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Abstract

Stomatin-like protein 2 (SLP-2) is a member of the stomatin – prohibitin – flotillin – HflC/K (SPFH) superfamily. Recent
evidence indicates that SLP-2 is involved in the organization of cardiolipin-enriched microdomains in mitochondrial
membranes and the regulation of mitochondrial biogenesis and function. In T cells, this role translates into enhanced T cell
activation. Although the major pool of SLP-2 is associated with mitochondria, we show here that there is an additional pool
of SLP-2 associated with the plasma membrane of T cells. Both plasma membrane-associated and mitochondria-associated
pools of SLP-2 coalesce at the immunological synapse (IS) upon T cell activation. SLP-2 is not required for formation of IS nor
for the re-localization of mitochondria to the IS because SLP-2-deficient T cells showed normal re-localization of these
organelles in response to T cell activation. Interestingly, upon T cell activation, we found the surface pool of SLP-2 mostly
excluded from the central supramolecular activation complex, and enriched in the peripheral area of the IS where signalling
TCR microclusters are located. Based on these results, we propose that SLP-2 facilitates the compartmentalization not only
of mitochondrial membranes but also of the plasma membrane into functional microdomains. In this latter location, SLP-2
may facilitate the optimal assembly of TCR signalosome components. Our data also suggest that there may be a net
exchange of membrane material between mitochondria and plasma membrane, explaining the presence of some
mitochondrial proteins in the plasma membrane.
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Introduction

Stomatin-like protein 2 (SLP-2), a widely expressed mitochon-

drial protein identified in proteome analyses from several tissues

and species, is a member of the stomatin family as well as the

stomatin – prohibitin – flotillin – HflC/K (SPFH) superfamily

[1,2,3,4]. In mitochondria, SLP-2 associates tightly with the

mitochondrial inner membrane. How this association occurs is

unclear because, unlike other stomatin family members, SLP-2

lacks a putative transmembrane domain. It contains though a

SPFH domain, a highly conserved region found in SPFH

superfamily members [5,6,7,8], and this domain has been linked

to protein: lipid membrane interactions [9,10,11].

Recent studies have begun to shed light on the function of SLP-

2. Similar to other SPFH family members, SLP-2 has been found

in large protein complexes and has been shown to interact with

mitochondrial proteins, including prohibitin (PHB) 1 and 2 as well

as mitofusin 2 [5,6,8]. We also have shown that SLP-2 binds

directly to cardiolipin and can regulate the localization of the

prohibitin complex to cardiolipin-enriched domains in the

mitochondrial membrane [12]. Furthermore, over-expression of

SLP-2 leads to increased mitochondrial biogenesis and function

[5,6,8] whereas SLP-2 depletion results in decreased mitochon-

drial transmembrane potential, reduced mitochondrial calcium

uptake in response to cell stimulation, enhanced apoptotic

responses to cell stress and increased degradation of mitochondrial

proteins [5,8,12,13,14] (Christie et al, manuscript submitted). All

this evidence led us to propose that SLP-2 regulates all these

mitochondrial functions (i.e. energy production, calcium buffering

and apoptosis) by organizing mitochondrial membranes into

defined cardiolipin-enriched microdomains, which then facilitate

the optimal assembly of membrane-associated molecular com-

plexes.

Although most recent work on SLP-2 has focused on the

function in mitochondria, we originally identified SLP-2 in the

glycolipid-enriched, detergent-insoluble microdomains of human

T cells activated through the T cell receptor [12]. In these cells, we

demonstrated that SLP-2 was recruited to glycolipid-enriched

detergent-insoluble microdomains and interacted with numerous

components of the TCR signalosome upon T cell stimulation,

including CD3, ZAP-70, LAT, lck and PLCc. Furthermore, the

level of SLP-2 expression correlated with the response of T cells to

stimulation. Under conditions of SLP-2 over-expression, T cells

had significantly increased responses while knockdown of SLP-2

resulted in significantly decreased T cell signalling. Together, these
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results suggested that SLP-2 plays an important role in T cell

activation, either by increasing mitochondrial biogenesis [6] or by

regulating T cell signalling at the plasma membrane [12].

To investigate the role of SLP-2 during T cell activation, we

utilized a Jurkat T cell line stably transfected with an inducible

construct encoding either full-length SLP-2 tagged with gfp or a

gfp-tagged mutant construct lacking the amino-terminal region. As

expected, we found that most SLP-2 was associated with

mitochondria. This primary location was determined by an

amino-terminal mitochondrial-targeting sequence of SLP-2. In-

terestingly, a small pool of SLP-2 was also detected in association

with the plasma membrane. Upon T cell stimulation both pools of

SLP-2 coalesced at the immunological synapse (IS), and localized

mostly in the peripheral supramolecular activation complex

(pSMAC). SLP-2 was not required for mitochondrial trafficking

to the IS. Our data indicate that there is a small pool of SLP-2 in

the plasma membrane that, by analogy with the mitochondrial

pool of this protein, may play a role in the compartmentalization

of the plasma membrane, ensuring optimal assembly of multimo-

lecular complexes.

