
RESEARCH PAPER

Microenvironment-associated gene HSD11B1 may serve as a prognostic 
biomarker in clear cell renal cell carcinoma: a study based on TCGA, RT-qPCR, 
Western blotting, and immunohistochemistry
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ABSTRACT
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors worldwide. 
The clinical treatment of ccRCC is strongly associated with the tumor microenvironment (TME). 
Identifying potential markers of ccRCC is important to improve prognosis. Therefore, in the 
present study, the levels of immune/stromal components and the proportion of tumor- 
infiltrating immune cells (TIICs) were determined in 611 ccRCC samples using the ESTIMATE and 
CIBERSORT analytical tools. Subsequently, hydroxysteroid 11-beta dehydrogenase-1 (HSD11B1) 
was identified by univariate Cox regression analysis, protein-protein interaction (PPI) networks and 
clinical survival analysis to be associated with ccRCC prognosis. At the same time, the abundance 
of HSD11B1 increased significantly in ccRCC was verified by western blotting, RT-qPCR and 
immunostaining analysis. Furthermore, Gene Set Enrichment Analysis (GSEA) and TME suggested 
that HSD11B1 was involved in TME immune-related status. Taken together, the results of the 
present study demonstrated that HSD11B1 is a potential prognostic biomarker associated with 
immune cell infiltration in ccRCC.
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Introduction

Clear cell renal cell carcinoma (ccRCC) is the third 
most common type of cancer of the urinary system 
with a high mortality rate [1,2], accounting for 2–3% 
of all adult cancer cases and 70% of all renal cancer 
cases [3–5]. Currently, surgical resection, radiotherapy 
and chemotherapy are the main treatment approaches 
to ccRCC. However, these treatment strategies do not 
significantly prolong the survival time of patients [6,7]. 
Several studies have suggested that changes of specific 
genes expression are highly related to the tumorigen-
esis and development of ccRCC [8]. Hence, investigat-
ing key gene correlated with ccRCC prognosis and 
identifying optimal immune-related biomarkers is 
crucial [9].

The tumor microenvironment (TME) is extremely 
complex, and consists of immune cells, various types 
of stromal cells, alongside with tumor cells [10–12]. 
Previous studies have also suggested that immune and 

stromal cells are the main components of TME, which 
are closely related to tumor progression and clinical 
prognosis [13,14]. Several clinical and genomic studies 
have also reported that ccRCC is a highly immune 
infiltration tumor [15]. The components of TME have 
an significant influence on the occurrence and pro-
gression of ccRCC [16,17]. Emerging evidence has 
indicated that the tumor-infiltrating immune cells 
(TIICs) within TME may affect therapeutic effi-
cacy [18].

The Cancer Genome Atlas (TCGA) data of patients 
with ccRCC were downloaded, and the proportions of 
immune/stromal cells and TIICs in samples were cal-
culated using the ESTIMATE [19] (Estimation of 
Stromal and Immune cells in Malignant tumor tissues 
using Expression data) and CIBERSORT (A general 
computational method for estimating the composi-
tion of TIICs populations from gene expression 
data) algorithms [20]. Eventually, a predictive 
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biomarker, hydroxysteroid 11-beta dehydrogenase-1 
(HSD11B1) was selected. The HSD11B1 gene encodes 
the type 1 isoform of 11-β-hydroxysteroid dehydro-
genase, which converts glucocorticoids into the active 
form, which plays an important role in the regulation 
of cell proliferation, differentiation and immune 
response [21,22]. Proliferative phenotypes induced 
by high expression of HSD11B1 are associated with 
poor cancer prognosis [23]. Previous studies suggested 
that increased HSD11B1 expression was intercon-
nected with poor survival of ccRCC patients, support-
ing that HSD11B1 have the potential to be 
a prognostic biomarker in patients with ccRCC receiv-
ing immunotherapy.

Our work aims to further evaluate significance of 
HSD11B1 expression in ccRCC prognosis and the 
correlation with clinicopathological characteristics 
using TCGA data and in vitro experiments, thereby 
providing additional evidence of HSD11B1 as 
a prognostic biomarker associated with immune cell 
infiltration in ccRCC.

