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Abstract

Intestinal hormones are key regulators of digestion and energy homeostasis secreted by rare enteroendocrine cells. These cells
produce over ten different hormones including GLP-1 and GIP peptides known to promote insulin secretion. To date, the
molecular mechanisms controlling the specification of the various enteroendocrine subtypes from multipotent Neurog3+

endocrine progenitor cells, as well as their number, remain largely unknown. In contrast, in the embryonic pancreas, the
opposite activities of Arx and Pax4 homeodomain transcription factors promote islet progenitor cells towards the different
endocrine cell fates. In this study, we thus investigated the role of Arx and Pax4 in enteroendocrine subtype specification. The
small intestine and colon of Arx- and Pax4-deficient mice were analyzed using histological, molecular, and lineage tracing
approaches. We show that Arx is expressed in endocrine progenitors (Neurog3+) and in early differentiating (ChromograninA2)
GLP-1-, GIP-, CCK-, Sct- Gastrin- and Ghrelin-producing cells. We noted a dramatic reduction or a complete loss of all these
enteroendocrine cell types in Arx mutants. Serotonin- and Somatostatin-secreting cells do not express Arx and, accordingly,
the differentiation of Serotonin cells was not affected in Arx mutants. However, the number of Somatostatin-expressing D-cells
is increased as Arx-deficient progenitor cells are redirected to the D-cell lineage. In Pax4-deficient mice, the differentiation of
Serotonin and Somatostatin cells is impaired, as well as of GIP and Gastrin cells. In contrast, the number of GLP-1 producing L-
cells is increased concomitantly with an upregulation of Arx. Thus, while Arx and Pax4 are necessary for the development of L-
and D-cells respectively, they conversely restrict D- and L-cells fates suggesting antagonistic functions in D/L cell allocation. In
conclusion, these finding demonstrate that, downstream of Neurog3, the specification of a subset of enteroendocrine
subtypes relies on both Arx and Pax4, while others depend only on Arx or Pax4.
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Introduction

Enteroendocrine cells belong to one of the four main intestinal

cell subtypes, including enterocytes, goblet and Paneth cells, and

represent about 1% of all epithelial cells. These cells secrete various

amine and peptide hormones and are classified according to their

main secretory product, including Glugagon-like peptide 1 (GLP-1),

Glugagon-like peptide 2 (GLP-2) and Peptide YY (PYY) secreted by

L-cells, Gastric inhibitory peptide (K-cells), Somatostatin (D-cells),

Cholecystokinin (I-cells), Secretin (S-cells), Gastrin (G-cells), Sero-

tonin (EC cells), and Neurotensin (N-cells). The gastric peptide

Ghrelin is also found in the small intestine and colon [1,2], but it

remains unclear whether intestinal Ghrelin-expressing cells consti-

tute a separate enteroendocrine subtype. Intestinal hormones

control numerous physiological functions, such as glucose homeo-

stasis for the Glucoincretin GLP-1 and GIP, food intake, pancreatic

and gastric secretion, or gastrointestinal mobility [3,4]. In mice, the

loss of all enteroendocrine cells leads to growth retardation,

impaired lipid absorption and increased lethality, underlying the

importance of enteroendocrine function [5].

During the course of development, enteroendocrine cells, as

well as the two other secretory cell types, goblet and Paneth cells,

arise from intestinal stem cells through an intermediate progenitor

expressing the basic helix-loop-helix (bHLH) transcription factor

(TF) Atoh1 [6,7]. The specification of this Atoh1+ secretory

progenitor cell towards the endocrine lineage is controlled by the

bHLH TF Neurog3 that also determines endocrine cell destiny in

the stomach and pancreas [8,9,10]. Downstream of Neurog3,

several TFs have been shown to be required for proper

enteroendocrine cell differentiation. Among these, the zinc-finger

TF Insm1 is necessary for generic features of endocrine cells as

well as for the differentiation of particular subtypes. Indeed,

targeted disruption of Insm1 leads to the loss of expression of

Chromogranin A (ChgA) secretory vesicle protein [11]. Hormone
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expression is only partially affected by the absence of Insm1.

Substance P and Neurotensin (Nts) cells are lost but the numbers

of Serotonin (5HT), Cholecystokinin (CCK) and PYY cells are

only reduced. Additional TFs were found to control the allocation

towards specific enteroendocrine subtypes. Thus, NeuroD1

controls the differentiation of Secretin (Sct) and CCK cells [12],

whereas Foxa1 and Foxa2 promote the differentiation of GLP1-

and Somatostatin- (Sst-) expressing cells [13]. The NK-homeodo-

main-encoding gene, Nkx2.2, is necessary for CCK, Gastrin,

Gastric Inhibitory Polypeptide (GIP), Nts and Sst expression [14].

The paired-box transcription factors Pax4 and Pax6 also control

enteroendocrine cell differentiation. Although Pax6 knock out

phenotype has not been extensively investigated in the intestine, it

has been reported that GIP cells are Pax6-dependant [15]. Other

studies indicate that Pax6 acts downstream and in concert with

Foxa1 and Foxa2 to regulate the transcription of the preproglu-

cagon gene [13]. Pax4 inactivation results in the loss of several

enteroendocrine subtypes, such as Serotonin-, Sct-, GIP-, PYY-

and CCK-expressing cells [15]. Taken together, these data

indicate that enteroendocrine subtype specification and differen-

tiation rely on a complex network of transcription factors.

