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SUMMARY

Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although

many known regulatory mechanisms may reduce fluctuations in signals, most simultaneously influ-

ence their mean dynamics, leading to unfaithful cell fates. Through analysis and computation, we

demonstrate that a reversible signaling mechanism acting through intermediate states can reduce

noise while maintaining the mean. This mean-independent noise control (MINC) mechanism is inves-

tigated in the context of an intracellular binding protein that regulates retinoic acid (RA) signaling

during zebrafish hindbrain development. By comparing our models with experimental data, we

find that the MINC mechanism allows for sharp boundaries of gene expression without sacrificing

boundary accuracy. In addition, this MINC mechanism can modulate noise to levels that we show

are beneficial to spatial patterning through noise-induced cell fate switching. These results reveal

a design principle that may be important for noise regulation in many systems that control cell

fate determination.

INTRODUCTION

Stochasticity is prevalent in cell signaling networks, yet organisms manage to determine cell fates and co-

ordinate their development in response to signals robustly in spite of this noise. Stochasticity has been

directly observed in gene expression (Elowitz et al., 2002; Singh et al., 2012) and identified as a cause of

cell-to-cell variation (Marinov et al., 2014; Raj and van Oudenaarden, 2008). The amount of stochasticity

in gene expression can change the qualitative features of the system, such as introducing bistability in a

deterministically monostable system, and vice versa (Kepler and Elston, 2001), or allowing switching be-

tween stable states (Paul, 2017; Koseska et al., 2009; Wu et al., 2013, 2017). Noise can have adverse effects

by distorting downstream signals (Filippi et al., 2016) and by disrupting entrainment of biochemical oscil-

lators (Gupta et al., 2016), suggesting the existence of noise control mechanisms to ensure robustness.

However, these mechanisms are not well understood.

There is increasing evidence that such systems of noise control exist in signaling pathways. Differences in

regulatory network architecture correlate with both the amplification and attenuation of expression noise

(Chalancon et al., 2012; Paulsson, 2004), and increased complexity of a biochemical network has been

shown to correlate with reduced noise (Cardelli et al., 2016). For one autoregulatory protein it has been

suggested that negative feedback decreases system noise (Thattai and van Oudenaarden, 2001). In addi-

tion, increased growth rates in a single-celled organism (yeast) can increase noise in gene expression

(Keren et al., 2015), and studies in Drosophila suggest that these principles apply to noise in spatial signals

in a multicellular (albeit syncytial) context (Gregor et al., 2007). Multiple binding sites for the Bicoid

morphogen in the Hunchback promoter buffer spatial noise in the Bicoid morphogen gradient (Holloway

et al., 2011). In addition, specific noise levels are advantageous for establishing population heterogeneity

(Kaern et al., 2005), and noise can facilitate sharp segmental boundaries of gene expression in the zebrafish

hindbrain, but only within a limited range of levels of signaling noise (Zhang et al., 2012). It has become

increasingly clear not only that noise needs to be attenuated but also that appropriate levels of noise

are critical for accurate cellular responses to a signal.

One example of noise regulation occurs in the developing vertebrate hindbrain, which is patterned by a

retinoic acid (RA) morphogen gradient. RA is a well-known signaling molecule (Niederreither and Dolle,

2008) that controls the formation of hindbrain segments (Sirbu et al., 2005), as well as the patterning and

differentiation of many other cell types and tissues. Models of morphogen gradients suggest that they

can cause all-or-none regulatory responses (Meinhardt, 2009; Wartlick et al., 2009), even in the presence

of stochasticity, and consistent with this, RA signaling specifies segmental patterns of hindbrain gene
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expression despite substantial levels of noise (Schilling et al., 2012). We used fluorescence lifetime imaging

microscopy (FLIM) to measure stochasticity in the RA gradient and directly demonstrated the existence of

large fluctuations in the gradient (Sosnik et al., 2016). One of the four cellular RA-binding proteins

(Crabp2a) in zebrafish is essential for robust patterning in the developing hindbrain (Cai et al., 2012). Ex-

periments increasing or decreasing Crabp2a levels show that it acts to attenuate noise in RA while leaving

the mean unchanged (Sosnik et al., 2016), pointing to the existence of a mechanism that allows for the

desired noise levels to be achieved without shifting the gradient.

Using the RA signaling network in zebrafish hindbrain development as an example, we investigate design

principles for controlling noise in the signal without affecting the mean levels. We find that a coupling of

reversible reactions gives rise tomean-independent noise control (MINC), and this coupling naturally arises

in complex systems through the presence of an intermediate state. In the example of spatial patterning of

hindbrain segments, the MINC mechanism involving Crabp2a enables mean-independent sharpening of

gene expression boundaries in the correct locations in response to RA. In addition, we find that the degree

to which the mean and variance are coupled distinguishes between different noise origins, and when

analyzed with the FLIM data obtained from zebrafish embryos, our results suggest that the dominant noise

source is endogenous to the RA signaling pathway.
RESULTS

Proportional-Reversibility Enables Mean-Independent Noise Control

First, we considered a simplification of the differential equation model (Schilling et al., 2012) to capture the

essential qualitative features. In the RA signaling pathway, extracellular RA enters the cell and binds to an

intermediate (CRABP), which shuttles it to the nucleus to bind to a receptor (RAR) and form a compound

(RA-RAR), which binds to the DNA to both signal downstream targets and produce a protein (CYP), which

in turn inactivates RA (depicted in Figure 1A). The basic interaction (denoted as the Simple Model [SM]) can

be modeled as a two-state stochastic differential equation (SDE):

d½RA�= ðb+ d½RA� RAR� � ðg+ hÞ½RA�Þdt + sdWt ;

d½RA� RAR�= ðg½RA� � d½RA� RAR�Þdt;

where the deterministic portion of the equation is due to mass action laws and the additional term

(sdWt) describes stochasticity in the production and degradation of RA (schematized in Figure 1B).

The steady-state mean values are

E½RA�= b

h
;

bg

E½RA� RAR�=

dh
;

and the steady-state variances are

Var ½RA�= ðd+ h Þ s2

2hðg+ d+ hÞ ;
2 2
Var ½RA� RAR�= g s

2dhðg+ d+ hÞ
(see the Transparent Methods for details of the derivation). Assume that the rates for the reversible

binding and unbinding of the morphogen to its receptor are coupled via a constant C:

d = Cg.

Under this coupling assumption, the steady-state values become proportional,

E½RA�= b

h

E½RA�

E½RA� RAR�= ðbÞðChÞ=

C
;

with themean concentrations determined solely by the production rate b and the decay rate h of RA.

However, under the same conditions,
12 iScience 3, 11–20, May 25, 2018
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Figure 1. The Proportional-Reversibility Strategy for Noise Attenuation

(A) A diagram of the retinoic acid (RA) signaling network. RA (shown in red) enters the cell to bind with the cellular retinoic

acid-binding proteins (CRABP, shown in green), which shuttles RA into the nucleus. There the RA binds with its receptor

(RAR, shown in purple) to produce Cyp26 (shown in pink). The Cyp26 proteins in turn deactivate the RA signaling proteins.

(B) A schematic depiction of the two-state simplified model (SM) of the RA network. The red node in the graph is the

concentration of RA, and the blue node is RA bound to its receptor (RA-RAR). Birth and death of RA are allowed, along

with reversible binding/unbinding with RAR.

(C) Representative time-series solutions to SM. These were obtained using the Euler-Maruyama method. (I) Shows the

solution using parameters from Table S1 while (II) uses the same parameters with g and d decreased by a factor of 0.005.

Both trajectories start from the expected value of 10. Notice that in (I) the blue line is mostly covered by the orange line.

(D) The covariances from experiments (I) and (II).

(E) A schematic depiction of the full RA model RM. The red node depicts the concentration of RA, which binds with the

binding protein (BP, shown in teal) to form the RA-BP intermediate complex (shown in green). From there, the RA binds to

its receptor RAR (shown in pink) to form RA-RAR (shown in purple). This causes the transcription of Cyp26a1, which

degrades RA.