Material and methods

Data collection

Transcriptome single-cell RNA sequencing profiling 
data (611 cases: 539 tumor cases and 72 normal cases, 
workflow type: HTseq-FPKM) and related clinico-
pathological characteristics (Table 1), including age, 
gender, pathological stage, grade, T/M/N classification 
of ccRCC samples were downloaded from TCGA 
database [24] (https://portal.gdc.cancer.gov/). The 
ESTIMATE [19] algorithm, an open-source web 
tool, was used to calculate the proportions of 
immune/stromal cells and scores in ccRCC samples 
using ‘estimate’ package (HTTP: // R-forge.R-project. 
org;Repos = Rforge, dependencies = TRUE). The 
scores were positively correlated with the proportion 
of the immune/ stromal/ ESTIMATE components 
in TME.

Identification of differentially expressed genes 
(DEGs)

Subsequently, the ccRCC samples were divided 
into high/low-score groups according to the med-
ian score. R (version 4.0.3) and R language 
packages ‘limma Bioconductor’ [25] were applied 

for DEGs between the high/low-score group. 
FDR<0.05 and |logFC|>1 were considered signifi-
cant for screening DEGs.

Gene ontology (GO) and kyoto encyclopedia of 
genes and genomes (KEGG) enrichment analyses

R packages ‘clusterProfiler’,‘ggplot2’,‘enrichplot’ 
and ‘org. Hs.eg.db’ were used to perform GO 
[26] and KEGG [27] pathway analyses of 93 
DEGs. P- and Q-value of <0.05 were considered 
significant enrichment.

PPI network construction and univariate Cox 
regression analysis

The PPI network among the significantly enriched 
DEGs was constructed using the Search Tool for 
the Retrieval of Interacting Genes (STRING) [28] 
online database (https://string-db.org/) and the 
Cytoscape [29] (version 3.7.2) platform was then 
utilized to visualize the interactive network among 
DEGs with a confidence level > 0.95 were used for 
building network. The top 30 DEGs with the lar-
gest number of nodes were filtered by interactions 
between genes.

Table 1. Clinicopathological characteristics statistics in ccRCC 
patients from TCGA.

Clinical characteristics Total(537) %

Age at diagnosis (y) young age (≤65) 352 65.5
old age (>60) 185 34.5

Gender Male 346 64.4
Female 191 35.6

Stage I 269 50.1
II 57 10.6
III 125 23.2
IV 83 15.5
Unknown 3 0.6

T classification T1 275 51.2
T2 69 12.9
T3 182 33.9
T4 11 2.0

M classification M0 426 79.3
M1 79 14.7
Unknown 32 6.0

N classification N0 240 44.7
N1 17 3.2
Unknown 32 52.1

Grade G1 14 2.6
G2 230 42.8
G3 207 38.6
G4 78 14.5
Unknown 8 1.5

10892 D. HAN ET AL.

https://portal.gdc.cancer.gov/
https://string-db.org/


Univariate Cox proportional hazards regression 
was used to further screen for meaningful DEGs 
with prognostic value, and forest plots were gen-
erated using R software package ‘survival’ 
(FDR<0.05).

Among the first 30 core DEGs of the PPI net-
work with predictive value based on the univariate 
Cox regression analysis, five hub DEGs with 
strong predictive value were selected.

Association of HSD11B1 expression with survival 
and clinicopathological characteristics

The R packages ‘survival’  (https://CRAN. 
R-project.org/package=survival, version = 3.1–8) 
was applied for Kaplan–Meier survival analysis. 
In addition, Clinical parameters, including age, 
gender, pathological stage, grade, T/M/N classifi-
cation, were analyzed by R software and Wilcoxon 
rank-sum test. P < 0.05 was statistically significant.

Gene set enrichment analysis (GSEA)

GSEA [30] (version 4.0.2) of the HSD11B1 high 
expression group was performed in the C2 KEGG 
gene sets (c2.cp.KEGG.v7.4.symbols.gmt) and C7 
immunological gene sets (c7.all.v7.4.symbols.gmt) 
of the Molecular Signatures Database (MSigDB) 
[31] to identify the enriched pathways. Each enrich-
ment analysis carried out one thousand times gene 
set permutations. Pathways with the false discovery 
rate (FDR) <0.05 and NOM P < 0.05 were consid-
ered to be significantly enriched.