In the embryonic pancreas, the specification of the four main

endocrine subtypes including alpha-, beta-, delta- and PP-cells is

essentially under the control of the opposing actions of Arx and Pax4

TFs acting downstream of the proendocrine gene Neurog3. Mice

deficient for Pax4 lack beta- and delta-cells and display a

concomitant increase in alpha-cell number [16]. Conversely, Arx

inactivation leads to an opposite phenotype, characterized by an

absence of alpha-cells and an increase in the number of beta- and

delta-cells [17]. Furthermore, the forced expression of Arx in

endocrine progenitors induces their specification towards the

alpha-/PP-cell lineages at the expense of the beta-/delta-cell fates

[18]. Interestingly, the ectopic expression of Pax4 in alpha-cells is

sufficient to convert these cells into beta-like cells [19]. Therefore, the

decision between the alpha-/PP- or beta-/delta-cell fate seems to be

mainly directed by the cross-repression of Pax4 and Arx genes [20].

Thus, the balance between Arx and Pax4 in pancreatic endocrine

progenitors plays a key role in endocrine subtype allocation.

Since Arx and Pax4 control islet subtype destiny in the

developing pancreas, we postulated that similar mechanisms could

govern cell fate choices in the enteroendocrine lineage. In this

study, we therefore investigated the function of Arx and Pax4 in

the intestine. Our results indicate that Arx is restricted to the

enteroendocrine lineage and downstream of Neurog3. Important-

ly, Arx is required for the differentiation of a subset of

enteroendocrine cells. Indeed, Arx-deficient mice display an almost

complete loss of GLP1, GIP, CCK and Nts cells, with a

concomitant increase in Sst-expressing cell numbers. On the

other hand, Pax4-deficient mice lack Sst, GIP and Serotonin cells,

whereas GLP1 cell number is significantly increased. Taken

together, these results indicate that while Arx and Pax4 are

similarly required for the proper differentiation of a subset of

enteroendocrine cells, they differentially regulate the development

of specific enteroendocrine cells. In contrast to the embryonic

pancreas antagonistic functions of Arx and Pax4 seems limited to

the control of L (GLP-1)- and D (Sst)-cell differentiation.

Results

Arx is transiently expressed in a subset of developing
enteroendocrine cells

To characterize the expression pattern of Arx in the embryonic

and adult mouse intestine, we combined quantitative RT-PCR, in

situ hybridization and double immunohistochemistry using

antibodies raised against Arx, Neurog3, ChromograninA, and

intestinal peptides. In the adult wild-type intestine, Arx transcripts

are revealed from the duodenum to the colon (Fig. 1A).

Importantly, Arx transcripts cannot be detected in the duodenum

of Villin-Cre; Neurog3f/f mice (Fig. 1B), which lack enteroendo-

crine cells [5]. This suggests that, like in the pancreas [17], Arx

expression remains restricted to the endocrine lineage in the

intestine. Accordingly, scattered Arx+ cells are found throughout

the adult intestine in a pattern reminiscent of enteroendocrine cells

(Fig. 1C, S1). In the small intestine, Arx is expressed in post-

mitotic crypt cells (Fig. S2), mainly in subsets of Neurog3+ cells

(Fig. 1D), suggesting that Arx expression is initiated in endocrine

progenitor cells. Arx is not detected in mature ChgA+ endocrine

cells (Fig. 1C), however cells double-positive for Arx and intestinal

peptides GLP1, GIP, CCK, Gastrin or Ghrelin (Ghrl) are present

within the crypts, supporting the notion that Arx expression is

maintained in early differentiating L-, K-, I-, G- and Ghrelin-cells

(Fig. 2). As Arx-positive cells migrate during their differentiation to

reach the base of the villus, Arx expression progressively

diminishes and eventually vanishes (Fig. 2 compare A to B),

further suggesting that Arx is expressed in nascent but not mature

hormone-expressing cells. Importantly, Arx is never detected in

Somatostatin- nor Serotonin-expressing D or EC cells respectively

(Fig. 2). During embryogenesis, at E14.5 when endocrine

commitment is initiated in Neurog3+ cells, Arx expression is not

detectable. However, around E15.5, Arx-expressing cells emerge

in the embryonic intestine, at a stage corresponding to the onset of

endocrine differentiation (Fig. 1E). Arx transcripts are not detected

in Neurog3-deficient embryonic intestines (data not shown) and

thus, like in the adult, Arx expression is restricted to the

enteroendocrine lineage. Taken together, these data indicate that

in the embryonic intestine Arx lies downstream of Neurog3 in

endocrine committed cells. In the adult intestine Arx appears

transiently expressed downstream of Neurog3 in endocrine

progenitors and developing, but not fully differentiated, L-, K-,

I-, G- and Ghrelin-cells, whereas D- and EC-cells do not appear to

arise from Arx+ precursors.

Enteroendocrine cell differentiation is severely impaired
in Arx-deficient mice

We next analyzed enteroendocrine cell differentiation in Arx-

deficient mice. Arx mutants do not survive beyond postnatal day 2

(P2). We therefore examined intestinal hormone expression

combining real-time PCR (Fig. 3A and Table S1) with

immunofluorescence (Fig. 3B, S3) at P1-P2. Arx-deficient mice

display an almost complete absence of Glp1-, Gip-, Cck- and Nts-

expressing cells in the small intestine and colon (Fig. 3 and S3A),

whereas Sct and Gastrin mRNA levels are significantly diminished.