(F–H) Representative time-series solutions to RM. The parameters for the model were chosen randomly according to the

method described in the Transparent Methods. The resulting stochastic differential equations were solved using the

Euler-Maruyama method for 100 s to give the blue line for the wild-type value (F). The value g was reduced by 90% and

the simulation was re-solved to give the orange line (G). The value for g was reset and the value for a was reduced by 90%,

and the simulation was re-solved to give the green line (H).
Var ½RA�= ðCg+ hÞs2

2ð1+CÞgh+ 2h2

the variance directly depends on g, the rate of conversion from RA to RA-RAR. Note that increasing g

attenuates noise in the RA concentration (derived in the Transparent Methods). Thus, with this

coupling assumption, changing the reaction rates of RA binding and dissociation from its receptor

has no effect on steady-state mean concentrations but has a direct and directional effect on their

variances. Comparing the temporal dynamics of the system to a setup with reduced binding rates

suggests that this mean-independent variance effect is due to changes in the binding rates

(Figure 1C).

Themean amounts of the proteins are left unchanged by the coupled reaction rates since the amount of RA

that leaves its unbound state increases by the same amount that leaves its bound state due to the coupling

assumption. To intuit why the variance decreases, we compute

Covð½RA�; ½RA� RAR�Þ= gs2

2hðð1+CÞg+ hÞ ;

which is an increasing function in g. Thus when the binding and unbinding rates are higher, the con-

centrations of RA and RA-RAR tend to be in sync (Figure 1D). Therefore if [RA] is above its steady
iScience 3, 11–20, May 25, 2018 13



state and the binding/unbinding rates are high, then it is highly likely that [RA�RAR] will also be

above its steady-state levels. One can heuristically understand that when random fluctuations cause

an excess of morphogen, the natural force toward steady state will drive the excess morphogen to-

ward degradation. If [RA] is below its steady-state levels but [RA�RAR] is even lower, the system

could push some of the morphogen to its receptor-bound state even if the total morphogen in

the system is lower than its equilibrium value, thus decreasing the total pull toward steady state.

Therefore the total pull toward equilibrium is greatest when the correlation is highest, which explains

why the variance decreases and saturates to a constant as g/N leads to near-perfect correlation.

This intuition suggests that this feature is a property of the coupling of the reversibility. To see if this

extends to more complex systems, we note that [RA�RAR] enhances the production of a protein

Cyp26a1, which in turn degrades [RA] (White et al., 2007; White and Schilling, 2008). We show

that when incorporating this nonlinearity into the previous model, the essential feature of mean-in-

dependence from the reversible reaction rates holds under the same coupling assumptions (see the

Transparent Methods). In addition, the mean-independence, along with the noise attenuation and

increase in covariance due to g, holds for the general master equation formulation of the model

(see the Transparent Methods).

The previous results rely on the assumption that the binding and unbinding rates are proportional. However,

nextweasked if this couplingnaturally occurs in thepresenceof an intermediate state. TheRAsignaling network

includesan intermediate stateRA-BPwhereRA isboundto itsbindingproteinCrabp2a (BP),which shuttlesRAto

thenucleuswhere it binds to its receptor to formRA-RAR (Cai et al., 2012).Adding this interaction to theprevious

model gives the Intermediate Model (IM). Notice that in this model the flux into [RA�RAR] at steady state is

n[RA�BP]ss, whereas the internal fluxback to [RA] is d[RA�BP]ss. Thereforenear steady state, [RA�BP] is a natural

coupling constant between the influxof RA and the influx of RA-RAR, suggesting a generalization of the propor-

tional-reversibility mechanism. The heuristic derivation is confirmed since one can show that a proportional

coupling of the rate from [RA] to [RA�BP] and the rate from [RA�RAR] to [RA�BP] produces the samemean-in-

dependence and variance-dependence on the coupled reaction rates behavior as in the previous model and

that E[RA�BP] is proportional to the proportionality constant (see the TransparentMethods for details). In addi-

tion, we can extend the signaling pathway by adding an intermediate unbinding in the nucleus step or model

Crabp2a’s shuttling of RA to Cyp26a1 as a separate pool of RA, and in this extendedmodel theMINC property

still holds (see the Transparent Methods).

We build upon this initial analysis to generate a more mechanistic model that fully incorporates the BP and

receptor concentrations, which we refer to as the Retinoic Acid Model (RM) (Figure 1E). In this model, we

derive the same natural coupling via E[RA�BP] and also show that E[RA�BP] is proportional to E[BP], which

in turn are directly determined by the production and degradation rates of BP (see the Transparent

Methods section for details of the derivation). Therefore the production and degradation rates of BP

have no effect on the mean amounts of [RA] and [RA�RAR], whereas they directly affect the variance.

Comparisons of [RA], [RA�BP], and [RA�RAR], respectively, for two separate trajectories of the system

show that the means of [RA] and [RAR] are unchanged by perturbations in [BP] but that the variance

changes (Figures 1F–1H). Perturbations in [Cyp] change the mean as well as the variance, but the latter

to a much lesser extent.

Last, we note the experimental evidence that RA-RAR upregulates the production of Crabp2a but no other

Crabps (Cai et al., 2012; Schilling et al., 2012). To simulate the effect of RA-RAR signaling on Crabp produc-

tion, along with other possibly indirect downstream effects such as Eph and Ephrins on the RA signaling

pathway (Wang et al., 2017), we introduce the Retinoic Acid Model with Feedback (RMF) by adding upre-

gulation of BP by [RA�RAR] to RM. We derive that the mean-independent variance control via a coupling

related to E[BP] still holds in the RMF model. This shows that by incorporating the dynamics of an interme-

diate state in the model we find a natural and controllable coupling of mean reaction rates that allows for

the amount of intermediate to attenuate the system noise without changing the mean levels of the signal.

Active Intermediate States Naturally Lead to Proportional-Reversibility Control

The previous results were determined by linearizations of stochastic models around steady-state values. To

establish themean-independent noise attenuation property directly on nonlinear complexmodels, we per-

formed simulations. First, we introduced a mean-variance dependence index (MVDI),
14 iScience 3, 11–20, May 25, 2018
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(A–H) Histograms depicting the z distribution due to additive noise. The models were solved using the Euler-Maruyama

method on the time span of t = [0, 200] and re-solved with a 90% knockdown to the associated parameter. The value z was

calculated from these two series, and this was repeated 100,000 times. More details outlining the experiments are found

in the Transparent Methods. (A–D) z0s Calculated for [RA] on the respective models. (E–H) z0s Calculated for [RA�RAR] on

the respective models.
z=
%DVariance

%DMean+%DVariance
;

to encapsulate the relation ofmean and variance changes into a single non-dimensionalized value. If the

variance changes but the mean does not, z is exactly 1. If the mean changes but the variance does not,

then z is 0. Thus the MVDI z offers a measure of the degree of isolation of the mean relative to variance

changes with respect to a perturbation. Four separatemodels of the RA signaling pathway (SM, IM, RM,

andRMF)were simulated todetermine the robustness of themean-independentnoise attenuationprop-

erty to the network topology for RA alone (Figures 2A–2D) or bound to RAR (Figures 2E–2H). Eachmodel

was simulated using random reaction rates 100,000 times and z0s calculated from reductions in BP and

Cyp (Table 1). Over 85% of the simulations resulted in a z > 0.9 with a decrease in BP, indicating that

for most parameter sets the relative change in variance was much larger than the relative change in

mean. In addition, when the same computational experiment was applied with multiplicative noise,

over 90% of the simulations resulted in a z > 0.9 with BP knockdown (Figure S1). We note that from

the experimental data (Sosnik et al., 2016) we estimate that the true z after depleting BP is z = 0.97.

This shows that in almost all the trajectories in eachmodel, the variance changeswith onlyminor changes

in the mean, confirming that proportional-reversibility and intermediate states naturally give rise to

MINC. In addition, over 90% of simulations result in z < 0.6 with reductions of Cyp under both additive

and multiplicative noise, showing that this property is specific to manipulation of BP levels.