Cell culture

ccRCC cell lines (HK-2, 786-O) was obtained from 
the Department of Nephrology, the Affiliated 
Hospital of Qingdao University. HK-2 and 786-O 
cell lines were cultured in DMEM-F12 and RPMI 
1640 with 10% FBS (Gibco) and 1% streptomycin- 
penicillin at 37°C.

Western blotting

RIPA (Meilunbio, MA0151) buffer supplemented 
with protease inhibitors and phosphatase inhibi-
tors was used to extract total protein from cells. 
The protein samples were electrophoresed on 

SDS-PAGE gels and transferred to PVDF mem-
branes before being blocked with 5% skimmed 
milk for 1 h. The membrane was incubated with 
primary antibodys, including HSD11B1 (1:1500 
dilution; Abbkine) and β-actin (1:50,000 dilution; 
Abcam) at 4°C overnight. Secondary goat anti- 
mouse IgG-HRP (1:5000 dilution; Abcam) anti-
body was incubated for 1 hour at room tempera-
ture. The proteins were visualized using ECL 
detection reagents (Meilunbio, MA0186) and 
quantitatively analyzed by Image J. Western blot-
ting was carried out according to the experimen-
tal process of our laboratory [32].

RT-qPCR

Total RNA was extracted from cell lines (HK-2, 
786-O) using an RNA isolation kit (TIANGEN) 
following the manufacturer’s protocol. The pri-
mers of HSD11B1 were: R: 5ʹ- TGAGAATGAGCA 
TGTCTAGTCC −3ʹ, F:5ʹ- AGCGAGGTCAAAAG 
AAACTCTA −3ʹ. The expression of HSD11B1 was 
calculated using the 2− ΔΔCq method [33].

Immunostaining analysis

Immunohistochemistry staining was performed 
on tissues. Renal clear cell carcinoma and adja-
cent para-carcinoma tissues (N = 10) were 
obtained from the Department of Pathology, 
Affiliated Hospital of Medical College Qingdao 
University, Qingdao, China. Immunochemical 
staining was performed according to our previous 
experiment procedure [32]. Sections were incu-
bated with antibodies against HSD11B1 (1:200 
dilution; Abbkine) and secondary antibody 
(1:200 dilution; Absin).

Analysis of TIICs

CIBERSORT [34] analysis tool is a deconvolution 
algorithm, using R software to run CIBERSORT 
algorithm. The CIBERSORT analytical tool can 
accurately estimate the proportion of TIICs from 
the expression profiles of complex samples. The 
algorithm calculates the proportion of 22 kinds of 
TIICs for each ccRCC sample based on LM22 
signatures and 1000 matrix permutations. The 
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proportion of immune cells is presented as a bar 
graph. P < 0.05 can be further correlation analysis.

The Wilcoxon rank-sum test and Spearman’s 
correlation coefficient were applied to analyze dif-
ferential and immune cell correlation analyses by 
using R packages ‘Pheatmap’, ‘Corrplot’ and 
‘Vioplot’ to evaluate the association between 
TIICs and HSD11B1 expression. P < 0.05 was 
considered statistically significant.

Statistical analysis

Statistical analysis was performed using GraphPad 
Prism 5. The unpaired t-test (two-tailed) with con-
fidence intervals of 95% was used to detect the 
differences in HSD11B1 expression between two 
independent groups and P < 0 .05 were considered 
statistically significant.

Results

In the present research, we aim to establish 
a predictive model to identify the key genes affect-
ing the prognosis of ccRCC, so as to provide 
a theoretical basis for predicting the prognosis of 
ccRCC patients and further seeking new treatment 
options. In this study, we first downloaded 611 
ccRCC gene-expressed data and 537 related clin-
ical information from the Cancer Genome Atlas 
(TCGA) database. Then we screened HSD11B1 as 

a possible prognostic biomarker of ccRCC. In 
addition, we performed association analysis 
between HSD11B1 and immune cells to evaluate 
its correlation with tumor microenvironment. 
Finally, the bioinformatics results were verified 
by in vitro experiments. We determined that 
HSD11B1 may be a novel biomarker for the diag-
nosis and prognosis of ccRCC. This finding is 
expected to benefit ccRCC patients.