Pyy, which is normally expressed in GLP1 cells (L cells), is also

found drastically reduced. In contrast, we observed a significant

increase of Sst+ and Ghrl+ cell numbers (5.6461.41 and

1.9760.08 fold increase in the duodenum, respectively;

Fig. 3A,B), while Tph1 expression, a marker of Serotonin-

expressing EC cells, is unchanged. In agreement with the RT-

QPCR data, the numbers of Serotonin-expressing cells are similar

in controls and mutants (Fig. 3B). Interestingly, ChgA expression is

also unaffected in the Arx mutant intestine, suggesting that the

overall number of enteroendocrine cells is not altered. As

suggested by the restriction of Arx expression to the endocrine

lineage, Arx inactivation does not alter the differentiation of

Goblet cells (Fig. 4 and data not shown). Thus, our results

demonstrate that Arx is necessary for the differentiation of GLP-1-,

GIP-, CCK-, Sct- Gastrin- and Nts-expressing cell lineages and
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suggest that failed cells, would to some extend, develop into Sst+

and Ghrl+ cells.

Arx-deficient progenitors are reallocated to
Somatostatin-expressing cells

To determine whether the changes in endocrine differentiation

observed upon Arx deficiency were caused by alternative fate

specification, we analyzed the expression of intestinal hormones in

Arx-deficient cells. In mice carrying an Arx mutant allele, the beta-

galactosidase (beta-gal) protein is expressed under the control of

Arx regulatory elements. Due to the location of Arx on the X

chromosome, random X inactivation leads to the silencing of

either the wild-type or LacZ Arx allele in heterozygous females

(XArxWtXArxLacZ). Consequently, in Arx+/LacZ females, cells express-

ing the Arx protein do not express the beta-gal, and cells

expressing the beta-gal are Arx-deficient. In the adult intestine of

Arx+/LacZ female mice, we did not detect any beta-gal expression in

GLP1-, GIP- or CCK-producing cells (Fig. 5A), confirming that

Arx expression is required for the generation of L-, K- and I-cells.

In contrast, beta-gal was found in a subset of Sst-producing cells

(Fig. 5A), which do not express Arx in wild-type intestine (Fig. 2).

Together with the observed increase of Sst mRNA (Fig. 3A) and

the augmentation of Sst-expressing cell numbers (Fig. 3B), our

results support the hypothesis that Arx-deficient progenitors, which

fail to generate a large subset of enteroendocrine cells, adopt an

alternative Sst-expressing cell fate. As seen for Sst+ cells, Ghrelin

mRNA (Fig. 3A) and the number of Ghrelin-producing cells

(Fig. 3B) increase in Arx-deficient intestine. However, as a subset of

Ghrelin+ cells expresses Arx in wild-type intestine and as Ghrelin is

also co-expressed with GLP1 or Sst (Fig. S4), it is impossible to

ascertain the cellular mechanisms leading to the increased number

of Ghrelin+ cells in Arx-deficient intestine. Interestingly, our tracing

data also reveal that a subset of Serotonin-expressing cells (Fig. 5A)

also derive from Arx-deficient cells. Based on the absence of Arx/

Serotonin co-expression, we postulated that Serotonin+ cells do

not normally arise from Arx progenitors. Thus taken together, our

findings suggest that Arx-deficient progenitor cells could be

reallocated to the Serotonin-producing EC lineage. Given the

high number of Serotonin-expressing EC-cells, we hypothesize

that the reallocation of some Arx-deficient cells towards the EC

lineage is however not sufficient to significantly impact the number

of Serotonin-expressing cells (Fig. 3B). In summary, we conclude

that the increase in Sst-expressing cell numbers observed in Arx

mutants results from the reallocation of progenitor cells to the Sst

lineage rather than from the expansion of Arx-independent Sst+

cell precursors.

Opposing functions of Pax4 and Arx control the
specification of GLP1- (L-cells) and Somatostatin- (D-cells)
expressing cells

The consequences of Pax4 loss-of-function on enteroendocrine

cell differentiation have previously been reported [15]. However,

since the expression of several hormones, including Glp1 and Sst,

as well as of downstream transcription factors was not addressed,

we decided to reinvestigate the phenotype of Pax4 mutants. Firstly,

we determined which endocrine subtypes express Pax4. Due to the

lack of working anti-Pax4 antibodies, we took advantage of Pax4+/2

(Pax4+/LacZ) mice, in which the beta-galactosidase gene is inserted

within the Pax4 locus [16], to label Pax4-expressing cells (beta-gal+).