Results

The Largest Cellular Pool of SLP-2 is Associated with
Mitochondria

In order to assess the subcellular localization and movement of

SLP-2 in T cells, we constructed stably transfected Jurkat T cells

with a doxycycline inducible construct encoding SLP-2 tagged

with gfp at the C-terminus. In addition, we also constructed a

truncated version of SLP-2 lacking the N-terminus of the protein

(DN-SLP-2-gfp), as this region contains a predicted mitochondrial

targeting sequence [8]. Transfected T cells were visualized using

confocal microscopy (figure 1A). As expected, we found that most

SLP-2-gfp was distributed in aggregates within the cytosol, which

were shown to be mitochondria by staining with the mitochondrial

dye MitoTracker Red. In the absence of the predicted mitochon-

drial targeting sequence (DN-SLP-2-gfp), the protein failed to

partition selectively in mitochondria and was instead found in a

diffuse cytosolic pattern, confirming the functionality of the

mitochondrial-targeting domain in the N-terminus of SLP-2.

The mitochondrial localization of SLP-2 was further supported

by subcellular fractionation and western blotting. As shown in

figure 1B, both endogenous SLP-2 and SLP-2-gfp were detected in

the mitochondrial but not the cytosolic fractions of transfected

Jurkat T cells. The SLP-2-gfp blots showed intermediate

degradation products from the full length chimeric construct.

The DN-SLP-2-gfp was absent in the mitochondrial fraction and

detected only in the cytosolic fraction, further confirming the

presence of a mitochondrial targeting domain at the amino

terminus of SLP-2.

The previous results were corroborated using T cells from

wildtype and T-cell-specific SLP-2 knockout mice (figure 1C).

Similar to human SLP-2, murine SLP-2 also partitioned in

mitochondria. As expected, the SLP-2 T-K/O cells had no

detectable SLP-2, verifying the identity of the mitochondrial SLP-

2 band in the wild type mice. Altogether, these results confirmed

the predominant mitochondrial location of SLP-2 and validated

the use of the inducible SLP-2-gfp transfected T cells.

Detection of a Small Pool of SLP-2 Associated with the
Plasma Membrane

Although initial studies of SLP-2 have focused on the

mitochondrial localization [5,6,8], we originally identified SLP-2

in total glycolipid-enriched, detergent-insoluble microdomains

from activated T cells [12]. This suggested to us that there may

be SLP-2 associated with other membranes, potentially plasma

membranes. In order to test the presence of SLP-2 associated with

the plasma membrane, T cells were biotinylated and a a biotin

immunoprecipitation performed. In these experiments, untrans-

fected Jurkat T cells as well as SLP-2-gfp and DN-SLP-2-gfp stably

transfected Jurkat T cells were used to determine the association of

full length SLP-2 and SLP-2 lacking the mitochondrial targeting

domain with T cell surface molecules (figure 2A). Both the

endogenous and SLP-2-gfp were found in association with cell

surface molecules. In addition, the DN-SLP-2-gfp was also found

in association with the plasma membrane, indicating that the

mitochondrial targeting sequence is not required for association

with surface molecules. However, the interaction of DN-SLP-2-gfp

with membrane proteins was much less efficient because when

expression of full length SLP-2-gfp and DN-SLP-2-gfp were

titrated the full-length SLP-2 associated with the plasma mem-

brane at lower levels of expression compared to DN-SLP-2-gfp

(figure 2B). Even the very low level of leaky expression of SLP-2-

gfp in uninduced cells was sufficient for some SLP-2-gfp to interact

with plasma membrane proteins while DN-SLP-2-gfp surface pool

was only detected when cells expressed high levels of this mutant

(by induction with 0.2 mg/mL of doxycycline or higher).

The small surface-associated pool of SLP-2 was also found in

mouse T cells. Biotin immunoprecipitation was performed with

wild type and SLP-2 T-K/O T cells and SLP-2 was found to co-

precipitate with surface proteins in the wild type T cells but not in

cells lacking SLP-2 (figure 2C). This result confirms the existence

of a plasma membrane-associated pool of SLP-2 in association

with surface proteins with an extracellular domain (i.e. biotiny-

lated).

Homo-oligomerization of SLP-2
We have previously shown that SLP-2 is capable of interacting

with numerous proteins, including multiple components of the

TCR signalosome and prohibitins [6,12]. However, it is currently

unclear if SLP-2 is capable of homo-oligomerization in vivo,

without exogenous cross-linkers. This may be an important feature

of SLP-2 required to organize specialized membrane microdo-

mains. To test for homo-oligomerization of SLP-2, we utilized the

gfp-tagged constructs to examine co-precipitation of endogenous

SLP-2 with gfp-tagged SLP-2. In these experiments, parental

Jurkat cells, SLP-2-gfp or DN-SLP-2-gfp expressing Jurkat cells

were immunoprecipitated with anti-gfp antibodies and samples

were blotted sequentially for SLP-2 and gfp (figure 3). As expected,

gfp immunoprecipitation of the parental cells failed to bring down

any proteins, demonstrating the specificity of this system. GFP-

immunoprecipitation of SLP-2-gfp co-precipitated endogenous

SLP-2, indicating that both are either directly homo-oligomerizing

or, alternatively, that they are indirectly associated in larger multi-

protein complex. Given the ability of other SPFH family members

to homo-oligomerize [15,16], we favour the first possibility that

SLP-2 is capable of homo-oligomerization. Of interest, DN-SLP-2-

gfp did not co-precipitate with endogenous SLP-2 in significant

amounts. This suggests that the N-terminal region of SLP-2, by

itself or through its effect on mitochondrial targeting, is important

for effective homo-oligomerization of SLP-2.