Correlation analysis between immune/stromal 
scores and patient survival and 
clinicopathological characteristics

To assess the association between survival rate and 
immune/stromal scores, 611 ccRCC samples (539 
tumor and 72 normal cases) were divided accord-
ing to scores, and Overall survival analysis was 
performed. Kaplan-Meier survival curve showed 
that the proportion of immune cells was notably 
associated with patients survival (P = 0.033; 
Figure 1(a)). Although patients with low stromal 
score had a higher median Overall survival rate 
than those with higher stromal score, no signifi-
cant correlation was observed between stromal 
score and survival (P = 0.316; Figure 1(b)). The 
aforementioned findings suggested that the pro-
portion of immune cells was closely related to 
the Overall survival in ccRCC patients.

Figure 1. Immune/StromalScores were associated with survival and clinicopathological characteristics. (a-b) Kaplan-Meier curve and 
survival analysis of ccRCC patients which grouped by the Immune/Stromal Scores was performed. The scores represent the 
proportion of cells in TME. (c-l) Kruskal-Wallis rank sum test was used to analyze the correlation between immune/stromal 
components with clinicopathological characteristics (Stage, Grade, T classification, M classification, N classification).
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Furthermore, the paired clinicopathological 
characteristics of ccRCC patients were collected 
from TCGA database and their association with 
the proportion of immune and stromal cells was 
determined. The analysis revealed that the 
immune score was closely associated with several 
clinicopathological characteristics, including 
pathological stage (stage III vs. I, P = 0.00043; 
stage IV vs. I, P = 0.00022; Figure 1(c)), grade 
(G4 vs. G1, P = 0.01; G3 vs. G2, P = 0.00028; G4 
vs. G2, P = 3.8E−06; G4 vs. G3, P = 0.027; Figure 1 
(e)), T classification (T2 vs. T1, P = 0.03; T3 vs. T1, 
P = 9.2E−05; Figure 1(g)), and M classification 
(P = 0.0046; Figure 1(i)). However, stromal score 
was only associated with pathological stage (stage 
III vs. II, P = 0.026; Figure 1(d)), grade (G4 vs. G2, 
P = 0.034; G4 vs. G3, P = 0.036; figure 1(f)), and 
T classification of the tumor-node-metastasis sta-
ging system (T2 vs. T1, P = 0.04; T3 vs. T2, 
P = 0.0075; Figure 1(h)). Overall, the results 
demonstrated that the proportion of immune/stro-
mal cells was closely related to factors promoting 

ccRCC progression, such as immune cell infiltra-
tion, metastasis and prognosis.

Correlation between ccRCC gene expression 
profiles and immune/stromal scores

ccRCC samples were divided into two groups 
based on their respective median immune/stromal 
scores. A total of 656 DEGs were selected accord-
ing to scores (high vs. low scores). Among them, 
510 upregulated genes and 146 downregulated 
genes were obtained from ImmuneScore 
(Supplementary Figure 1(a) and Figure 2(a)). 
Similarly, among the 411 DEGs from 
StromalScore, 259 and 152 DEGs were up- and 
downregulated, respectively (Supplementary 
Figure S1b and Figure 2(b)). Venn plot were 
used to determine the intersection between the 
two types of cells. Therefore, 93 common DEGs 
were overlapping genes in immune and stromal 
groups, including 44 upregulated and 49 

Figure 2. Analyses of gene expression profiles of Immune/StromalScores. (a, b) Venn plot of the number of common upregulated or 
downregulated DEGs, FDR<0.05, |logFC|>1 were used as the significance threshold. (c, d) GO and KEGG enrichment analyses were 
used to select DEGs, terms with P < 0.05.
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downregulated genes. The aforementioned find-
ings indicated that DEGs may determine the 
TME status. Subsequently, the top 10 DEGs, sig-
nificantly enriched in biological processes (BP), 
cellular component (CC) and molecular function 
(MF) were selected from GO enrichment analysis 
(Figure 2(c)). The functional clusters of these 
DEGs corresponded to immune-related GO 
terms, such as ‘humoral immune response’ and 
‘B-cell proliferation’. KEGG analysis revealed that 
DEGs were also significantly enriched in immune 
response-related signaling pathways, including 
‘cytokine-cytokine receptor interaction’, ‘primary 
immunodeficiency’ and ‘cytokine activity’ 
(Figure 2(d)). Overall, the aforementioned results 
indicated that DEGs obtained by the intersection 
of immune/stromal scores were correlated with 
immune response.