In adult mice, the beta-gal was co-detected with all hormones tested

suggesting that Pax4 is expressed in all enteroendocrine subtypes

analyzed, including GLP1-, GIP-, CCK-, Serotonin- and Ghrelin-

expressing cells (Fig. 5B). Because of the stability of the beta-gal [8],

we could not determine whether Pax4 is expressed in progenitors

Figure 1. Arx is expressed in enteroendocrine precursors, downstream of Neurog3. (A) Real time RT-PCR analysis of Neurog3, ChgA, Arx
and Pax4 expression in different intestinal regions of 8 weeks old wild-type mice (n = 3). (B) Real time RT-PCR analyses of Neurog3 and Arx expression
in 8–10 weeks old Villin-Cre;Neurog3f/f (KO) mice and control Villin-Cre;Neurog3f/+ (Ctr) mice. Arx expression is completely lost in absence of Neurog3
(n = 5). (C–D) Immunofluorescence on sections of wild-type adult duodenum (C,) and jejunum (D). In C, Arx+ cells (red arrows) are localized in the
crypt and are ChgA-negative (ChgA+ cells, green arrows). In D, Partial overlapping expression of Arx and Neurog3 in the adult mouse intestine is
illustrated. Yellow, green and red arrows point to double-labeled, single Neurog3+ and single Arx+ cells, respectively. (E) In situ hybrization and
Immunofluorescence on cross sections of wild-type embryonic pancreas (p) and intestine (i). Blue arrows point to cells expressing Arx, Pax4 or
Neurog3 transcripts. Arx and Pax4 expressions are detected 24 h after Neurog3 expression in enteroendocrine precursors. The red arrow points to an
Arx expressing cell. p., proximal; d., distal; duo., duodenum; jej., jejunum; ile., ileum; col., colon; SI, small intestine; p, pancreas; I, intestine. Values are
means 6 SD. Scale bars (C, left panel) 50 mm, (C right panel, D) 10 mm. ND, Not Detected.
doi:10.1371/journal.pone.0036449.g001

Figure 2. Arx is expressed in early differentiating GLP1-, GIP-, CCK- and Gastrin-expressing cells in the adult small intestine. Co-
immunostaining with Arx and intestinal hormones antibodies on sections of adult small intestine. Arx is strongly expressed in GLP1+, GIP+, CCK+, and
selected Ghrl+ cells located in the crypts (B), but not in Sst+ or Serotonin+ (5-HT) cells. Arx expression level decreases in enteroendocrine cells in the
villi (A). Scale bar 10 mm.
doi:10.1371/journal.pone.0036449.g002
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and/or in their differentiated descendants. However, the absence of

beta-gal expression in the villi suggests that Pax4 expression is not

maintained in mature endocrine cells (Fig. 5B). Analyses of Pax4

mutant mice revealed that, in contrast to Arx-deficient animals, ChgA

expression in P2 small intestine and colon is severely reduced

(22.1%61.1 and 41.0%67.1, respectively, as compared to controls;

Fig. 6A). Furthermore, the differentiation of many enteroendocrine

subtypes is impaired, as demonstrated by the decrease of Nts, Gastrin

and Sct expression in the small intestine and the almost absence of

Gip and Tph1 expression (Fig. 6A and Table S1). Interestingly, Sst

expression, which is increased in Arx mutants, is lost in Pax4-

deficient mice. Conversely, Glp1 expression is augmented in Pax4

mutants, whereas it is lost in Arx mutants (compare Fig. 3A to

Fig. 6A). In addition, the concomitant increase of Glp1 and Pyy

transcripts in Pax4-deficient mice suggests an augmentation of the

number of L cells. In agreement with this hypothesis, counting of

GLP-1-positive cells in the ileum (P2) revealed a doubling of the

number of L-cells (Fig. 6B). Finally, as previously described [21], we

Figure 3. Hormone expression in Arx-deficient intestine. (A) Real time RT-PCR analyses of various intestinal hormones mRNAs in Arx-deficient
and control small intestine and colon at 2 days postpartum (n = 5). Glp1, Gip, Cck, Pyy, Nts and Sct mRNA levels are significantly reduced in Arx mutant
mice, whereas Sst and Ghrl expression are increased in the small intestine. (B) Quantification of Sst+ and Ghrl+ cells in Arx+/+ (n = 3) and Arx2 P1
duodenum (n = 3). Both Sst and Ghrl-expressing cell numbers increase in Arx-deficient duodenum while the number of Serotonin-cells (5HT) is
unchanged. Student’s T-test *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0036449.g003
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confirmed an increase in Ghrl expression in Pax4 mutants. In

summary, these results indicate that Pax4, like Arx, is necessary for

the proper development of GIP, Gastrin and Neurotensin cells in

the small intestine while Serotonin-producing cells are exclusively

Pax4-dependent. Furthermore the allocation of GLP1+ and Sst+

lineages appears to be regulated by the opposing roles of Arx and

Pax4 respectively.

Arx expression is upregulated in Pax4-deficient intestine
but Pax4 is unaltered in Arx mutant

To determine the position of Arx and Pax4 in the cascade of

transcription factors implementing the enteroendocrine differen-

tiation program, we analyzed the expression of a series of TFs in

Arx- and Pax4-deficient intestines. The levels of Neurog3, NeuroD1,

Insm1, Rfx6, Mafb and Nkx2.2 transcripts remained unchanged in

both knockouts (Fig. 7 and Fig. S5). In contrast, Foxa1 and Foxa2

expressions were moderately but significantly increased in Arx-

deficient small intestine as well as Pdx1 in the colon (Fig. 7A). As

the inactivation of these TFs leads to decreased Sst expression

[13,22], their up-regulation in Arx mutant mice could in turn

promote Sst transcription. The expression of Pax6, which is

generally considered to be a late TF in islet cell development,

slightly decreased in Pax4 mutants but is unaffected in Arx

mutants (Fig. 7). Importantly, we observed 2.160.37 times more

Arx mRNA in Pax4-deficient small intestines compared to controls

(Fig. 7B). However, we could not detect a significant increase in

Pax4 expression in Arx mutants (Fig. 7A). To determine whether

either Arx or Pax4 was sufficient to induce phenotypic changes in

enteroendocrine cells we performed gain of function experiments

in STC-1 cell line [23]. In this experimental system, overexpres-

sion of Pax4 or Arx did not alter Arx or Pax4 transcription

respectively or hormone gene expression (Fig. S6). In summary the

expression of many TFs is unaffected in Arx- or Pax4-deficient

mice, suggesting that Arx and Pax4 act downstream or in parallel

pathways. The strong induction of Arx, both in the small intestine

and colon of Pax4 KO mice, suggests that Pax4 controls the

specification of endocrine subtypes through the repression of Arx.

