhesion between the core
material and ground plate [21].

(2) Cross-linking structure–WSF sandwich composite plates

Currently, one study has investigated the cross-linking structure–WSF sandwich com-
posite plates. Therefore, this section explores the effect of different junction methods, such
as the cross-linking structure, stitched structure, and adhesive structure, on performance.
The failure mode of the cross-linking structure was yarn breakdown, but stitched and adhe-
sive structures underwent delamination in the test. The cross-linking structure’s strength
increased by 16% and 39% thanthe stitched structures for U and + types [2] (Figure 10a).
Compared with the T-type adhesive structures, the cross-linking structures showed higher
stress and 3-fold higher peel force [14] (Figure 10a). Consequently, we concluded that
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the junction strength increased for the cross-linking structure, followed by the stitched
structure and adhesive structure, in that order.
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5. Conclusions

WSF was reinforced as sandwich composite panels, and this review provides an
overview of the performance effects of general fiber material on the sandwich composites
plates. The WSF structure on the composite plate was summarized and analyzed. Finally,
the processing technology and mechanical properties of the WSF sandwich composite plate
were discussed. We gave a summary of the bending, compression, impact, shear, and peel
performance of the WSF sandwich composite panels and analyzed their failure mode and
failure mechanism. The following key findings were obtained:

(1) As reinforcement materials, glass fiber and carbon fiber with high strength and a high
modulus have obvious brittle damage during loading. Although polyethylene and
polyester has excellent toughness, superior integrity, but they both have a relatively
lower carrying capacity.

(2) A simple ground-fabrics structure improves the integrity properties of the plate,
because of its good stability and symmetry.

(3) In the analysis of the structure, the overall performance of the rectangle is better than
that of the triangle and trapezoidal structure. However, the transverse compression
resistance is small compared with that of the “8” core yarn structure.

(4) The addition of nanoparticles or fibers into resin or core materials improves the
mechanical properties. Moreover, additional panels can also strengthen the carrying
capacity of the plate.
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(5) The filling and molding process is commonly conducted by using the hand lay-up
technology. However, this technology cannot provide uniform and stable plates due
to its lower automation and industrialization.

(6) The mechanical properties of the weft-WSF sandwich composite plate are better
compared with those of the wrap. Moreover, an increase in the internal connec-
tion structure density and panel thickness and the reduction in height improve the
mechanical properties of the plate.
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