Spatial MINC Enables Accurate Specification of Landmark Locations

We hypothesize that the mean-independent variance attenuation property of BP should locally smooth

spatial gradients. To study the MINC property in spatial signaling, we first extended the RMF to a two-

dimensional stochastic reaction-diffusion system with space-time white noise where the extracellular RA,

RAout, diffuses throughout space. This model, RMFS, is thus given by a stochastic partial differential equa-

tion (SPDE) (defined in the Transparent Methods). As counterparts to the mean and variance in space, we

measured the mean and variance of the location where the gradient hits specific values. To determine if the

same mean/variance relationship is associated with these properties of the morphogen gradient, we simu-

lated BP depletion experiments on the RMFSmodel with randomparameters (Figure S2 and detailed in the

Transparent Methods). Gradients of [RA]in and [RA�RAR] exhibit less noise in wild-type than after BP deple-

tion (Figures 3A–3D). Given that the average size of cells in the zebrafish hindbrain is around 10 mm, our

simulations suggest that changes in the amount of BP change the sharpness of the RA signaling boundary

without changing its mean location by more than one cell diameter over 90% of the tested parameters (Fig-

ures 3E and 3F). In addition, the mean shift in the RA-RAR gradient with decreased Cyp shifts the threshold

approximately 4 cell diameters, showing that spatial MINC is a special feature that does not extend to other

interactions (Figure S3B).
iScience 3, 11–20, May 25, 2018 15



Parameter baseExpp

b 2

a 0

b 1

a 2

u 1

z 0

h 1

r 1

All others 3

Table 1. Numerical Knockdown Experiment Base Exponents

Each parameter was chosen by taking xp uniformly from [-2,2] and calculating p = 10�xp�baseExpp . On the left is the parameter

and on the right is the corresponding baseExpp value. All values not listed in the table had the value baseExpp = 3.
The receptor-bound RA signal induces the expression of Hoxb1a and Krox20, which mutually repress each

other (Zhang et al., 2012), which we include downstream in the RMFS model (depicted in Figure S3A). By

preferentially upregulating Krox20, the boundary between rhombomeres 4 and 5 (r4/5) is established at

a threshold where the RA gradient is sufficiently high enough for the initial Hoxb1a expression to be re-

placed by Krox20. Stochasticity in the Hox-Krox interaction allows for the initial r4/5 boundary to sharpen

in the wild-type organism (Figures 4A–4D). In addition, reducing BP disrupts the sharpening of the r4/5

boundary without moving its location, whereas reducing Cyp causes a shift in the segmental boundary po-

sition. Over time the number of predominantly Hox-expressing cells displaced in the wild-type saturates to

approximately 3, whereas with depletion of BP the number of displaced cells saturates to approximately 10

(Figure 4E). On average a stochastic trajectory of the wild-type has a maximal displacement of predomi-

nantly Hox-expressing cells by 1–2 cell diameters, whereas with reduced BP, there is a maximal displace-

ment of predominantly Hox-expressing cells of around 4 cell diameters. Segmental sharpening in terms of

a previously defined sharpening index (SI) from Zhang et al. (2012) reveals a similar disruption of the sharp-

ening mechanism under this measurement (Figure S3C). Together, these results show that the loss of BP

disrupts downstream segmental sharpening, consistent with the previous in vivo experimental observa-

tions in zebrafish (Sosnik et al., 2016).

Noise Levels are Regulators for Patterning and Indicative of the Sources of Stochasticity

To further investigate the significance of noise levels in RA signaling, we next investigated the requirements

for an optimal range of noise levels in gene expressions and we explored the relationship between the

noise level and the origins of the stochasticity. To establish a direct relationship between the noise levels

controlled via BP and successful segmentation of the zebrafish hindbrain, we defined the effective noise in

the [RA�RAR] signal as a measure of the variance of the gradient (described in the Transparent Methods).

We simulated the full spatial model RMFS with varied [BP] and Hox-Krox signaling noise to determine if

noise levels affected the ability to sharpen the r4/5 boundary. A successful sharpening event was defined

as having less than or equal to 3 cells displaced by more than 1 cell diameter. All the successful sharpening

events had Hox-Krox noise levels in the range 0.175–0.275 with an upper limit on the effective [RA�RAR]

signaling noise of approximately 10�3 (Figure 5A). Similar qualitative results were obtained when successful

sharpening events were defined instead in terms of a threshold on mean displacement and maximal

displacement (Figure S4). This shows that an optimal range for the effective noise is required for segmental

patterning to occur, indicating the necessity of noise control mechanisms for properly regulating down-

stream signals.

z Calculations for changes in BP do not distinguish between common noise types such as multiplicative or

additive noise, but the probability distribution of z with respect to changes in the amount of Cyp strongly

depends on the choice of the noise term (compare Figure 2 with Figure S1). Therefore we investigated the

validity of particular noise terms by comparing these probability distributions with experimental data. We
16 iScience 3, 11–20, May 25, 2018
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Figure 3. Location-Independent Boundary Sharpening

(A–D) Representative solution of RMFS. Shown are the two-dimensional gradients of intracellular [RAin] (plots A and C) and [RA�RAR] (plots B and D).

Random parameters were chosen according to the Transparent Methods. The x axis runs from the anterior to the posterior of the zebrafish hindbrain. The

simulations were run to determine the steady-state gradients and then were run for 100 s more to give a snapshot of the spatial stochasticity. (A and B) The

wild-type results for a given parameter set, and (C and D) the results when simulated again but with the parameter for binding protein (BP) reduced by 90%.

The color levels are fixed between the wild-type and BP-deficient plots to provide accurate comparisons.

(E) Scatterplot of the percent change in variance versus the change in the average boundary location (mm). 100 Parameter sets were chosen, and for each

one the threshold concentration was taken to be 60% of the maximum value. The mean and the variance of the boundary location was calculated, the

simulation was solved once more using the BP-deficient value, and the mean and variance of the boundary location were calculated using the same

threshold.

(F) Histogram of the number of simulations with a given change in mean boundary location (mm).
examined data collected from free intracellular RA in the zebrafish hindbrain morphogen gradients with a

morpholino knockdown of Cyp26a1 (Sosnik et al., 2016). Themethodology for the analysis (see Transparent

Methods) estimates the average experimental value as z z 0.62.

To determine the likelihood that this system uses one type of noise versus another, we utilized the same

parameter search scheme as previously described to calculate probability distribution for z with different

noise types and depletion of Cyp on the model RMF (Figure 5B). An experimental zwas calculated pairwise

between each wild-type and Cyp-deficient embryo since there does not exist a canonical pairing, thus giv-

ing a distribution of 27 experimental z values, which center around z = 0.6 with a tail toward zero. zWas less

than the mean experimental z for >90% of the parameters when the noise was additive for [RA]in or multi-

plicative for [RA�RAR]. In contrast, the z distributions with multiplicative noise for [RA]in, [RA�BP], and

[RA]out all peak around the mean z value. Similar results were obtained for the cumulative distribution of

z (Figure S5). This reliance of the noise on the levels of [RA]in itself (all these concentrations are directly

linked) strongly suggests that the dominant form of noise in the zebrafish hindbrain signaling network is

intrinsic to stochastic processes related to [RA]in and establishes that exogenous noise is not likely to fit

the data.

DISCUSSION

Stochasticity in gene regulatory networks (GRNs) naturally exists (Elowitz et al., 2002), and noise attenuation

or control is needed to enable proper biological functions. For example, in the zebrafish hindbrain, noise

regulation is required for subsequent boundary sharpening processes to occur properly (Zhang et al.,

2012). Here we uncover an MINC mechanism that can tune the level of noise in the downstream compo-

nents of a GRN, without affecting the mean of the signal. In the zebrafish hindbrain system, this MINC

mechanism provides a way (through Crabp2a) to achieve the required noise levels in the RA morphogen

without disturbing other aspects of its spatial gradient. Together, we directly link the preservation of a sto-

chastic spatial phenotype to a noise control mechanism, demonstrating a potential path through which

developmental processes could have evolved to overcome inherent biochemical stochasticity to achieve

robust spatial patterning.
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Figure 4. Disruption of Downstream Boundary Sharpening Due to Perturbations in Binding Protein (BP) and

Cyp26 Concentration

(A–D) Representations of the rhombomere 4/5 segmental boundary. Representation at (A) 10 hr post-fertilization (hpf), (B)

10.5 hpf, (C) 11 hpf, and (D) 12 hpf. The trajectories were calculated according to the RMFS model with the Hox-Krox

extension (described in the Transparent Methods). The color corresponds to the concentration of Hox at a particular

region in the anterior-posterior versus the left-right plane. The top panels correspond to the wild-type model, the middle

panels are the models with reduced BP, and the bottom panels are the models with reduced Cyp26.