Discussion

Previous studies have demonstrated the essential role of Arx in

cell fate decision during pancreas development and forebrain

morphogenesis [17,20,24]. In this study, we showed that Arx and

Pax4 are required for the differentiation of several enteroendo-

crine cells in the small and large intestine and control the

specification of endocrine subtypes (Fig. 8). Arx expression is

strictly dependent on Neurog3 demonstrating that Arx is

Figure 4. Normal goblet cell differentiation in Arx-deficient
mice. (A) Periodic Acid Schiff (PAS) staining showing PAS+ goblet cells
in wild type and Arx-deficient newborn intestine. (B) mRNA quantifi-
cation of the goblet cell marker Muc2 and Gfi1, a key TF regulating
goblet cell specification, in Arx mutant intestine at P2. The expression of
Muc2 and Gfi1 is not statistically different between Arx-deficient
intestines (n = 5) and controls (n = 5).
doi:10.1371/journal.pone.0036449.g004

Figure 5. Short-term lineage tracing of Arx-deficient cells and
Pax4-expressing cells. Co-immunodetection of beta-gal and intesti-
nal hormones in the adult duodenum of Arx heterozygous females (A)
and of Pax4 heterozygous mice (B). (A) The beta-gal protein was never
detected in GLP1-, GIP- or CCK-cells. Arx-deficient cells, which express
the beta-gal instead of Arx, can differentiate into Sst- or Serotonin-
(5HT-) expressing cells. In Pax4 heterozygous mice (B), the beta-gal is
expressed in the crypts and can be detected in all endocrine cell types.
beta-gal is not expressed in endocrine cells located in the villi.
doi:10.1371/journal.pone.0036449.g005

Control of Enteroendocrine Cell Diversity
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exclusively found in the intestinal endocrine lineage and not in

other intestinal cell types. We revealed Arx expression in subsets of

post-mitotic Neurog3-positive endocrine progenitor cells in the

embryonic and adult intestine. Arx is subsequently maintained in

nascent hormone-expressing cells still located in the crypt. These

include the Gluco-incretin GLP1- and GIP-expressing cells, which

derive from Arx-positive progenitors, but exclude Somatostatin-

and Serotonin-expressing cells. Lineage tracing experiments in

wild-type mice using BAC transgenics would be required to

further ascertain that Somatostatin- and Serotonin-expressing cells

do not arise from Arx-expressing progenitors. Mature, Chromo-

granin A-positive, endocrine cells present in the villi are devoid of

Arx. In summary, our results suggest that Arx transcription is

switched on in selected endocrine progenitors to control their

destiny. Arx is then transiently expressed in early hormone-

expressing cells and subsequently switched off. This expression

pattern contrasts with the observation made in the pancreas where

the Arx protein remains expressed in mature alpha-cells in adult

islets [19] and, importantly, suggests that Arx controls the

differentiation of enteroendocrine cells but not their function.

Figure 6. Hormone expression in Pax4-deficient intestine. (A) Real time RT-PCR analyses of various intestinal hormones mRNAs in Pax4-
deficient and control small intestine and colon at 2 days postpartum (n = 4). Gip, Nts, Gast, Sct and Tph1 mRNA levels decrease significantly in Pax4
mutant small intestine, Glp1 and Ghrl expressions increase in both the small intestine and colon. (B) Quantification of GLP1+ cells in Pax4+/+ (n = 3) and
Pax42/2 P1 ileum (n = 3). GLP1-expressing cells are more abundant in Pax4 mutant ileum. Student’s T-test *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0036449.g006
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While we observed a loss or drastic reduction of several

enteroendocrine cell populations in Arx-deficient intestines,

Secretin- or Gastrin-expressing cells were only found to be

reduced. This suggests that an Arx-independent program can lead

to the differentiation of Secretin- or Gastrin-cells. Interestingly, we

observed a very significant increase of both Sst mRNA and

somatostatin-expressing cell numbers. On the other hand, the

expression of ChgA, encoding a component of the secretory

granules of most enteroendocrine cells, was found unchanged,

suggesting that the total enteroendocrine cell number is unaffect-

ed. Taken together, these data indicate that, upon Arx deficiency,

a reallocation of developing enteroendocrine progenitor cells

towards the somatostatin lineage occurs.

The identification of Somatostatin+/Arx2 cells in tracing exper-

iments further supports the notion of a cell type conversion rather

than a function of Arx in the repression of the transcription of the Sst

gene. Notably, the numbers of Somatostatin-expressing delta-cells (in

addition to beta-cells) are also increased in Arx-deficient pancreata,

suggesting a similar function of Arx in the repression of the

differentiation program leading to the generation of somatostatin-

producing cells. It is tempting to speculate that a similar reallocation

occurs towards Ghrelin-expressing cells, the latter being also

increased in number in Arx KO. However, due to the co-expression

of Ghrelin with several other intestinal hormones (GLP-1, Somato-

statin), it is unclear whether Ghrelin-expressing cells do correspond to

a distinct enteroendocrine subtype. Interestingly, Ghrelin+ cell

numbers also increase in Nkx2.2- or Pax4-deficient embryonic

intestines [14,21], two genes that have been suggested to directly

regulate ghrelin expression [21,25]. However, in the current study the

increase in the number of Ghrelin+ cells does not result from a down-

regulation of Nkx2.2 or Pax4, since mRNA levels of both genes do

not change in the small intestine and colon of newborn Arx-deficient

mice. Since a co-detection of Glucagon and Ghrelin is frequent in

immature developing alpha-cells in the embryonic pancreas [26],

another possibility could be that Ghrelin+ cells might correspond to

L-cells precursors (GLP1-negative) blocked in their differentiation.