SLP-2 Redistributes to the Immunological Synapse
During T Cell Activation

Next, we investigated the intracellular movement of SLP-2

during T cell activation. Upon activation of SLP-2-gfp stably

transfected T cells with APC and SEE, both the plasma

membrane-associated pool and the intracellular pool of SLP-2

SLP-2 Redistribution to the Immunological Synapse
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polarized towards putative immunological synapses, coalescing

into major clusters close to the plasma membrane, in the periphery

of the IS and underneath the T cell-APC interface (figure 4A). At

the cell population level, such polarization was apparent in 60% of

T cells forming putative immunological synapses (figure 4B).

Video capture of the redistribution of SLP-2-gfp during T cell

activation showed that as activation proceeded, greater than 80%

of the polarized SLP-2-gfp partitioned in the periphery of the

synapse and underneath the putative IS at late time points

(figure 4C and Video S1). Only a small fraction of SLP-2 was

detectable in the centre of the synapse. Accumulation of SLP-2 in

the periphery of the IS mirrored the distribution of pSMACs,

known to be enriched in LFA-1. The SLP-2 clusters during T cell

activation were actively retained and stable as shown by

photobleaching experiments (Figure 4D and Videos S2 and S3).

In these experiments, the SLP-2-gfp signal was restored after 400

seconds of bleaching the plasma membrane of non-stimulated T

cells but was not restored when SLP-2-gfp clusters in OKT3-

stimulated T cells were bleached within the same timeline,

indicating that T cell activation was associated with stable SLP-2-

gfp clusters unable to freely move within the cell.

The SLP-2 Pools Predominantly Partition in the p-SMAC
of the Immunological Synapse

To further refine our data concerning SLP-2-gfp redistribution

to the IS, we used supported planar bilayers containing anti-CD3

and ICAM-1 to which T cells form IS-like structures. This system

has excellent optics for resolution of components in the IS. With

this system, we visualized the formation of IS by Jurkat cells

expressing SLP-2-gfp (figure 5). Under conditions of doxycycline-

induced SLP-2-gfp overexpression, we confirmed the presence of

two pools of this molecule. The plasma membrane-associated pool

of SLP-2 was visualized by total internal reflection fluorescence

microscopy (TIRFM) as clusters located at less than 200 nm from

the glass plane (i.e., sites of TCR and LFA-1 engagement)

(figure 5A). The small plasma membrane pool of SLP-2 distributed

uniformly in a granular appearance interspersed with TCR

microclusters in the nascent IS (figure 5A). As activation

proceeded, the TCR microclusters were surrounded by densely

packed SLP-2 clusters. These TCR microclusters weakly excluded

the SLP-2 clusters resulting in up to 50% reduction of SLP-2

fluorescence in the cSMACs.

In addition, the major mitochondria-associated pool of SLP-2-

gfp located at more than 200 nm from the plasma membrane, and

Figure 1. SLP-2 is a mitochondrial protein. A) Full-length SLP-2-gfp and DN-SLP-2-gfp were subcloned into a doxycycline-inducible vector and
transfected into Jurkat T cells. These stable transfectants were imaged by confocal microscopy for SLP-2-gfp (first column of micrographs – green), or
after staining with MitoTracker Red (second column of micrographs – red). The third colum of photomicrographs show overlapping of red and green
signals as yellow signal. B) Mitochondrial and cytosolic fractions of parental, SLP-2-gfp and DN-SLP-2-gfp T cell transfectants were isolated by
differential centrifugation and immunoblotted for SLP-2, the a-subunit of ATP synthase and actin. C) Mitochondrial and cytosolic fractions were
isolated from T cells of wild type mice and T-cell specific SLP-2 conditional knockout mice and blotted as in B. These results are representative of at
least 3 independent experiments, and of more than 100 imaged cells.
doi:10.1371/journal.pone.0037144.g001
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also polarized to the IS and segregated from the cSMACs to

distribute close to the pSMACs as activation proceeded (figure 5B

and Table 1). The mitochondrial origin of this pool of SLP-2 was

confirmed by co-localization of the gfp signal with a mitochondria-

targeted red fluorescence protein (mtRFP) (figure 5C).

The polarization and partitioning of SLP-2 to the synapse

required TCR engagement. In experiments using planar mem-

branes containing only ICAM-1 without anti-CD3, ICAM-1

ligated LFA-1 on the Jurkat T cell to induce immunosynapse

formation. Under these conditions, SLP-2 failed to redistribute to

the pSMAC and was instead distributed throughout the

membrane (Table 2). However, in the presence of both ICAM-1

and anti-CD3 in the planar membrane, immunosynapse forma-

tion was accompanied by redistribution of SLP-2-gfp to the

pSMAC, with 86% of cells showing exclusion of SLP-2 from the

cSMAC (Table 1), indicating the requirement of TCR ligation for

SLP-2 redistribution. Together, the results presented here confirm

the presence of both a mitochondrial and plasma membrane pool

of SLP-2 and demonstrates the redistribution of both SLP-2 pools

to surround TCR microclusters in the pSMAC during T cell

activation. These data support a general model of SLP-2 function

involving the organization of membranes into functional micro-

domains to support multiple cell functions and specifically T cell

activation, as shown here.