(E) Number of displaced cells over time. The y axis corresponds to the number of displaced cells, calculated as a

predominantly Hox-expressing cell lying one cell length posterior to a predominantly Krox-expressing cell. The x axis

shows time in terms of hpf. Each condition was run 10 times, and the results were averaged.

(F) Maximum displacement over time. The y axis corresponds to the maximum displacement, calculated as the maximum

distance between a predominantly Hox-expressing cell that is posterior to a predominantly Krox-expressing cell. The axis

is in cell diameters, which correspond to 10 mm. The x axis shows time in terms of hpf. Each condition was run 10 times, and

the results were averaged.
The robustness in the choice of biologically reasonable parameters needed to achieve such a mechanism

indicates that it is an intrinsic property of the GRN topology. The core feature underlying this is a coupling

assumption that arises naturally with the existence of intermediate states under mass action assumptions.

Furthermore, we obtain similar results with five separate models, all with this same coupling. This suggests

that MINC may be a general phenomenon related to the existence of intermediate states and probably

exists in other GRNs. Computational simulations of epithelial-mesenchymal transitions (EMTs) recently

has shown that increased numbers of intermediate states attenuate noise in cellular fate decisions (Ta

et al., 2016), which is analogous to our predictions of how pooling in the intermediate state reduces noise.

Primed lineages in hematopoietic stem cells can be represented as an intermediate state with reversible

changes, which could explain data showingmean-independent noise attenuation due to a lineage commit-

ment factor (van Galen et al., 2014). However, we note that the spatial control results were only tested in the

areas of the RA gradient where the concentration is sufficiently high. There may be other factors required

for robust noise control and boundary sharpening in anterior rhombomeres (r1-3) where the RA concentra-

tion is low and the gradient is shallow. In addition, our models do not take into account the effects of cell

proliferation. While the cell cycle rapidly increases to 4 hr around the time of boundary sharpening (Kimmel

et al., 1994), which is a much slower timescale than the noise processes, further research could better quan-

tify the effects of cell divisions on the spatial noise.
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Figure 5. Noise Levels Distinguish Between Models and Developmental Phenotypes

(A) Scatterplot of the successful and unsuccessful sharpening events. BP production was taken as 5, 15, ., 105 and Hox-

Krox regulatory noise was taken as 0.1, 0.125,., 0.3 and each pairing in the grid was solved once. The effective RA noise

was calculated according to the measure from the Transparent Methods, and a sharpening event was declared successful

if after 2 hr less than 3 cells were displaced by more than 1 cell diameter.

(B) Depiction of the probability distribution for z according to the parameter search scheme from the parameter search

scheme on RMF. The simulations which produced these distributions are discussed in the Transparent Methods. Shown

are the kernel density estimates from the z values from the stochastic simulations. The different colored lines show the

distributions for different noise types. The red circles depict experimental values for z computed pairwise.
Furthermore, our methods uncover a novel relationship between the noise source, the network topology,

and the relationship between the mean and the variance using the perturbation data in experiments. Our

analysis suggests intrinsic noise due to RA as the most likely dominant noise source in the zebrafish hind-

brain given the known GRN topology and mean-variance relationship. With the increasing precision in

experimental quantification of variance changes, this methodology could be used to identify noise sources

and provide further evidence for or against GRN topologies. For example, microfluidic measurements have

accurately measured noise dynamics in individual aging yeast cells (Liu et al., 2017) and a dynamic analysis

similar to the one shown here could restrain the possible GRNs by requiring that not only the mean but also

the noise dynamics match the data. Most importantly, this approach may be used to distinguish between

models that have similar qualitative behavior with respect to the mean, thereby providing a new way to un-

cover details of biochemical networks from the noise in gene knockdown experiments.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
SUPPLEMENTAL INFORMATION
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Figure S1. Mean and Variance Knockdown Distributions with Multiplicative Noise, 

Related to Figure 2. (A)-(H) Histograms depicting the 𝜁𝜁 distribution due to multiplicative noise. 

The models were solved using the Euler-Maruyama method on the timespan of  𝑡𝑡 = [0,200], and 

re-solved with a 90% knockdown to the associated parameter. The value 𝜁𝜁 was calculated from 

these two series, and this was repeated 100,000 times. More details outlining the experiments are 

found in the Transparent Methods. (A)-(D) 𝜁𝜁's calculated for [𝑅𝑅𝑅𝑅] with the respective models. 

(E)-(H) 𝜁𝜁's calculated for [𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] with the respective models. 
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Figure S2: Location-Independent Boundary Sharpening Experimental Diagram, Related to 

Figure 3. A diagram of the numerical scheme for the 𝜻𝜻 histogram experiments for spatial 

location versus threshold sharpness. The SPDE model is solved and the 50% concentration point 

at each location along the x-axis is found. Then the mean and the variance of these x locations 

are saved. This process is then repeated with reduced binding protein and the resulting mean and 

variance values are compared with the previous to get a value for 𝜁𝜁. 
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Figure S3: Boundary Sharpening Disruption Extended Figures, Related to Figure 4. (A) 

Diagram of the extended retinoic acid (RA) model with downstream Hox-Krox signaling. The 

model starts with diffusive 𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 entering the cell to become 𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖 and binding to 𝐵𝐵𝐵𝐵 to become 

𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵, which then binds 𝑅𝑅𝑅𝑅𝑅𝑅 to produce 𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅. This 𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅 induces Cyp which 

deactivates (and thus degrades) the intracellular 𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖. Additionally, 𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅 acts as a signal 

to the downstream 𝐻𝐻𝐻𝐻𝐻𝐻 and 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 transcription factors, which are mutually antagonistic. (B) 

Mean shift of the RAR signal due to Cyp knockdown. For the wildtype and Cyp setups in the 

extended RA model with Hox-Krox, the mean of the [𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] gradient was calculated 

between each of the 10 runs at the ending timepoint. (C) Sharpness Index. The y-axis 
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corresponds to the sharpness index defined in (Zhang et al., 2012). The x-axis shows time in 

terms of hours postfertilization (hpf) in zebrafish. Each condition was repeated 10 times and the 

results were averaged. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure S4: Characterization of Successful Sharpening via Additional Measures, Related to 

Figure 5A. Binding protein production taken as 5, 15, …, 105 and Hox-Krox regulatory noise 

was taken as 0.1, 0.125, …, 0.3 and each pairing in the grid was solved once. The effective RA 

noise was calculated according to the measure from the Transparent Methods section. In (A) a 

successful sharpening event was characterized by having the maximum displacement between 

Hox and Krox dominated cells of less than 3 cell diameters. In (B) a successful sharpening event 

was characterized by having the mean displacement between Hox and Krox dominated cells as 

less than half of a cell diameter. 

 

 

 



 
 

 

Figure S5: Characterization of 𝜻𝜻 applied to FLIM Data, Related to Figure 5B. (A) Scatter 

plot of the data points from (Sosnik et al., 2016). (B) Pairwise Differences. The percent change 

in mean and variance was calculated pairwise between each pair of higher and lower data points. 