Figure 7. Expression of transcription factors in Arx- and Pax4-deficient intestines. Real time PCR analyses in (A) Arx- and (B) Pax4- (n = 4)
deficient (n = 5) and control (n = 5) small intestine and colon at 2 days postpartum. (A) Pdx1 and Foxa1/a2 expression are increased in Arx mutant
colon and small intestine, respectively. (B) Arx is significantly upregulated in Pax4 mutants. Student’s T-test *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0036449.g007
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Arx and Pax4 have been demonstrated to have antagonistic

functions during the specification of islet sub-types in the pancreas.

We therefore postulated that similar mechanisms could operate in

the intestine. We found that in the intestine, the different

enteroendocrine cell types similarly and differentially require Arx

and Pax4. Indeed, Gip, Cck, Sct, Gast, and Nts intestinal expression

are reduced in both knockout mouse, suggesting that the

differentiation of the corresponding enteroendocrine subtypes

relies on both Pax4 and Arx. On the other hand, Serotonin-

expressing EC- and Somatostatin-expressing D-cell development

requires Pax4 (but not Arx), while GLP1-expressing L-cells and

Cholecystokinin-expressing CCK-cell differentiation depend on

Arx (but not Pax4). In contrast to our results, Larsson and

colleagues reported a decreased number of duodenal CCK-cells in

the absence of Pax4 [15]. This difference may result from the use

in the latter study of an antibody recognizing both secretin and

gastrin peptides. Most importantly, we report for the first time a

significant increase of Glp1 expression, in the small intestine and

colon of Pax4-deficient newborns. In agreement with these

observations, morphometric analysis revealed an increase of

GLP-1 L-cells in the ileum. The simultaneous loss of GLP1+ L-

cells and augmented number of Somatostatin+ D-cells in Arx

mutant mice and the opposite phenotype noted in Pax4 mutants

suggest that Arx/Pax4 play antagonistic roles in enteroendocrine

progenitor to promote D- or L-cell fates respectively as reported in

the pancreas for the alpha- versus beta-/delta-cell destinies.

Furthermore, these results support a model where D- and L-cells

would differentiate from a common D/L precursor upon

promotion by Pax4 or Arx, respectively. Interestingly and in

contrast to Arx-deficient mice, Chromogranin A mRNA is reduced

in Pax4 KO. This result suggests that the increase in GLP1+ or

Ghrelin+ cell numbers is not sufficient to compensate for the loss of

other enteroendocrine cell types. Alternatively, Pax4 could have a

function in cell fate specification as well as a more general pan-

endocrine role and regulate generic programs conferring endo-

crine properties such as the implementation of the secretory

machinery. The latter hypothesis is supported by the fact that

based on our lineage tracing experiments all enteroendocrine cells

seem to derive from Pax4-positive progenitors.

In the embryonic pancreas, Arx and Pax4 instruct endocrine

progenitors towards either an alpha- or beta-/delta-cell fate

through a mutual inhibition between Pax4 and Arx [20]. Although

we showed here that Arx and Pax4 have also antagonistic

functions in enteroendocrine subtype specification in the intestine,

this inhibitory cross-regulatory mechanism does not seem to

operate exactly like in the pancreas. Indeed, while Arx is

significantly upregulated in Pax4-deficient intestine, which could

contribute to the excess of L-cells, the overall Pax4 expression is

not affected in Arx mutants. However, because Pax4 is expressed

early in all enteroendocrine cell precursors, such as in Serotonin+

precursors, which are abundant and do not express Arx, it is

possible that we could not detect an increased Pax4 expression that

would occur only in a minor subpopulation. Surprisingly, the

expression of most of the other transcription factors, known to

control enteroendocrine cell differentiation, does not change

significantly in Arx or Pax4 mutants apart from Foxa1 and Foxa2,

which are up-regulated in Arx-deficient small intestine. Recently,

Foxa1 and Foxa2 were identified as positive regulators of L- and

D-cell differentiation [13]. Both transcription factors activate the

glucagon promoter, stimulating the transcription of the preproglu-

cagon mRNA encoding Glucagon, GLP-1 and GLP-2 [27,28].

Therefore, one hypothesis could be that Arx represses Foxa1 and

Foxa2 in endocrine progenitors, both genes being subsequently

activated in L-cells to control terminal differentiation. Thus, the

increased expression of Foxa1/Foxa2 in Arx-deficient mice could

contribute to the increased number of D-cells, since both genes

have been postulated to control Isl-1 which transactivates the Sst

promoter [29]. In the pancreas, the ectopic expression of Arx or

Pax4 is sufficient to reprogram b- to a-cell and conversely [18,19].

Surprisingly gain of function experiments of Arx and Pax4 in the

intestinal endocrine cell line STC-1 did not result into any

phenotypic alteration. These results suggest that Arx and Pax4 are

necessary but not sufficient to promote enteroendocrine subtype

features or alternatively they reflect the limitation of this

experimental system.