Identification of DEGs by PPI networks and 
univariate Cox regression analysis

Subsequently, two methods were used to screen for 
DEGs. Therefore, to study interactions among 
DEGs, we constructed a PPI network using 

STRING and Cytoscape software. The top 30 
DEGs with the largest number of adjacent nodes 
were selected for further analysis (Figure 3(a)). 
Furthermore, univariate Cox regression analysis 
was used to identify the DEGs significantly asso-
ciated with prognosis in ccRCC patients (Figure 3 
(b)). The results of both methods were combined 
into a Venn plots, and five overlapping genes, 
namely HSD11B1, TNFSF13B, MZB1, IGLL5 and 
PPARGC1A, were obtained (Figure 3(c)). The 
details of the five overlapping genes are presented 
in Table 2.

Association between HSD11B1 expression levels 
with survival and clinicopathological 
characteristics

The HSD11B1 gene encodes the type 1 isoform of 
11-β-hydroxysteroid dehydrogenase, which con-
verts glucocorticoids into the active form, which 
plays an important role in the regulation of meta-
bolic syndrome and immune response. This find-
ing suggested that HSD11B1 may play a key role in 
TME and be a key factor in ccRCC. Therefore, the 
present study indicated that HSD11B1 potential be 

Figure 3. PPI network and univariate cox regression. (a) The first 30 genes sequenced by adjacent nodes numbers in PPI network. (b) 
The survival of ccRCC patients were performed by univariate cox, with P < 0.05 as a significant difference criterion. (c) Venn plot 
showed 5 genes that come from the intersection of (A) and (B).
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a prognostic marker in ccRCC. Herein, ccRCC 
samples were divided into two groups using the 
median HSD11B1 expression level as cutoff values. 
Wilcoxon rank-sum test showed that HSD11B1 
expression in tumor group was significantly higher 
than that in normal group (Figure 4(a)). 
Furthermore, increased HSD11B1 expression was 
positively correlation with unfavorable prognosis 
(Figure 4(b)). In addition, HSD11B1 expression 
was closely related to several clinicopathological 
characteristics with ccRCC patients. Therefore, 
pathological stage (III vs. I, P = 0.041; IV vs. I, 
P = 0.036), grade (G4 vs. G1, P = 0.00021; G4 vs. 
G2, P = 6.6E−08; G4 vs. G3, P = 1.6E−06), 
T classification (T3 vs. T1, P = 0.022, T4 vs. T1, 
P = 0.0061, T4 vs. T2, P = 0.0094) and 

N classification (P = 0.0043) were strongly corre-
lated with HSD11B1 expression (Figure 4(c-g)). 
Overall, the aforementioned results suggested that 
HSD11B1 expression levels were negatively related 
to the prognosis in ccRCC patients.

GSEA of HSD11B1

As shown in Figure 4(h-i), GSEA was used to 
evaluate the correlation between HSD11B1 expres-
sion with immune response. The bioinformatics 
analysis demonstrated that several immune- 
related signaling pathways, including ‘B-cell recep-
tor signaling pathway’, ‘cytokine-cytokine receptor 
interaction’ and ‘chemokine signaling pathway’ 
were primarily enriched in C2 KEGG gene sets 

Table 2. List of 5 kinds of DEGs.
Gene name Gene ID Description Location Expression Degree score Log-rank test of P value*

PPARGC1A 10891 PPARG coactivator 1 alpha Chr4p15.2 Up-regulated 2 0.022
HSD11B1 3290 hydroxysteroid 11-beta dehydrogenase 1 Chr1q32.2 Up-regulated 2 0.002
MZB1 51,237 marginal zone B and B1 cell specific protein Chr5q31.2 Up-regulated 3 0.015
TNFSF13B 10673 TNF superfamily member 13b Chr13q33.3 Up-regulated 5 &lt;0.001
IGLL5 100,423,062 immunoglobulin lambda-like polypeptide 5 Chr22q11.22 Up-regulated 9 &lt;0.001

*The P-value showing statistical significance was marked with bold type. 
Abbreviation: DEGs, differentially expressed genes. 