Mitochondrial Recruitment to the IS does not Require
SLP-2

It has been shown previously that mitochondria relocate to the

IS upon T cell stimulation and that this migration is important for

T cell activation [17]. We have previously shown that SLP-2

interacts with the actin cytoskeleton and treatment of Jurkat cells

with cytochalasin D inhibits T cell responses [12]. Interestingly,

the migration of mitochondria to the IS during T cell stimulation is

dependent on microtubules as well as the actin cytoskeleton, and

inhibition of actin polymerization inhibits mitochondrial move-

ment and T cell activation [17]. To determine if SLP-2 was

involved in mitochondrial translocation to the IS, we imaged

mitochondrial movement in response to TCR stimulation in wild

type and SLP-2-deficient primary T cells using confocal micros-

copy (figure 6A). For these experiments, we used cells from

conditional SLP-2 knockout mice we have recently generated

(Christie et al, manuscript submitted), and stimulated these T cells

with anti-CD3+ anti-CD28 antibody coated beads for 30 minutes

at 37uC [18]. We found that, in unstimulated cells, the

mitochondrial population was located primarily around the large

nucleus (representative confocal images shown in figure 6A,

quantification of mitochondrial localization shown in figure 6B).

Upon T cell stimulation, the mitochondrial population re-

distributed and was generally found proximal to the stimulating

bead, under the IS (figure 5C). In addition, many cells also showed

mitochondrial movement to the uropod, classified here as distal

localization (figure 6A and 6C), which is characteristic of migrating

lymphocytes [19]. Importantly, there was no apparent defect in

mitochondrial migration in T cells lacking SLP-2, indicating that

mitochondrial movement in T cells is independent of SLP-2.

Discussion

SLP-2 is a member of the highly conserved stomatin family as

well as the SPFH superfamily, consisting of stomatins, prohibitins,

flotillins and HflC/K proteins [9]. Although the function of the

Figure 2. A small pool of SLP-2 is associated with the plasma membrane. A) Intact parental Jurkat T cells, as well as Jurkat T cells stably
transfected with full length SLP-2-gfp or DN-SLP-2-gfp were biotinylated. Next, cells were lysed and surface proteins were immunoprecipitated with
an antibody against biotin. The immunoprecipitate samples (Biotin ip) were immunoblotted for SLP-2 to detect the pool of SLP-2 associated with
surface molecules. Whole cell lysates (WCL) from the transfectants were blotted to show expression levels of the transgenes. Samples were also
blotted for caspase 3 as a negative control for surface protein pull-down. B) Increasing levels of SLP-2-gfp or DN-SLP-2-gfp were induced with
increasing concentrations of doxycycline and biotin immunoprecipitation was performed. Whole cell lysates (WCL) and biotin immunoprecipitates
(biotin ip) were blotted as in A. C) T cells isolated from wild type and SLP-2 T-K/O mice were analyzed by biotin immunoprecipitation and blotted as in
A. Samples were also blotted for actin as a loading control for SLP-2 T-K/O samples and also for GAPDH as a negative control for surface protein pull-
down. These results are representative of at least 3 independent experiments.
doi:10.1371/journal.pone.0037144.g002

Figure 3. Homo-oligomerization of SLP-2. Parental Jurkat T cells and Jurkat T cells stably transfected with SLP-2-gfp or DN-SLP-2-gfp were lysed.
Lysates were used for immunoprecipitation with anti-GFP antibodies (GFP ip), and immunoblotted serially for SLP-2 and gfp. Whole cell lysates (WCL)
were also blotted to show expression levels of endogenous SLP-2 and the SLP-2 transgenes. This result is representative of at least 3 independent
experiments.
doi:10.1371/journal.pone.0037144.g003
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Figure 4. SLP-2 polarizes to the immunological synapse during T cell activation. A) Stable SLP-2-gfp-transfected E6.1 Jurkat T cells were
cultured with APC in the presence (+SEE) or absence (2SEE) of SEE and examined by confocal microscopy for the formation of putative synapses
(identified as CD3-positive red clusters at the interface between T cell and APC) and for the location of SLP-2-gfp signal (green). Images are
representative of at least 50 putative IS. Concomitant studies done with control transfected T cells demonstrated that expression of SLP-2-gfp did not
interfere with IS formation. B) Confocal images collected from 50 putative IS images (in A) were analyzed for SLP-2-gfp intracellular localization. SLP-2-
gfp signal in un-stimulated (0 min) or stimulated cells (30 min) was classified as predominantly proximal to the IS (white bars), predominantly distal to
the IS (black bars), or diffuse throughout the cell (grey bars). C) Redistribution of SLP-2 during T cell activation is shown by a series of
videomicroscopy capture images during IS formation. The dotted circle outlines the APC interacting with the Jurkat T cell and the arrow indicates the
mature IS with the SLP-2 localization. See Video S1. D) SLP-2-gfp-transfected Jurkat T cells were stimulated with antibodies against CD3 and examined
by confocal microscopy. Photobleaching was induced at the arrow-indicated site and regaining of the signal at that site was monitored for 6 minutes
at 20 second intervals. Non-specific distribution is documented by progressive regaining of signal with non-bleached SLP-2, while active distribution
correlates with lack of regaining of signal. See Videos S2 and S3 for dynamic data.
doi:10.1371/journal.pone.0037144.g004
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stomatin family is currently unknown, these proteins are found in