A scatter plot of the results is shown. (C) Estimated CDF. Depiction of the commutative 

probability distribution for 𝜁𝜁 according to the parameter search scheme from the parameter 

search scheme on RMF. The simulations that produced these distributions are discussed in the 

Transparent Methods. Shown are the kernel density estimates from the 𝜁𝜁 values from the 

stochastic simulations. The different colored lines show the distributions for different noise 

types. The red line depicts experimental CDF for 𝜁𝜁 computed using the pairwise data points. 
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Parameter Value 

𝜎𝜎𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖, 𝜎𝜎𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅, 𝜎𝜎𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜 0.03 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑏𝑏 .017 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝛼𝛼 10000 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝛽𝛽0 1 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑐𝑐 0.1 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝜔𝜔 100 𝜇𝜇𝜇𝜇 

𝛾𝛾 3.0 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝛿𝛿 0.0013 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝜂𝜂 0.0001 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑟𝑟 0.0001 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝜈𝜈 0.85 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝜆𝜆 0.85 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑢𝑢 0.01 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑑𝑑 0.1 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑒𝑒 1 𝜇𝜇𝜇𝜇 

𝑎𝑎 1 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝜁𝜁 0.02 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑐𝑐ℎ 7.5 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑐𝑐𝑘𝑘 3.0 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑘𝑘ℎ 0.4 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑘𝑘𝑘𝑘 4.0 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑑𝑑ℎ,𝑑𝑑𝑘𝑘  0.4 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝑎𝑎ℎ,𝑎𝑎𝑘𝑘 0.2 𝜇𝜇𝜇𝜇/𝑠𝑠 

𝐷𝐷 250.46 𝜇𝜇𝜇𝜇/𝑠𝑠 

Table S1: Disruption of Downstream Boundary Sharpening Parameters, Related to Figure 

4. Parameters correspond to RMFS with Hox-Krox interactions. 



 
 

 

Transparent Methods 

Data and Software Availability 

Software and Algorithms Source Identifier 

MATLAB 2015b The MathWorks Inc. 2015 https://www.mathworks.com/products/matlab.html 

Simulations made in 

MATLAB 

This Paper 

Github: 

ChrisRackauckas/MINC 

https://github.com/ChrisRackauckas/MINC 

Julia Github: Julialang/julia https://julialang.org/ 

DifferentialEquations.jl Github: 

JuliaDiffEq/DifferentialEquati

ons.jl 

https://github.com/JuliaDiffEq/DifferentialEquations.jl 

Simulations made in 

Julia with 

DifferentialEquations.jl 

This Paper 

Github: 

ChrisRackauckas/MINC 

https://github.com/ChrisRackauckas/MINC 

Plots.jl Github: JuliaPlots/Plots.jl https://github.com/JuliaPlots/Plots.jl 

 

Method Details 

Steady State Analysis 

For the SODE 𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑔𝑔(𝑋𝑋𝑡𝑡)𝑑𝑑𝑊𝑊𝑡𝑡, we calculated the mean of 𝑋𝑋𝑡𝑡 using a linearization of the drift term (𝑓𝑓) 

and solving for the unique positive steady state. To calculate the variance, we used the linearization of the 

Fluctuation-Dissipation Theorem where for the Jacobian of the drift at the steady-state 𝐽𝐽(𝑋𝑋𝑠𝑠𝑠𝑠), we have that 

𝐽𝐽(𝑋𝑋𝑠𝑠𝑠𝑠)Σ(𝑋𝑋𝑠𝑠𝑠𝑠) + Σ(𝑋𝑋𝑠𝑠𝑠𝑠)𝐽𝐽𝑇𝑇(𝑋𝑋𝑆𝑆𝑆𝑆) = −𝑔𝑔2(𝑋𝑋𝑠𝑠𝑠𝑠), 



 
 

where Σ(𝑋𝑋𝑆𝑆𝑆𝑆) is the covariance matrix at the steady state 𝑋𝑋𝑠𝑠𝑠𝑠, and thus its diagonal value in column 𝑖𝑖 gives the 

variance of the 𝑖𝑖th component when near the steady state. These computations were performed using Mathematica. 

Monotonicity of Variance 

Take the variance equation 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑅𝑅𝑅𝑅] =
(𝐶𝐶𝐶𝐶 + 𝜂𝜂)𝜎𝜎2

2(1 + 𝐶𝐶)𝛾𝛾𝛾𝛾 + 2𝜂𝜂2
. 

Notice that 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑅𝑅𝑅𝑅]
𝑑𝑑𝑑𝑑

=
𝐶𝐶𝜎𝜎2

2𝜂𝜂(𝛾𝛾 + 𝛾𝛾𝛾𝛾 + 𝜂𝜂) −
(𝐶𝐶 + 1)𝜎𝜎2(𝛾𝛾𝛾𝛾+𝜂𝜂)

2𝜂𝜂(𝛾𝛾 + 𝛾𝛾𝛾𝛾 + 𝜂𝜂)2. 

From Mathematica we see that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑅𝑅𝑅𝑅]
𝑑𝑑𝑑𝑑

= 0 if and only if 𝜎𝜎 = 0. Therefore 𝑉𝑉𝑉𝑉𝑉𝑉[𝑅𝑅𝑅𝑅] is monotonic in 𝛾𝛾. To see that 

it increases, we used the Mathematica Solve function to attempt to find values for which the derivative was negative. 

Mathematica could find no parameter regime where this was the case. As verification, we used the Mathematica 

Solve function to find the values for which the derivative was positive. The function returned no constraints, 

indicating that this always holds. 

Mathematical Models and Steady-State Results 

General Master Equation (SM) 

The SM model can be written in the general master equation framework as: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (𝐸𝐸1 − 1)𝜂𝜂𝜂𝜂𝜂𝜂 + (𝐸𝐸1−1𝐸𝐸2 − 1)𝑚𝑚𝑚𝑚𝑚𝑚 + (𝐸𝐸1𝐸𝐸2−1 − 1)𝑛𝑛𝑛𝑛𝑛𝑛 + (𝐸𝐸1−1 − 1)𝛽𝛽𝛽𝛽, 

where 𝑝𝑝 = 𝑝𝑝(𝑛𝑛,𝑚𝑚; 𝑡𝑡) with 𝑛𝑛 being the number of RA particles and 𝑚𝑚 being the number of RA-RAR particles, and 

𝐸𝐸𝑖𝑖 being the step operators (𝐸𝐸𝐸𝐸(𝑛𝑛) = 𝑓𝑓(𝑛𝑛 + 1), implying (𝐸𝐸1 − 1) is the annihilation of RA) for RA and RA-RAR 

respectively. Following (Wang et al., 2008; Toral & Colet, 2014), we write the general master equation in the form: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ��𝐸𝐸1
𝑙𝑙1𝐸𝐸2

𝑙𝑙2 − 1�[Ω𝑛𝑛→𝑛𝑛−𝑙𝑙1,𝑚𝑚→𝑚𝑚−𝑙𝑙2𝑝𝑝]
𝑙𝑙1,𝑙𝑙2

, 



 
 

where Ω𝑛𝑛→𝑛𝑛−𝑙𝑙1,𝑚𝑚→𝑚𝑚−𝑙𝑙2 is a reaction rate for the operation of losing 𝑙𝑙1 RA and 𝑙𝑙2 RA-RAR, and calculate the 

identities via algebraic manipulation: 

𝑑𝑑⟨𝑛𝑛⟩
𝑑𝑑𝑑𝑑

= −��𝑙𝑙1Ω𝑛𝑛→𝑛𝑛−𝑙𝑙1,𝑚𝑚→𝑚𝑚−𝑙𝑙2�
𝑙𝑙1,𝑙𝑙2

, 

𝑑𝑑⟨𝑚𝑚⟩
𝑑𝑑𝑑𝑑

= −��𝑙𝑙2Ω𝑛𝑛→𝑛𝑛−𝑙𝑙1,𝑚𝑚→𝑚𝑚−𝑙𝑙2�
𝑙𝑙1,𝑙𝑙2

, 

𝑑𝑑⟨𝑛𝑛2⟩
𝑑𝑑𝑑𝑑

= −��𝑙𝑙1(𝑙𝑙1 − 2𝑛𝑛)Ω𝑛𝑛→𝑛𝑛−𝑙𝑙1,𝑚𝑚→𝑚𝑚−𝑙𝑙2�
𝑙𝑙1,𝑙𝑙2

, 

𝑑𝑑⟨𝑚𝑚2 ⟩
𝑑𝑑𝑑𝑑

= −��𝑙𝑙2(𝑙𝑙2 − 2𝑚𝑚)Ω𝑛𝑛→𝑛𝑛−𝑙𝑙1,𝑚𝑚→𝑚𝑚−𝑙𝑙2�
𝑙𝑙1,𝑙𝑙2

, 

𝑑𝑑⟨𝑛𝑛𝑛𝑛 ⟩
𝑑𝑑𝑑𝑑

= −��(𝑙𝑙1𝑛𝑛 + 𝑙𝑙2𝑚𝑚 − 𝑙𝑙1𝑙𝑙2)Ω𝑛𝑛→𝑛𝑛−𝑙𝑙1,𝑚𝑚→𝑚𝑚−𝑙𝑙2�
𝑙𝑙1,𝑙𝑙2

. 