In conclusion, our study reveals that Arx and Pax4 are similarly

and differentially required for enteroendocrine cell differentiation

downstream of the proendocrine transcription factor Neurog3 by

controlling subtype specification and number. Our results also

provide evidence that Arx and Pax4 antagonistically regulate L-

and D-cell fate specification, respectively. Arx represses Foxa1/

Foxa2 while Pax4 represses Arx. In humans, Aristaless-related

homeobox gene (ARX) mutation leads to several neurological

disorders. Other reported symptoms can include severe growth

retardation, abnormal genitalia, disregulation of glycemia and

intractable diarrhea [24,30,31,32]. We propose that impaired

enteroendocrine cell differentiation may be the cause of the

chronic diarrhea in ARX-deficient patients as others and we

reported similar phenotype in mice and patients with a mutation

in Neurog3 and lacking enteroendocrine cells [5,33]. Finally,

considering the key role of enteroendocrine cells and hormones in

nutrient sensing, food intake and glucose homeostasis, it would

Figure 8. Model of enteroendocrine subtype specification
during small intestine development: roles of Arx and Pax4.
Gast-, GIP-, Nts-, Sct-, CCK- and GLP1-expressing cells arise from
endocrine progenitors expressing Neurog3 then Pax4 and Arx. Upon
Arx inactivation these progenitors are reallocated into Sst-expressing
cells while the differentiation of Gast-, GIP-, Nts-, Sct-, CCK- and GLP1-
expressing-cells is impaired. Sst- and Serotonin (5-HT)-expressing cells
are generated from progenitors expressing Neurog3 then Pax4.
Inactivation of Pax4 leads to the up-regulation of Arx and the
differentiation of these progenitors into GLP1-expressing cells, while
the differentiation of Sst-, Serotonin (5-HT)- Gast-, GIP- and Nts-
expressing cells is impaired. Key transcription factors controlling
intestinal cell destiny are also indicated.
doi:10.1371/journal.pone.0036449.g008
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potentially be of interest in the future to find means to modulate

the ratio of various enteroendocrine cell types in the adult mouse

intestine and determine the consequences on energy metabolism.

Such studies could stimulate novel therapeutic strategies to treat

metabolic disorder, such as obesity and type-2 diabetes.

Materials and Methods

Animals
Animal experiments were supervised by G. Gradwohl (agreement

Nu C67-59 approved by the direction des Services Vétérinaires,

Strasbourg, France) in compliance with the European legislation on

care and use of laboratory animals. Pax4 and Arx null mice were

described previously [16,17]. Embryos were considered to be at

E0.5 day of gestation at noon of the day the vaginal plugs were

detected. Animals of both sexes were analyzed except in Fig. 3A

were only females were studied. Unless otherwise indicated adult

mice were analyzed at 3–6 months of age. Arx and Pax4

heterozygous mice are kept on a 129/Sv background and Arx or

Pax-deficient mice and littermates analyzed at P1–2. Expression

studies described in Figure 1 and 2 were performed on CD1 mice.

Immunohistochemistry and in situ hybridization
Tissues were fixed in 4% PFA, o/n at 4uC, washed in PBS,

equilibrated in 20% sucrose at 4uC and embedded in OCT

compound. The following primary antibodies were used: guinea pig

anti-Neurog3 at 1:1000 (provided by M. Sander, University of

California - San Diego, La Jolla, CA, USA), chicken anti-beta-

galactosidase at 1:5000 (Abcam), rabbit anti-Arx at 1:500, goat anti-

ChgA at 1:200 (Santa Cruz), goat anti-GLP1 at 1:100 (Santa Cruz),

rabbit anti-GLP1 at 1:500 (Phoenix), goat anti-GIP at 1:100 (Santa

Cruz), rabbit anti-GIP at 1:500 (Phoenix), goat anti-CCK at 1:50

(Santa Cruz), rabbit anti-CCK/Gastrin at 1:750 (provided by C.

Roche, Inserm U865 Lyon, France), goat anti-Gastrin at 1:50 (Santa

Cruz), goat anti-Somatostatin at 1:200 (Santa Cruz), mouse anti-

Ghrl at 1:1500 (Catherine Tomasetto, IGBMC, Strasbourg,

France), rabbit anti-Ghrl at 1:1000, rabbit anti-Serotonin at

1:1000 (Diasorin Incstar), rabbit anti-Neurotensin at 1:500 (Phoenix)

and rabbit anti-PYY at 1:500 (Phoenix). Secondary antibodies

conjugated to DyLight-488, DyLight-549 and DyLight-649 (Jackson

ImmunoResearch Laboratories) were used at 1:500. For anti-Arx

and anti-beta-galactosidase staining, signal amplification was

performed using biotin anti-rabbit or anti-chicken coupled antibody

at 1:500 (Jackson ImmunoResearch Laboratories) and streptavidin-

Cy3 conjugate at 1:500 (Molecular Probes). Nuclei were stained with

DAPI and slides were mounted in Aqua- Poly/Mount (Polysciences).

RNA in situ hybridization were performed as previously described

[34]. The following cRNA probes were used: Pax4 (kindly provided

by Dr P. Gruss) and Arx (Eurexpress, template ID T50123).