glycolipid-enriched, detergent-insoluble microdomains and may

be involved in the interaction between protein and lipids in cellular

membranes [20,21,22]. Specifically, SLP-2 is a mostly mitochon-

drial protein that has been linked to the formation of cardiolipin-

enriched microdomains, thus regulating mitochondrial functions,

including energy production and apoptotic responses [6]. SLP-2

has also been identified in detergent-resistant, glycolipid-enriched

microdomains of activated T cells and shown to regulate T cell

activation through the TCR. The mechanism of action by which

Figure 5. Redistribution of plasma membrane-associated SLP-2 and mitochondria-associated SLP-2 during immunological synapse
formation. Jurkat T cells stably expressing SLP-2-gfp were incubated on planar membranes containing ICAM-1 and anti-CD3 to induce
immunosynapse formation. Cells were imaged at early (,5 min) and late (15–30 min) stages of immunosynapse formation to demonstrate SLP-2
redistribution upon TCR ligation. A) Plasma membrane-associated SLP-2 redistribution during immunosynapse formation was imaged by TIRFM, to
eliminate signal from the mitochondrial pool of SLP-2. Cell contact with the planar membrane was imaged by IRM, TCR images were obtained by
wide-field fluorescence microscopy and the image overlay represents SLP-2-gfp as green and TCR as red. B) Total SLP-2-gfp, including both plasma
membrane-associated and mitochondrial pools was imaged at early and late stages of immunosynapse formation. The bright field image shows cells
being imaged, IRM images show contact with the bilayer as dark areas, and the TCR, ICAM-1 and SLP-2-gfp fluorescence channels are shown in gray
scale and two red-green merges (green is always SLP-2). The dotted lines in the ICAM-1 picture represent, from the periphery to the centre of the
picture, the outer boundaries of the distal SMAC, of the pSMAC, and of the cSMAC. Images are representative 3 separate experiments. C) SLP-2-gfp
expressing Jurkat cells were transfected with mitochondria-targeted RFP to verify mitochondrial localization of intracellular SLP-2-gfp. Images were
obtained by wide-field fluorescence microscopy and are representative of three separate experiments. The dotted lines in the ICAM-1 image are as
described in B. The percentage of cells showing segregation of the mitochondrial pool of SLP-2 away from the cSMAC is shown in table 1 and this
organization of SLP-2 into the pSMAC requires anti-CD3 ligation (table 2).
doi:10.1371/journal.pone.0037144.g005
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SLP-2 does it is unknown [12]. The work presented here

investigates the link between T cell activation and the role of

SLP-2 in membrane organization. We show that there are two

intracellular pools of SLP-2, one major pool associated to

mitochondria and another much less abundant pool associated

to the plasma membrane. Both pools coalesce at the IS upon TCR

ligation, and partition in the peripheral areas of the synapse and

are actively maintained in this location during activation.

Together, these results suggest that SLP-2 regulates T cell

activation by organizing functional microdomains in mitochon-

drial and plasma membranes. These microdomains can then

facilitate the optimal assembly and function of multi-chain

complexes or receptors.

The compartmentalization of cellular membranes into special-

ized microdomains is thought to facilitate the assembly of multi-

molecular complexes. This role has been shown in the mitochon-

drial inner membrane for individual complexes of the respiratory

chain and supercomplexes of these individual units, together

leading to increased electron transport efficiency and increased

ATP production. This role correlates with SLP-2 directly binding

to cardiolipin and interacting with prohibitins [6,12]. Other SPFH

family members, such as prohibitin and flotillin are also proposed

to organize membrane domains [10,11]. Alternatively, SLP-2-

deficient T cells have less cardiolipin-enriched domains and

decreased mitochondrial respiration (Christie et al., manuscript

submitted), and loss of transmembrane potential [5,23]. Altogeth-

er, the net effect of the increase in SLP-2 levels upon T cell

activation would be an increase in cardiolipin-enriched micro-

domains and enhanced mitochondrial function resulting in

increased T cell function.

The data presented here extends the role of SLP-2 as an

organizer of membrane compartmentalization to the plasma

membrane. Upon TCR ligation, there is recruitment of a large

number of adapter and signalling molecules to form the TCR

signalosome [24]. Assembly of this multi-molecular complex is

also associated with re-organization of plasma membranes,

through the aggregation of detergent-resistant, glycolipid-en-

riched microdomains previously referred to as lipid rafts

[25,26,27,28], and the formation of an IS [29]. Within the IS,

stable signalling TCR microclusters containing kinases and

adapters are detected in the outer ring of the synapse together

with LFA-1 and other adhesion molecules forming the pSMAC

[30]. As activation proceeds, TCR microclusters move from the

periphery to the centre of the synapse (cSMACs), destined for

internalization and degradation [31,32,33], a process that ensures

signal down-regulation [34]. The results presented here are

compatible with the idea that SLP-2 facilitates the assembly of

the TCR signalosome during T cell activation. In a manner

similar to Mec-2 and podocin, members of the SPFH superfam-

ily, SLP-2 may associate with cholesterol at the plasma

membrane and with components of the TCR signalosome the

stability of this multimolecular complex [7,12]. The ability of

SLP-2 to homo-oligomerize may allow SLP-2 to form a ring-like

structure around the signalosome to separate components from

other proteins at the plasma membrane and to prevent

dissociation of the complex, in a manner similar to what SLP-

2:prohibitin complexes may do in mitochondria [6,11]. A

detailed characterization of the TCR signalosome under

conditions of SLP-2 deficiency is currently underway as part of

the analysis of the conditional, T cell-specific SLP-2 knockout

mouse (Christie et al, manuscript submitted).