Figure 4. Correlation analysis was applied between HSD11B1 and clinical factors. (a) Wilcoxon rank sum test was used to analyze the 
expression levels of HSD11B1 in normal and tumor groups with p < 0.05 as the cutoff. (b) Kaplan–Meier analysis of HSD11B1. The 
survival rate of ccRCC samples decreased over time and the group with low HSD11B1 expression had better survival. (c–g) Wilcoxon 
rank sum indicated that HSD11B1 expression was correlated with clinicopathological characteristics. (h) GSEA of HSD11B1 high 
expression group in C2 KEGG gene sets. Unique colored lines represent unique signal pathways of gene set enrichment. The curve 
above the abscissa indicates the enrichment pathways, and the transverse line below shows the number of genes enriched in each 
pathway. NOM P < 0.05 was considered to indicate a statistically significant difference. (i) GSEA of HSD11B1 high expression group in 
C7 immune gene sets.
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in HSD11B1 high expression group (Figure 4(h)). 
In addition, the C7 immunological gene sets 
(Figure 4(i)) were enriched in the high expression 
group of HSD11B1, including ‘CD4 T cell vs. CD8 
T cell up’, ‘CD4 T cell vs. alphabeta CD8 T cell up’, 
‘naive vs. secondary memory CD8 T cell up’. The 
result showed that HSD11B1 is not only associated 
with immune-related activities, but may also be 
a potential biomarker of the TME status.

Positive expression of HSD11B1 in 786-O cell 
lines and ccRCC clinical specimens

The high expression of HSD11B1 in cell lines was 
verified in protein level compared to controls, 
which is consistent with our bioinformatic ana-
lyses (Figure 5(c)). Furthermore, HSD11B1 expres-
sion in clinical tissues (Figure 5(a-b)) were 
observed by immunochemical staining, which 
showed that significantly higher HSD11B1 expres-
sion in ccRCC clinical tissues than that in para- 
carcinoma specimens. These results confirmed 
that the abundance of HSD11B1 increased signifi-
cantly in ccRCC. RT-qPCR (P&lt;0.0001) showed 

that HSD11B1 was up-regulated in ccRCC 
(Figure 5(d)). This result is consistent with the 
result in Figure 4.

Association between the expression of HSD11B1 
and the proportion of TIICs

To further elucidate the association between 
HSD11B1 expression and the TME status in 
ccRCC, the proportion of TIICs in ccRCC was 
analyzed using the CIBERSORT algorithm 
(Figure 6(a)). The violin plot (Figure 6(b)) which 
illustrating the profile of 22 immune cell subpo-
pulations showing that there were statistically sig-
nificant differences in Plasma cells (P&lt;0.001), 
T cells CD8 (P = 0.007), T cells CD4 memory 
activated (P&lt;0.001), T cells follicular helper 
(P = 0.035), NK cells activated (P = 0.005), 
Monocytes (P&lt;0.001), Macrophages M0 
(P&lt;0.001), Dendritic cells activated (P = 0.014). 
In addition, we found there were statistically sig-
nificant differences in Plasma cells (R = 0.21, 
P = 9.8E-05), T cells CD8 (R = -0.13, P = 0.015), 
T cells CD4 memory activated (R = 0.26, P = 8.3E- 

Figure 5. HSD11B1 was significantly abundance in ccRCC cell lines and tissues (a,b) Immunohistochemistry images and analysis of 
ccRCC clinical specimens and para-carcinoma specimens. (c) Western blot showed that HSD11B1 was overexpressed in 786-O cell 
lines. (d) RT-qPCR analysis of high expression of HSD11B1 in 786-O cell line.
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07), T cells regulatory (Tregs) (R = 0.16, 
P = 0.0027), NK cells activated (R = -0.17, 
P = 0.00095), Monocytes (R = -0.24, P = 6.6E- 
06), Macrophages M0 (R = 0.36, P = 1.8E-12), 
Dendritic cells activated (R = -0.16, P = 0.0027), 

Mast cells resting (R = -0.15, P = 0.0052) through 
Spearman’s correlation coefficient (Figure 7(a)). 
Subsequently, the results of the differential analysis 
and those from the immune cell association ana-
lysis were intersected (Figure 7(b), Table 3).

Figure 6. Correlation analysis between TIIC proportion and HSD11B1 expression in ccRCC samples (a) Proportions of 22 types of TIIC 
in each sample were clearly showed in histogram, sample ID on the horizontal axis and immune cells counts in the sample on the 
vertical. (b) The violin plot showed the correlation analysis between the infltration level of immune cells and low (green) and high 
(red) HSD11B1 expression groups relative to the median of HSD11B1 expression. Wilcoxon rank sum test was commonly believed to 
be significantly.