Real time PCR analysis
Total RNA from the whole small intestine (duodenum, jejunum

and ileum) and colon was extracted using TRIzol Reagent

(Invitrogen). Reverse transcription was performed using Transcrip-

tor Reverse Transcriptase (Roche). Quantitative PCRs were

performed using mouse-specific TaqMan primers and probes

(Applied Biosystems) recognizing Neurog3 (Mm00437606_s1), Chga

(Mm00514341_m1), Arx (Mm00545903_m1), Pax4 (Mm01159-

036_m1), Pax6 (Mm00443081_m1), Pdx1 (Mm00435565_m1),

Foxa1 (Mm00484713_m1), Foxa2 (Mm00839704_mH), Insm1

(Mm02581025_s1), Rfx6 (Mm00624115_m1), Neurod1 (Mm0128-

0117_m1), Mafb (Mm00627481_s1), Pyy (Mm00520715_m1), Nts

(Mm00481140_m1), Cck (Mm00446170_ m1), Sct (Mm00441-

235_g1), Gip (Mm00433601_m1), Gcg/Glp1 (Mm00801712_m1),

Tph1 (Mm00493794_m1), Gast (Mm00772211_g1), Sst (Mm004-

36671_m1), Ghrl (Mm00445450_m1), Muc2 (Mm00458299_m1),

Gfi1 (Mm00515855_m1) or UPL probes #20 (Roche) for Nkx2.2 (59

primer gcagcgacaacccctaca, 39 primer atttggagctcgagtcttgg) with

TaqMan Light Cycler 480 Probes Master Mix (Roche) on Light

Cycler 480 (Roche). Gene expression levels were normalized to b-

actin (4352933E).

Morphometric analysis
Somatostatin+ cells and Ghrelin+ cells were counted after

immunostaining on approximately 60 sections of the duodenum at

P1 on 3 Arx+/+ and 3 Arx2 samples. For GLP1+ cells, approximately

30 sections of the ileum at P1 were counted, on 3 Pax4+/+ and 3

Pax42 samples. The numbers of hormone+ cells were normalized

according to the area of the sections estimated by the surface of DAPI

staining.

Gain of function studies in STC-1 cells
STC-1 cells were transfected with 2 mg of pCAG-Arx-IRES-b-

gal, pCAG-Pax4-IRES-b-gal and pCAG-GFP as control. 48 h

after transfection Arx, Pax4 and hormones mRNA levels were

quantified by RT-qPCR as described above and normalized to

Rplp0 (TaqMan assay Rplp0; Mm01974474_gH).

Statistics
Values are presented as mean 6 SD. P values were determined

using the 2-tailed Student’s t test with unequal variance. P values

of less than 0.05 were considered significant. ***, p,0.001,

**, p,0.01, * p,0.05.

Supporting Information

Figure S1 Arx-expressing cells are located in the
intestinal crypts in the adult mouse intestine. Intestinal

sections were stained with an anti-Arx antibody. Red arrows point

to Arx-positive cells.

(TIF)

Figure S2 Arx is expressed in post-mitotic cells in
intestinal crypts. Sections of adult mouse small intestine were

stained with an anti-Arx antibody (revealed in red) and an anti-Ki-

67 antibody (revealed in green). A representative image of an Arx-

positive/Ki-67-negative nucleus found in the small intestine crypt

compartment is shown.

(TIF)

Figure S3 GLP1, GIP, CCK, Gastrin, Nts and PYY cells
are lost in Arx-deficient mice. Immunostaining of wild-type

and P2 Arx-mutant mice (small intestine sections) using antibodies

against intestinal peptides and serotonin. Hormone+ cells are green.

(TIF)

Figure S4 Ghrl is detected in some GLP1+ cells and Sst+

cells. Co-immunostaining of Ghrl and GLP1 or Sst on intestinal

sections of wild-type adult mice. Yellow arrows point to co-

expressing cells.

(TIF)

Figure S5 Expression of Neurog3, Neurod1, Rfx6, Mafb
and Nkx2.2 mRNAs is not affected in Arx- or Pax4-
deficient small intestine. Quantification of mRNAs encoding

key endocrine transcription factors in Arx- and Pax4-deficient small

intestine. Real time PCR analysis in Arx- (n = 5) and Pax4-

deficient mice (n = 4) and control small intestine and colon, 2 days

after birth.

(TIF)
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Figure S6 Arx and Pax4 over-expression (OE) in STC-1
enteroendocrine cell line. STC-1 cells were transfected with

plasmids expressing Pax4, Arx or GFP under the control of the

CAG (Cytomegalovirus enhancer/chicken b-actin) promoter. 48 h

after transfection overexpression of Arx and Pax4 was measured by

mRNA quantification in Arx (A) and Pax4 (B) transfected cells

(upper panels). A 1500- and 400-fold increase of Arx or Pax4 was

observed after transfection with Arx or Pax4 –expression plasmids

respectively when compared to GFP-transfected STC-1 cells. (C)

The expression of mRNAs encoding enteroendocrine hormones

did not show significant variation upon Arx or Pax4 OE suggesting

that neither Arx nor Pax4 is able to promote endocrine

differentiation or hormone gene transactivation in STC-1 cells.

Tph1 mRNA, encoding Tryptophan hydroxylase 1 the rate-

limiting enzyme in Serotonin synthesis, was used to evaluate the

induction of Serotonin producing cells. Values represent means of

fold changes (Arx-transfected/GFP-transfected or Pax4-transfect-

ed/GFP-transfected) of 3 independent experiments 6 SD.

(TIF)

Table S1 Hormone mRNA levels in the small intestine
and colon of Arx- and Pax4-deficient mice at P2. Table

summarizing RT-qPCRs data presented in figure 3 and 6. Results

are compared to controls and expressed in fold change. Tph1

mRNA, endoding Tryptophan hydroxylase 1 the rate-limiting

enzyme in Serotonin synthesis, was used to evaluate Serotonin

producing cells. n = 4–5 for mutants and controls, Student’s T-test

*p,0.05, **p,0.01, ***p,0.001.

(TIF)
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