How SLP-2 specifically interacts with cardiolipin in the

mitochondrial membrane and other lipids in the plasma

membrane is an issue for further investigation. SLP-2 lacks a

putative transmembrane domain and palmitoylation sites found

in other stomatin family members [5]. We have previously

indicated that there may be putative myristoylation sites at the

amino-terminus of SLP-2, which may facilitate membrane

association [12]. Alternatively, the SPFH domain may be directly

involved in this association as it has been shown for the

superfamily members Mec-2 and podocin and its binding to

cholesterol and for SLP-2 and its binding to cardiolipin [6,7].

Using video capture microscopy we have shown that the

mitochondrial-associated pool of SLP-2 redistributed to the IS

upon T cell activation. This result corroborates the observation

of mitochondrial relocation to the IS upon T cell stimulation

[17]. In this work, the authors suggest a model in which

mitochondria act as a localized calcium sink to maintain Calcium

Release Activated Calcium (CRAC) channel activation, strength-

ening T cell signalling and activation. Studies looking at

knockdown of SLP-2 with siRNA have shown that the loss of

SLP-2 leads to decreased calcium uptake by the mitochondria

[13]. Similarly, we have found that mitochondrial calcium uptake

is increased in cells over-expressing full-length SLP-2 (C. Lemke

and J. Madrenas, unpublished observations). However, it is

currently unclear how SLP-2 modulates calcium uptake by the

mitochondria. While an inhibitor of mitochondrial sodium/

calcium exchange channel equalized the rate of calcium

extrusion from the mitochondria in control and SLP-2-depleted

cells, it did not restore full calcium uptake into the mitochondria

[13], indicating that calcium exchange rates alone cannot

account for the role of SLP-2 in mitochondrial calcium uptake.

Since we had previously shown that SLP-2 interacts with actin

and it has been shown that the mitochondrial translocation to the

IS requires actin polymerization [12,17], it was plausible that

SLP-2 may link the mitochondria to the actin cytoskeleton and

facilitate the movement of mitochondria to the IS. However, our

data indicate that this is not the case because we found that

mitochondrial translocation to the IS proceeded normally in

SLP-2-deficient T cells. Thus, SLP-2 is not required for

mitochondrial translocation to the IS during T cell activation.

Table 1. Segregation of mitochondrial SLP-2-gfp from the
cSMAC in the mature IS.

Segregation No Segregation

25/29 (86.2%) 4/29 (13.8%)

Only cells forming contacts for 3 or more data points by wide field fluorescence
microscopy were considered. Images of each field were taken at 2–3 minute
intervals. Data is representative of 3 independent experiments.
doi:10.1371/journal.pone.0037144.t001

Table 2. Percentage of Jurkat T cells on supported planar
bilayers organizing SLP-2-gfp close to pSMAC at the contact
interface.

Stimulation Peripheral ring
No peripheral
ring

10 mg/mL OKT3+300 mol/mm2

ICAM-1
291 8

300 mol/mm2 ICAM-1 only 0 29

1P,0.0001 vs. ICAM-1 only.
doi:10.1371/journal.pone.0037144.t002
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The identification of SLP-2 and other mitochondrial proteins

at the plasma membrane may reflect membrane exchange

between these organelles and other cellular compartments and

organelles, and point to a novel pathway of intracellular

trafficking. We have confirmed the presence of a mitochondrial

targeting sequence in the amino-terminus of SLP-2. This raised

the question of the intracellular trafficking pathway leading to the

presence of SLP-2 in the cell surface. It is possible that the

plasma membrane pool of SLP-2 arises by default when a small

proportion of newly synthesized SLP-2 fails to be transported to

the mitochondria. However, it is also possible that a small

amount of membrane exchange occurs between the mitochon-

drial and plasma membranes, allowing for the exchange of

membrane-associated proteins, which is supported by the

existence of mitochondria-derived vesicles and its fusion with

other organelles such as lysosomes [35,36,37,38]. In addition to

SLP-2, a small surface pool has also been shown for other

mitochondrial proteins such as prohibitin, porin, NADH

dehydrogenase, ubiquinol-cytochrome c reducatase and ATP

synthase, indicating that the surface association of mitochondrial

proteins is not unique to SLP-2 [39,40,41,42]. The purpose of

mitochondrial proteins at the plasma membrane is unclear,

although the association of SLP-2 with components of the T cell

signalosome suggest that both pools of SLP-2 are likely

functional.

In summary, the work presented here provides the first

evidence of two pools of SLP-2 in human and mouse T cells and

it suggests to a conservation of function at both membranes. In

the mitochondria, SLP-2 organizes the membrane into cardio-

lipin-enriched domains to facilitate respiratory chain function. At

the plasma membrane, SLP-2 may facilitate immunosynapse

organization, leading to increased T cell signalling and activa-

tion. It is likely that both of these functions have the same

mechanistic basis, i.e. organization of specialized microdomains

that facilitate the assembly of multi-molecular complexes and

ultimately ensure their optimal function.