BIOENGINEERED 10899



Discussion

In the present study, ccRCC samples from TCGA 
database were used to elucidate the genes asso-
ciated with prognosis. Bioinformatics analysis 
results indicated that HSD11B1 could be a novel 
prognostic biomarker of ccRCC.

TME serves an important part in tumor devel-
opment and progression. Nowadays, the research 
into potential prognostic targets for advanced 
renal cancer is growing rapidly. Compared with 
traditional surgical resection, patients undergoing 
targete.d therapy have a significantly longer survi-
val time [7,35,36]. Identifying potential prognostic 
biomarkers is of great importance for the diagno-
sis, treatment and prognosis of cancer targeted 
immunotherapy. Transcriptome analysis of 
ccRCC in TCGA database indicated a close asso-
ciation between ImmuneScore with survival of 
ccRCC patients. Furthermore, it was significantly 
correlated with multiple clinicopathologic charac-
teristics of TCGA-ccRCC samples, including 
grade, pathological stage, T classification, and 
M classification. It further demonstrated that the 
components of the immune system within TME 
could serve a vital role in the development and 
prognosis of ccRCC. GO analysis confirmed 
a significant enrichment of DEGs in immune- 

Figure 7. Tumor microenvironment exploration of HSD11B1 (a) Correlation analysis between HSD11B1 expression and TIIC propor-
tion was calculated by scatter plot. The correlation coefficient R > 0 in the scatter plot indicated a positive correlation with HSD11B1 
and tumor purity and immune cells. There exist a linear correlation equation between the infltration level of immune cells and 
HSD11B1 expression. Correlations test was evaluated using Pearson coefficient. (b) The Venn plot showed 7 types of TIIC associated 
with HSD11B1 expression identified by the intersection of the differential immune cells in the violin plot and the scatter plot.

Table 3. TIICs co-determined by difference test and correlation 
test.

TIICs Difference test (P-Value) Correlation test(P-Value)

Plasma cells 0.000259169699189331 9.7681078980995E-05
T cells CD8 0.006788819191731 0.0148198239813821
T cells CD4 

memory 
activated

0.00010274900899535 8.30626484098104E-07

NK cells 
activated

0.00455656929361048 0.00094723708787107

Monocytes 0.000454239467850045 6.59316505377974E-06
Macrophages 

M0
4.43187411856744e-09 1.75555276773066E-12

Dendritic cells 
activated

0.01368813484952 0.00271480919176661

Abbreviation: TIIC, Tumor-infiltrating immune cell. 
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related terms. Emerging evidence has suggested 
that immune responses promote the development 
of several types of cancer [37–39]. Herein, KEGG 
enrichment analysis showed that DEGs were clo-
sely linked to immune-related activities. These 
findings indicated that DEGs may have 
a significant impact on regulating TME and influ-
encing the prognosis of ccRCC. Since The 
HSD11B1 gene encodes the type 1 isoform of 11- 
β-hydroxysteroid dehydrogenase, which converts 
glucocorticoids into the active form, which plays 
an important role in the regulation of metabolic 
syndrome and immune response [21]. Further 
analyses were carried out on HSD11B1 expression 
profile. These studies revealed that HSD11B1 was 
upregulated in ccRCC samples and can be consid-
ered as prognostic indicator of ccRCC, as pre-
dicted by univariate Cox regression analysis. 
HSD11B1 elevated expression was significantly 
related to poor survival rate and several clinico-
pathological characteristics. The results obtained 
by western blotting, RT-qPCR and immunohisto-
chemistry were consistent with the results of this 
study. Overall, these findings demonstrated con-
vincingly that HSD11B1 is a potential valuable 
prognostic marker.