(For example: multiply by 𝑛𝑛, then re-define 𝑛𝑛 to be shifted by 𝑙𝑙1 and simplify. The others follow from similar 

manipulations). This gives the system of ODEs: 

𝑑𝑑⟨𝑛𝑛⟩
𝑑𝑑𝑑𝑑

= −(𝜂𝜂 + 𝛾𝛾)⟨𝑛𝑛⟩ + 𝛿𝛿⟨𝑚𝑚⟩, 

𝑑𝑑⟨𝑚𝑚⟩
𝑑𝑑𝑑𝑑

= 𝛾𝛾⟨𝑛𝑛⟩ − 𝛿𝛿⟨𝑚𝑚⟩, 

𝑑𝑑⟨𝑛𝑛2⟩
𝑑𝑑𝑑𝑑

= −(𝜂𝜂 + 𝛾𝛾)⟨𝑛𝑛(1 − 2𝑛𝑛)⟩ − 𝛿𝛿⟨𝑚𝑚(1 + 2𝑛𝑛)⟩ − 𝛽𝛽⟨1 + 2𝑛𝑛⟩, 

𝑑𝑑⟨𝑚𝑚2⟩
𝑑𝑑𝑑𝑑

= −𝛿𝛿⟨𝑚𝑚(1 − 2𝑚𝑚)⟩ − 𝛾𝛾⟨𝑛𝑛(1 + 2𝑚𝑚)⟩, 

𝑑𝑑⟨𝑛𝑛𝑛𝑛⟩
𝑑𝑑𝑑𝑑

= −𝜂𝜂⟨𝑛𝑛2⟩ + 𝛿𝛿⟨𝑚𝑚(−𝑛𝑛 + 𝑚𝑚− 1)⟩ + 𝛾𝛾⟨𝑛𝑛(𝑛𝑛 −𝑚𝑚 − 1)⟩ + 𝛽𝛽⟨𝑛𝑛⟩. 

Setting the derivatives to zero, we receive the steady-state values (calculations in the Mathematica notebooks): 

𝐸𝐸[𝑅𝑅𝑅𝑅] =
𝛽𝛽
𝜂𝜂, 



 
 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑅𝑅𝑅𝑅] =
𝛽𝛽(𝛾𝛾 + 𝜂𝜂 + 𝑐𝑐𝑐𝑐)
𝜂𝜂(𝛾𝛾 + 𝜂𝜂 + 2𝑐𝑐𝑐𝑐), 

𝐶𝐶𝐶𝐶𝐶𝐶([𝑅𝑅𝑅𝑅], [𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]) = − 𝛽𝛽(𝛾𝛾+ 𝜂𝜂)
𝛾𝛾(𝛾𝛾+ 𝜂𝜂+ 2𝜂𝜂𝜂𝜂). 

We note that the derivatives of the variance and covariance equations by 𝛾𝛾 are non-zero for all positive parameter 

values. Thus both equations are increasing functions of 𝛾𝛾.  

Simple Model with Feedback (SMF) 

𝑑𝑑[𝑅𝑅𝑅𝑅] = �𝛽𝛽 + 𝛿𝛿[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] − �𝛾𝛾 + 𝜂𝜂 +
𝛼𝛼[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]

𝜔𝜔 + [𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]�
[𝑅𝑅𝑅𝑅]�𝑑𝑑𝑑𝑑 +  𝜎𝜎𝜎𝜎𝑊𝑊𝑡𝑡, 

𝑑𝑑[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] =  (𝛾𝛾[𝑅𝑅𝑅𝑅] − 𝛿𝛿[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅])𝑑𝑑𝑑𝑑, 

𝐸𝐸[𝑅𝑅𝑅𝑅] =
�2𝛽𝛽𝛽𝛽𝛽𝛽(2𝛼𝛼 + 𝜂𝜂) + 𝛽𝛽2 + 𝐶𝐶2𝜂𝜂2𝜔𝜔2 + 𝛽𝛽 − 𝐶𝐶𝐶𝐶𝐶𝐶

2(𝛼𝛼 + 𝜂𝜂) , 

𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] =
�4𝛽𝛽𝛽𝛽𝛽𝛽(𝛼𝛼 + 𝜂𝜂) + (𝛽𝛽 − 𝑐𝑐𝑐𝑐𝑐𝑐)2 + 𝛽𝛽 − 𝑐𝑐𝑐𝑐𝑐𝑐

2𝑐𝑐(𝛼𝛼 + 𝜂𝜂) , 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑅𝑅𝑅𝑅]: 

𝜎𝜎2(𝐸𝐸[𝑅𝑅𝑅𝑅] + 𝐶𝐶𝐶𝐶)(𝐸𝐸[𝑅𝑅𝑅𝑅]2(𝛼𝛼 + 𝜂𝜂) + 2𝐸𝐸[𝑅𝑅𝑅𝑅]𝐶𝐶𝐶𝐶(𝛼𝛼 + 𝜂𝜂) + 𝐶𝐶𝐶𝐶(𝐸𝐸[𝑅𝑅𝑅𝑅] + 𝐶𝐶𝐶𝐶)2 + 𝐶𝐶2𝜂𝜂𝜔𝜔2)
2(𝐸𝐸[𝑅𝑅𝑅𝑅]2(𝛼𝛼 + 𝜂𝜂) + 2𝐸𝐸[𝑅𝑅𝑅𝑅]𝐶𝐶𝐶𝐶(𝛼𝛼 + 𝜂𝜂) + 𝐶𝐶2𝜂𝜂𝜔𝜔2)(𝐸𝐸[𝑅𝑅𝑅𝑅](𝛼𝛼 + 𝜂𝜂) + (𝐶𝐶 + 1)𝛾𝛾(𝐸𝐸[𝑅𝑅𝑅𝑅] + 𝐶𝐶𝐶𝐶) + 𝐶𝐶𝐶𝐶𝐶𝐶), 

𝑉𝑉𝑎𝑎𝑟𝑟[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]: 

𝛾𝛾𝜎𝜎2(𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] + 𝜔𝜔)3

2�𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]2𝐶𝐶(𝛼𝛼 + 𝜂𝜂) + 𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]𝐶𝐶𝐶𝐶(𝛼𝛼 + 2𝜂𝜂) + 𝜔𝜔(𝛼𝛼 + 𝐶𝐶𝐶𝐶𝐶𝐶)�(𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅](𝛼𝛼 + 𝜂𝜂) + (𝐶𝐶 + 1)𝛾𝛾(𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] + 𝜔𝜔) + 𝜂𝜂𝜂𝜂)
. 

where 𝛿𝛿 = 𝐶𝐶𝐶𝐶. Importantly we note that 𝐸𝐸[𝑅𝑅𝑅𝑅] and 𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] are independent of 𝛿𝛿 and 𝛾𝛾. 

Intermediate Model (IM) 

𝑑𝑑[𝑅𝑅𝑅𝑅] = �𝛽𝛽 + 𝛿𝛿[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] − � 𝛼𝛼[𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅]
𝜔𝜔+[𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅]

+  𝛾𝛾 + 𝜂𝜂� [𝑅𝑅𝑅𝑅]� 𝑑𝑑𝑑𝑑 +  𝜎𝜎𝜎𝜎𝑊𝑊𝑡𝑡, 

𝑑𝑑[RA − BP] = (𝛾𝛾[𝑅𝑅𝑅𝑅] + 𝜆𝜆[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] − (𝛿𝛿 + 𝜈𝜈)[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵])𝑑𝑑𝑑𝑑, 

𝑑𝑑[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] =  (𝜈𝜈[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] − 𝜆𝜆[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅])𝑑𝑑𝑑𝑑, 



 
 

𝐸𝐸[𝑅𝑅𝑅𝑅] =
�4𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝛼𝛼 + 𝜂𝜂) + (𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿)2 + 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿

2𝛾𝛾𝛾𝛾(𝛼𝛼 + 𝜂𝜂) , 

𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] =
�4𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝛼𝛼 + 𝜂𝜂) + (𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿)2 + 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿

2𝛿𝛿𝛿𝛿(𝛼𝛼 + 𝜂𝜂) , 

𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] =
�4𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝛼𝛼 + 𝜂𝜂) + (𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿)2 + 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿

2𝛿𝛿𝛿𝛿(𝛼𝛼 + 𝜂𝜂) . 