Figure 6. SLP-2-deficient T cells show normal mitochondrial recruitment upon T cell stimulation. T cells were isolated from wild type and
SLP-2 T-K/O (T-K/O) mice and stained with MitoTracker Red. Stained cells were plated on poly-L-lysine coated confocal dishes and incubated for 10
minutes to promote adherence. Cells were stimulated for 30 minutes with anti-CD3 and anti-CD28 antibody coated beads or left unstimulated. Cells
were then fixed and imaged by confocal microscopy. These images are representative of at least 100 individual cells, imaged in three independent
experiments. A) Representative confocal images are shown for wild type and SLP-2-deficient T cells in the absence (0 min) and presence (30 min) of T
cell stimulation (2 different cells for each). Mitochondria are shown in red and stimulating beads can be seen in the light image overlay. B) The
location of the mitochondria was quantified in un-stimulated wild type (black bars) and SLP-2-deficient (white bars) T cells was quantified as either a
polar distribution with mitochondria being clustered together at one end of the cell or a uniform distribution, with mitochondria located throughout
the entire cell. C) The location of the mitochondria in stimulated wild type and SLP-2-deficient T cells was quantified as proximal to the stimulating
bead, distal to the bead or uniformly distributed throughout the cytoplasm, in a manner similar to that in figure 4. These plots represent an average
of 3 independent experiments, in which 30 cells for each group were counted.
doi:10.1371/journal.pone.0037144.g006
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Materials and Methods

Cells
Jurkat T cells (E6.1) were obtained from American Type Culture

Collection (Manassas, VA) and cultured in supplemented RPMI

1640 medium. The B lymphoblastoid cell line, LG2, was kindly

provided by Dr. Eric Long (NIAID, NIH, Rockville, MD) and

cultured in standard supplemented RPMI 1640 media.

Plasmids, siRNA and T Cell Transfectants
Human SLP-2 cDNA was subcloned into the pEGFPN1

expression vector (Clontech Inc. Palo Alto, CA) to create an in-

frame translational fusion of the 39 end of SLP-2 to gfp, as previously

described [18,43]. Subsequently, the SLP-2-gfp fusion was cloned

into the doxycycline inducible pBIG2i vector [18]. A mutant

construct lacking the amino-terminal region (deletion of amino acid

residues 1–77) was generated and cloned into pBIG2i. Stable

transfectants were generated by electroporating linearized plasmid

into Jurkat E6.1 T cells and screening for stable expression of SLP-2-

gfp. Doxycycline (Sigma, St. Louis, MO) was added to overnight

cultures at 1 mg/mL to induce SLP-2-gfp expression, which was

monitored by direct flow cytometry (Becton Dickinson [BD], San

Jose, CA).

Mice
A full-length genomic fragment containing the mouse SLP-2 gene

was cloned within the lox sites of the 3LoxP3NwCD vector. Upon

sequence confirmation, the plasmid was electroporated into

C57BL/6 embryonic stem cells and clones were selected for

neomycin resistance. The resistant clones were screened by

Southern blot and PCR analysis to confirm homologous recombi-

nation of the SLP-2-floxed DNA sequence. Clones containing the

SLP-2-floxed sequence were injected into B6/Try blastocysts and

implanted into a pseudo-pregnant mouse. The offspring was

selected by chimeric coat colour and backcrossed with C57BL/6

mice to produce SLP-2lox/wt mice in the C57BL/6 background.

SLP-2 floxed mice were crossed with C57BL/6 mice transgenic for

Cre recombinase under the control of the CD4 promoter, purchased

from Taconic (Hudson, NY) [44], to generate a T cell specific SLP-2

knockout strain (SLP-2 T-K/O, Christie et al, manuscript submit-

ted). SLP-2 floxed mice lacking Cre were used as control mice.

Breeding colonies were derived from the same original SLP-2 floxed

breeders and kept in parallel. Mice were maintained in the animal

facility at the University of Western Ontario with approval from the

Animal Use Subcommittee in accordance with the Canadian

Council on Animal Care Guidelines.

Antibodies
A rabbit polyclonal antiserum against human SLP-2 was

generated by immunization with a peptide spanning amino acids

343 to 356 (ProSci Inc., Poway, CA). Polyclonal antibodies against

SLP-2 (Protein Tech Group, Chicago, IL) and gfp (BD Bioscience,

San Jose, CA) were used in these studies. Pre-immune rabbit

serum was used as an isotype control (ProSci Inc., Poway, CA).

Monoclonal antibodies against b-actin (Santa Cruz Biotechnology,

Santa Cruz, CA), the a-subunit of Complex V (MitoSciences,

Eugene, OR), biotin (Jackson ImmunoResearch, West Grove, PA),

Caspase 3 (Cell Signaling, Danvers, MA), GAPDH (Chemicon

International, Temecula, CA) and PE-labelled anti-CD3 (UCHT-

I) were used (BD Bioscience, San Jose, CA) were used.

Mitochondria Isolation
Intact mitochondria were isolated from 206106 Jurkat T cells,

SLP-2 T-K/O or wild type control cells using the Qproteome

Mitochondria Isolation Kit (Qiagen). Cytosolic fractions were

concentrated in Amicon Ultra-0.5 centrifugal filter units with

Ultracel-30 membrane (Millipore, Billerica, MA). Mitochondrial

and cytosolic preparations were mixed with sample buffer

containing b-mercaptoethanol, boiled, and analyzed by sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

Immunoprecipitations
Protein A or protein G agarose beads were coated with either

SLP-2 antisera, pre-immune sera, anti-gfp or anti-biotin antibodies

overnight at 4uC [43]. Beads were washed to remove excess

antibody and cell lysates were incubated with the antibody-coated

beads overnight at 4uC. Following immunoprecipitation, unbound

proteins were removed and antibody-bound protein complexes

were eluted in sample buffer with b-mercaptoethanol. Immuno-

precipitated samples were separated by SDS-PAGE and immuno-

blotted with the appropriate antibodies.