HSD11B1 is a member of the short-chain dehy-
drogenase/ reductase (SDR) superfamily, which is 
the only enzyme in the body that converts inactive 
cortisone into active glucocorticoid hormones 
[40]. The enzyme is abundant in liver and can be 
induced to express in immune cells. Previous stu-
dies have shown that glucocorticoids encoded by 
HSD11B1 contribute to the regulation of cell pro-
liferation and differentiation, and recognized the 
important role HSD11B1 play in promoting the 
development and progression of colon tumors 
and adenocarcinoma cells [22,23,41,42]. 
Proliferative phenotypes induced by high expres-
sion of HSD11B1 are associated with poor cancer 
prognosis [23]. Herein, increased HSD11B1 
expression was interconnected with poor survival 
of ccRCC patients, supporting a potential associa-
tion between HSD11B1 expression and tumor pro-
gression and clinical outcome. These findings 
indicated that HSD11B1 could act as oncogene in 
ccRCC, which was consistent with the tumor- 
promoting effect of HSD11B1 on other types of 
cancer. GSEA showed that HSD11B1 expression 

was associated with several immune-related signal-
ing pathways, suggesting that the immune 
responses may be activated during the progression 
of ccRCC. In addition, the analysis revealed that 
the up-regulation of chemokine signaling pathway 
also promoted the development of CCRCC. 
Previous studies have shown that chemokines, 
such as CXCL13 and CXCR5, are crucial for the 
progression and poor prognosis of ccRCC [43,44].

The results also demonstrated that seven kinds 
of TIICs were significantly associated with the 
TME status in ccRCC. In the present study, the 
proportion of Macrophages M0 was positively 
associated with HSD11B1 expression. Compared 
with the low HSD11B1 expression group, the 
number of Macrophages M0 was obvious abun-
dant in HSD11B1 high expression group. Clinical 
trials indicated that Macrophages M0, as inhibi-
tors of the antitumor immune responses, were 
related to poor prognosis in sizable proportion 
of all cancers, such as lung [45,46], prostate [47], 
colorectal [48], breast [49,50], hepatocellular [51] 
and head and neck [52] cancer. Numerous studies 
have verified that macrophages, as an important 
member of myeloid origin cells in TME, can par-
ticipate in the occurrence, development and 
immunosuppression of tumors [53]. Another 
immunosuppressive cell type in cancer, Plasma 
cells, may significantly affect the survival of 
patients with ccRCC. Plasma cells are known to 
be products of B-cell differentiation that play 
a key role in humoral immune system by produ-
cing and secreting antibodies [54]. More and 
more studies have shown that plasma cells have 
become a significantly survival biomarkers for 
a variety of solid tumors [55,56]. Recent studies 
have also confirmed that the results of the present 
study, demonstrating that increased numbers of 
Plasma cells were closely associated with poor 
survival. In the majority of solid tumors, CD8 
T-cell infiltration is often associated with good 
prognosis [57]. Consistently, the results of this 
study showed a negative correlation between 
CD8 T cell infiltration and HSD11B1 expression. 
Our results support B cells provided the robust 
anti-tumor immunity by served as antigen- 
presenting cells [58,59]. Other studies have 
reported that immune cells, for instance, NK 
cells activated and Dendritic cells activated are 
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involved in tumor immune surveillance and exert 
antitumor effects. A study showed that NK cells 
could mediate cytolysis to induce apoptosis of 
target cells [60]. In addition, NK cells can enhance 
the antitumor activity via secreting pro- 
inflammatory chemokines and cytokines [61]. 
A recent study demonstrated that NK cells, as 
immune effector cells, were potentially involved 
in the treatment of kidney cancer via enhancing 
chimeric antigen receptor (CAR) modification 
[62]. As mentioned above, active Dendritic cells 
can activate tumor immunity and aggregate 
immune effector cells to the tumor site [63]. 
Therefore, the negative association of the propor-
tion of NK cells activated, Dendritic cells acti-
vated with the expression levels of HSD11B1 in 
ccRCC patients indicated that HSD11B1 potential 
play a pivotal role in tumorigenesis and 
development.

Conclusion

In conclusion, the results of the present study 
supported that the interaction between ccRCC 
and TME affected cancer progression, thereby 
affecting the overall prognosis of patients with 
ccRCC. The analysis of TCGA-ccRCC patient 
samples and in-vitro experimental verification 
revealed that HSD11B1 as a potential prognostic 
indicator of ccRCC. Finally, further studies on 
HSD11B1 could provide a foundation for under-
standing the complex association between TME 
and the prognosis of patients with ccRCC.

Highlights

● The prognosis of ccRCC was correlated with 
immune regulation of TME.

● The expression level of HSD11B1 was corre-
lated with the prognosis of ccRCC patients.

● HSD11B1 can be used as a prognostic marker 
in TME of ccRCC.
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