The variance equations are too large to fit in normal text and are thus contained in the respective Mathematica 

notebooks. Notice that when 𝜆𝜆 = 𝐶𝐶𝐶𝐶 or 𝜈𝜈 = 𝐶𝐶𝐶𝐶, the respective terms cancel out of 𝐸𝐸[𝑅𝑅𝑅𝑅] and 𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] 

Intermediate Model (IM) with More Signaling Steps and a Separate Pool for Cyp Degradation 

𝑑𝑑[𝑅𝑅𝑅𝑅] = (𝛽𝛽 + 𝛿𝛿[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] − ( 𝛾𝛾 + 𝜂𝜂)[𝑅𝑅𝑅𝑅])𝑑𝑑𝑑𝑑 +  𝜎𝜎𝜎𝜎𝑊𝑊𝑡𝑡, 

𝑑𝑑[𝑅𝑅𝐴𝐴2] = �𝛿𝛿2[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] − � 𝛼𝛼[𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅]
𝜔𝜔+[𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅]

+  𝛾𝛾2� [𝑅𝑅𝑅𝑅]� 𝑑𝑑𝑑𝑑, 

𝑑𝑑[RA − BP] = (𝛾𝛾[𝑅𝑅𝑅𝑅] + 𝛾𝛾2[𝑅𝑅𝐴𝐴2] + 𝜆𝜆 [𝑅𝑅𝐴𝐴𝑁𝑁] − (𝛿𝛿 + 𝛿𝛿2 + 𝜈𝜈)[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵])𝑑𝑑𝑑𝑑, 

𝑑𝑑[RAN] = (𝜈𝜈[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] +  Λ[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] − (𝜆𝜆 + Γ)[𝑅𝑅𝐴𝐴𝑁𝑁])𝑑𝑑𝑑𝑑, 

𝑑𝑑[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] =  (Γ[𝑅𝑅𝐴𝐴𝑁𝑁] − Λ[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅])𝑑𝑑𝑑𝑑, 

The mean and variance equations are too large to fit in normal text and are thus contained in the respective 

Mathematica notebooks. Notice that when 𝜆𝜆 = 𝐶𝐶𝐶𝐶 = 𝐶𝐶2𝛾𝛾2 or 𝜈𝜈 = 𝐶𝐶𝐶𝐶 = 𝐶𝐶2𝛿𝛿2, the respective terms cancel out of 

𝐸𝐸[𝑅𝑅𝑅𝑅] and 𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]. 

Retinoic Acid Model (RM) 

𝑑𝑑[𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜] = (𝛽𝛽 − 𝑏𝑏[𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜] + 𝑐𝑐[𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖])𝑑𝑑𝑑𝑑, 

𝑑𝑑[𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖] = �𝑏𝑏[𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜] + 𝛿𝛿[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] − �𝛾𝛾[𝐵𝐵𝐵𝐵] + 𝜂𝜂 +
𝛼𝛼[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]

𝜔𝜔 + [𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] − 𝑐𝑐� [𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖]�𝑑𝑑𝑑𝑑 +  𝜎𝜎𝜎𝜎𝑊𝑊𝑡𝑡,  

𝑑𝑑[RA − BP] = (𝛾𝛾[𝐵𝐵𝐵𝐵][𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖] + 𝜆𝜆[𝐵𝐵𝐵𝐵][𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] − (𝛿𝛿 + 𝜈𝜈[𝑅𝑅𝑅𝑅𝑅𝑅])[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵])𝑑𝑑𝑑𝑑, 

𝑑𝑑[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] = (𝜈𝜈[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵][𝑅𝑅𝑅𝑅𝑅𝑅] − 𝜆𝜆[𝐵𝐵𝐵𝐵][𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅])𝑑𝑑𝑑𝑑, 

𝑑𝑑[𝑅𝑅𝑅𝑅𝑅𝑅] = (𝜁𝜁 − 𝜈𝜈[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵][𝑅𝑅𝑅𝑅𝑅𝑅] + 𝜆𝜆[𝐵𝐵𝐵𝐵][𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] − 𝑟𝑟[𝑅𝑅𝑅𝑅𝑅𝑅])𝑑𝑑𝑑𝑑, 



 
 

𝑑𝑑[𝐵𝐵𝐵𝐵] = (𝑎𝑎 − 𝜆𝜆[𝐵𝐵𝐵𝐵][𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] − 𝛾𝛾[𝐵𝐵𝐵𝐵][𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖] + (𝛿𝛿 + 𝜈𝜈[𝑅𝑅𝑅𝑅𝑅𝑅])[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] − 𝑢𝑢[𝐵𝐵𝐵𝐵])𝑑𝑑𝑑𝑑, 

𝐸𝐸[𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜] =
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(2(𝛼𝛼 + 𝜂𝜂) + 𝑐𝑐) + 𝑐𝑐�4𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑟𝑟𝑟𝑟(𝛼𝛼 + 𝜂𝜂) + (𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿 𝑟𝑟𝑟𝑟)2 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(−𝑟𝑟)𝜔𝜔

2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝛼𝛼 + 𝜂𝜂) , 

𝐸𝐸[𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖] =
𝛽𝛽𝛾𝛾𝛾𝛾𝛾𝛾 + �4𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑟𝑟𝑟𝑟(𝛼𝛼 + 𝜂𝜂) + (𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿 𝑟𝑟𝑟𝑟)2 − 𝛿𝛿𝛿𝛿𝛿𝛿 𝑟𝑟𝑟𝑟

2𝛾𝛾𝛾𝛾𝛾𝛾(𝛼𝛼 + 𝜂𝜂) , 

𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] =
𝑎𝑎�𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + �4𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑟𝑟𝑟𝑟(𝛼𝛼 + 𝜂𝜂) + (𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿 𝑟𝑟𝑟𝑟)2 − 𝛿𝛿𝛿𝛿𝛿𝛿 𝑟𝑟𝑟𝑟�

2𝛿𝛿𝛿𝛿𝛿𝛿 𝑢𝑢(𝛼𝛼 + 𝜂𝜂) , 

𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] =
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + �4𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑟𝑟𝑟𝑟(𝛼𝛼 + 𝜂𝜂) + (𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿 𝑟𝑟𝑟𝑟)2 − 𝛿𝛿𝛿𝛿𝛿𝛿 𝑟𝑟𝑟𝑟

2𝛿𝛿𝛿𝛿 𝑟𝑟(𝛼𝛼 + 𝜂𝜂) , 

𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅] =
𝜁𝜁
𝑟𝑟

, 

𝐸𝐸[𝐵𝐵𝐵𝐵] =
𝑎𝑎
𝑢𝑢

. 

The variance equations are too large to fit in normal text and are thus contained in the respective Mathematica 

notebooks. Notice 𝐸𝐸[𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖] and 𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] are independent of 𝑎𝑎. By substitution we have that 

𝐸𝐸[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] =
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 + �4𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 𝑟𝑟𝑟𝑟(𝛼𝛼 + 𝜂𝜂) + (𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛿𝛿𝛿𝛿𝛿𝛿 𝑟𝑟𝑟𝑟)2 − 𝛿𝛿𝛿𝛿𝛿𝛿 𝑟𝑟𝑟𝑟

2𝛿𝛿𝛿𝛿𝛿𝛿 (𝛼𝛼 + 𝜂𝜂) 𝐸𝐸[𝐵𝐵𝐵𝐵]. 

Retinoic Acid Model with Binding Protein Feedback (RMF) 

The equations are the same as RM except for: 

𝑑𝑑[𝐵𝐵𝐵𝐵] = �𝑎𝑎 − 𝜆𝜆[𝐵𝐵𝐵𝐵][𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] − 𝛾𝛾[𝐵𝐵𝐵𝐵][𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖] + (𝛿𝛿 + 𝜈𝜈[𝑅𝑅𝑅𝑅𝑅𝑅])[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵] − 𝑢𝑢[𝐵𝐵𝐵𝐵] +
𝑑𝑑[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]
𝑒𝑒 + [𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]�𝑑𝑑𝑑𝑑. 

The steady-state analysis results are too large to fit in normal text and are thus contained in the Mathematica 

notebooks. 