Cell Surface Biotinylation
Jurkat or mouse T cells were incubated with EZ-link sulfo-NHS-

biotin (Pierce, Rockford, IL) in PBS pH 8.0, for 30 minutes at

room temperature. Cells were then washed three times with cold

PBS, lysed and immunoprecipitated for biotin [18,45]. Lysates and

immunoprecipitates were separated by SDS-PAGE and blotted

with antibodies against SLP-2.

Confocal Microscopy
Confocal microscopy was performed with a Zeiss LSM 510

microscope. Jurkat T cells or murine T cells (16106/ ml) were

incubated on poly-lysine-coated (0.01%, Sigma) glass bottom

microwell dishes (MatTek Corp., MA) for 10 minutes to promote

cell adherence at 37uC. SLP-2-gfp localization and mitochondrial

movement was monitored by staining cells with 100 nM

MitoTracker Red CMXRos (Invitrogen, Burlington, ON, Cana-

da) for 15 min at 37uC in complete RPMI 1640. SLP-2-gfp

distribution during IS formation was assessed by culturing

doxycycline-induced SLP-2-gfp stably transfected T cells with

LG2 antigen-presenting cells (APC) pre-incubated with 1 mg/ml

staphylococcal enterotoxin E (SEE) for either 10 or 30 minutes.

Following the allotted time of co-incubation, the T cell-APC

conjugates were rapidly fixed with 4% paraformaldehyde, washed

with PBS+1% FCS and stained with PE conjugated anti-CD3 for

30 minutes on ice. For experiments imaging mitochondrial

localization in primary mouse cells, T cells were isolated by

magnetic separation using the MACS pan T cell isolation kit

(Miltenyi Biotec, Auburn, CA). Cells were stained with Mito-

Tracker Red, stimulated with dynabeads mouse T activator CD3/

CD28 (Invitrogen, Burlington, ON, Canada) for 30 minutes and

cells were fixed and imaged [46]. For experiments using planar

membranes, glass-supported dioleoylphosphatidylcholine bilayers

incorporating Cy5-ICAM-1 (300 molecules/mm2) and 0.1% cap-

biotin were prepared in a Bioptechs flow cell. Unlabelled

Streptavidin (8 mg/mL) and Cy3-conjugated anti-human CD3

(OKT3 clone, 10 mg/mL), were loaded sequentially in HBS/HSA

buffer (Hepes buffered saline supplemented with 5 mM glucose,

2 mM MgCl2, 1 mM CaCl2, and 1% human serum albumin).

Jurkat T cells were also suspended in HBS/HAS buffer. All

microscopy was performed on an automated microscope with a

Hamamatsu USA Orca-ER cooled CCD camera. The hardware

on the microscope was controlled using IPLAB software

(Scanalytics) on a PowerMac G4 Macintosh computer. Images

were exposed in wide-field for 1–2 s at a resolution of 0.11 mm per

pixel using the 6061.45 N.A. objective. Interference reflection

microscopy (IRM) is based on destructive interference in green
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light reflected from the bilayer-cell interface leading to a dark area

where cells are in close contact with the bilayer. Images of cell

interaction with the planar membrane were collected by IRM and

fluorescent images to examine re-localization of T cell proteins

were collected by total internal reflection fluorescence microscopy

(TIRFM). Images were inspected using Metamorph (Molecular

Devices).

Supporting Information

Video S1 Localization of SLP-2 during IS formation.
Antigen presenting cells (APCs) were incubated overnight with

SEE (1 mg/ml), washed, resuspended in medium, and incubated

on polylysine-coated glass bottom microwell dishes for 10 minutes

to allow cells to adhere. SLP-2-gfp-expressing Jurkat T cells were

added to the APCs preincubated with SEE on the polylysine-

coated microwell dishes. Once T:APC doublet was identified,

images were acquired every 30 seconds for 60 minutes. The

majority of SLP-2-gfp localized proximal to the synapse and

distributed evenly in early stages, and as the IS matures SLP-2-gfp

moved to periphery of the synapse.

(MOV)

Video S2 SLP-2 clusters are not static in non-stimulated
T cells. Jurkat T cells stably expressing SLP-2-gfp were incubated

on polylysine-coated glass bottom microwell dishes for 10 minutes

to allow cells to adhere. Adherent, SLP-2-gfp expressing Jurkat T

cells were then placed under confocal microscope. Forty images

were acquired over a 375 seconds, with three images acquired

before photobleaching. Area of cell indicated by arrow was

photobleached using 100% of laser power for 3 seconds and the

movement of SLP-2-gfp back into photobleached area was

measured. Note that, in non-stimulated cells, there is significant

recovery of SLP-2-gfp in photobleached area within the examined

time window.

(MOV)

Video S3 Stability of SLP-2 clusters during T cell
activation. Jurkat T cells stably expressing SLP-2-gfp were

incubated on polylysine-coated glass bottom microwell dishes for

10 minutes to allow cells to adhere. Adherent Jurkat T cells were

then stimulated with OKT3 (1 mg/ml) for 15 minutes and then

placed under confocal microscope. Forty images were acquired

over a 375 seconds, with three images acquired before

photobleaching. Area of cell indicated by arrow was photo-

bleached using 100% of laser power for 3 seconds and the

movement of SLP-2-gfp back into photobleached area was

measured. Note that, in the stimulated T cell, it corresponds to

an area with SLP-2-gfp clusters. Stimulated Jurkat T cells show

little to no recovery of gfp signal in photobleached area within the

examined time window.

(MOV)
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