Spatial Retinoic Acid Model 

The equations are the same as RM with BP feedback except 

𝑑𝑑[𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜] = (𝛽𝛽(𝑥𝑥) + 𝐷𝐷∆[𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜] − 𝑏𝑏[𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜] + 𝑐𝑐[𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖])𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜[𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜]𝑑𝑑𝑊𝑊𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜, 



 
 

where 𝛽𝛽(𝑥𝑥) = 𝛽𝛽0𝐻𝐻(𝑥𝑥 − 40)  where 𝐻𝐻 is the Heaviside step function denoting 𝑥𝑥0 = 40 𝜇𝜇𝜇𝜇 is the edge of 

production, 

𝑑𝑑[𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖] = �𝑏𝑏[𝑅𝑅𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜] + 𝛿𝛿[𝐵𝐵𝐵𝐵][𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] − �𝛾𝛾[𝐵𝐵𝐵𝐵] + 𝜂𝜂 +
𝛼𝛼[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]

𝜔𝜔 + [𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] − 𝑐𝑐� [𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖]�𝑑𝑑𝑑𝑑

+ 𝜎𝜎𝑅𝑅𝑅𝑅[𝑅𝑅𝐴𝐴𝑖𝑖𝑖𝑖]𝑑𝑑𝑊𝑊𝑡𝑡
𝑖𝑖𝑖𝑖 , 

and 

𝑑𝑑[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅] = (𝜈𝜈[𝑅𝑅𝑅𝑅 − 𝐵𝐵𝐵𝐵][𝑅𝑅𝑅𝑅𝑅𝑅] − 𝜆𝜆[𝐵𝐵𝐵𝐵][𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅])𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅]𝑑𝑑𝑊𝑊𝑡𝑡
𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅 , 

where each 𝑑𝑑𝑊𝑊𝑡𝑡 is an uncorrelated Gaussian white noise. The spatial domain was a two-dimensional box with the x-

domain [-100,400] and the y-domain [0,50] with units of 𝜇𝜇𝜇𝜇. The problem was discretized to ODEs via the method 

of lines with a second-order discretization of the Laplacian and 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 = 5 𝜇𝜇𝜇𝜇. For all sections, we fixed 𝐷𝐷 =

25.46 𝜇𝜇𝑚𝑚2/𝑠𝑠. The boundary was reflective on all ends except the right boundary, which was leaky with parameter 

0.002.  

When the Hox-Krox interactions are included, those portions of the system are defined by: 

𝑑𝑑𝑔𝑔ℎ =
𝑐𝑐ℎ𝑔𝑔ℎ2 + (𝜅𝜅ℎ[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅])2

1 + 𝑐𝑐ℎ𝑔𝑔ℎ2 + 𝑐𝑐𝑘𝑘𝑔𝑔𝑘𝑘2 + (𝜅𝜅ℎ[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅])2 − 𝑑𝑑ℎ𝑔𝑔ℎ + 𝑎𝑎ℎ𝑔𝑔ℎ𝑑𝑑𝑊𝑊𝑡𝑡
ℎ, 

𝑑𝑑𝑔𝑔𝑘𝑘 =
𝑐𝑐𝑘𝑘𝑔𝑔𝑘𝑘2 + (𝜅𝜅𝑘𝑘[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅])2

1 + 𝑐𝑐ℎ𝑔𝑔ℎ2 + 𝑐𝑐𝑘𝑘𝑔𝑔𝑘𝑘2 + (𝜅𝜅ℎ[𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑅𝑅])2 − 𝑑𝑑𝑘𝑘𝑔𝑔𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑔𝑔𝑘𝑘𝑑𝑑𝑊𝑊𝑡𝑡
ℎ. 

Numerical Parameter Search in Knockdown Experiments 

The scheme is: 

1. For every parameter 𝑝𝑝, take 𝑥𝑥𝑝𝑝 ∈ [−5,5 ] uniformly, and let 𝑝𝑝 = 10−𝑥𝑥𝑝𝑝−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝 . 

2. Solve the model for 200 seconds with the initial condition at the steady-state value. Calculate the mean and 

variance. 

3. Knock down the associated parameter by 90% and redo step 2. 

4. Calculate the value 𝜁𝜁. 



 
 

The 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝 values are given in Table 1. 100,000 simulations were run per model. The simulation was solved 

using the Euler-Maruyama method with a 𝑑𝑑𝑑𝑑 = 10−4 and the mean/variance was calculated. For models without the 

explicit binding protein, the parameter γ was the one affected. For models with the explicit binding protein, the 

production parameter was the one affected. The simulation was solved using the same solver settings and the same 

Brownian path (the same Brownian path was used to simulate the embryo with the same conditions but with a 

different epigenetic makeup). Cyp was knocked down (from the parameter set that did not include the BP 

knockdown) by a 90% decrease to α. The same solver settings and the same Brownian path were used and the 

mean/variance was calculated. Using the mean/variance calculations for these three runs, a ζ was calculated for the 

BP-knockdown and a ζ was calculated for the Cyp-knockdown. Note that the percentages were calculated relative to 

the larger quantity, e.g. 

%∆Mean =
𝑎𝑎𝑎𝑎𝑎𝑎(𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛1 −𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛2)
max(𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛1,𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛2)  

to ensure a value between 0 and 1. 

Numerical Parameter Search in Spatial Knockdown Experiments 

100 simulations were run, with random parameter sets chosen by taking 𝑥𝑥𝑝𝑝 uniformly from [-2,2] and letting 𝑝𝑝 =

10−𝑥𝑥𝑝𝑝−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑝𝑝 was chosen so that the parameter range covers all of the most likely parameters, but 

slightly biased in order to decrease the amount of time to steady state to make the problem computationally feasible 

(boosting degradation, and increasing production so as to keep the total concentrations at reasonable levels). The 

simulations were accelerated using NVIDIA GTX 970 and GTX 980Ti GPUs via MATLAB's CUDA interface. The 

base values are given in Table 1. 

The simulation was first solved to steady-state without noise at the highest possible 𝑑𝑑𝑑𝑑, and then the model was 

solved using a more stable variant of a second order Runge-Kutta method via a method of lines discretization with 

𝑑𝑑𝑑𝑑 = 5 × 10−5 𝑠𝑠 for 100 seconds, roughly matching the experimental setup of Sosnik et al. 2016. We note that the 

results are robust to the choice of final time point being an order magnitude less or greater, indicating convergence 

of the stochastic model to a quasi-steady distribution. The model was first solved using 𝑥𝑥𝑝𝑝 and then with a 90% 

knockdown of 𝑎𝑎. At the end of each run, the 60% threshold from the non-knockdown control was used to set the 



 
 

boundary location. For each y, the lowest x above the threshold was chosen as the boundary location. The mean and 

the variance of these x values was used as the boundary mean and variance. This scheme is diagrammed in Figure 

S2. 

Spatial Boundary Sharpening Experiments 

The boundary sharpening experiments were solved using a method of lines approach. The steady-state gradient was 

first established by turning off the noise and solving the discretized PDE using an adaptive second order Rosenbrock 

method from DifferentialEquations.jl. Then the SPDE was solved for 500 seconds using the adaptive SRIW1 

method from (Rackauckas and Nie 2017). After that, the Hox-Krox interactions were initiated, starting with a 

random steady state where Krox was zero and Hox started with each point in space having 0.1605 + 0.2𝑋𝑋 where 𝑋𝑋 

is a uniform random number. This was solved to steady state using the Tsit5 algorithm from DifferentialEquations.jl 

and then solved with noise for 10,000 seconds using the adaptive SRIW1 method. 

For the boundary sharpening experiments, parameters were chosen to conform to regimes specified in previous 

models. The parameters were chosen as detailed in Table S1. From the results, the effective RA noise was calculated 

as the variance of RA at 𝑥𝑥 = 125 𝜇𝜇𝜇𝜇, which was the Hox-Krox boundary in the absence of noise. 

𝜻𝜻 Determination From Data 

To determine 𝜁𝜁 from the data of Sosnik et al., 2016, the relative concentration values for free intracellular RA had to 

be converted to a sensible absolute concentration value in some arbitrary units by determining a 0. This background 

was discarded by subtracting out the mean relative abundance of the control experiment, which was .3132. The 0-

adjusted values are given in in the accompanying MATLAB script. Since the embryos have no preferred pairing, a 

separate 𝜁𝜁 was estimated from each pairwise interaction between knockdowns.  
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