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cells for the treatment of suspensory
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Abstract

Background: In athlete horses, suspensory ligament (SL) injuries are the most common cause of lameness. Healing
of SL injury is still problematic, and even proper rehabilitation and pharmacological therapy do not guarantee
returning to the initial performance level. In our previous studies, we have shown that a combination of 5-azacytidine
(AZA) and resveratrol (RES) exerts beneficial, rejuvenating effects on metabolic syndrome derived adipose-derived stem
cells (ASCs). Thus, in the presented research, we investigate whether not only rejuvenated ASC but also microvesicles
(MVsAZA/RES) secreted by them possess enhanced regenerative properties in SL injury.

Methods: In the presented study, a 6-year-old Dutch Warmblood gelding, working in jumping, was diagnosed with SL
injury using ultrasonography, Doppler, real-time elastography and thermography. As a therapeutic strategy, the
affected animal was treated with extracellular microvesicles derived from ASC treated with the combination of
5-azacytydine (AZA) and resveratrol (RES) (MVsAZA/RES).
Results: First, anti-apoptotic effects of MVsAZA/RES were tested in co-culture with metabolic syndrome derived
ASC. The proliferation of cells and expression of pro-apoptotic genes were investigated. Then, MVsAZA/RES were
injected directly into the injured SL of the Dutch Warmblood gelding. In vitro assays revealed that MVsAZA/RES
enhance the proliferation of ASC and exert an anti-apoptotic effect. In the affected horse, the application of
MVsAZA/RES resulted in increased lesion filling and improvement of angiogenesis and elasticity in injured tissue.

Conclusions: As MVsAZA/RES mimic several of the biological actions exerted by ASC, they have become an
alternative for stem cell-based therapies and can be effectively applied for the treatment of SL injury in horses.
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Background
Musculoskeletal injuries are especially common in human
athletes who train sprint or jumping [1]. Similar
phenomenon occurs in sport horses as they are at substantial
risk for impact injuries or overexertion. In consequence, local
muscle or tendon trauma occurs leading to poor perform-
ance and lameness. In horses, muscle tissue represents over
50% of bodyweight; thus, its demand for energy and cardiac

output during exercise is high [2]. Factors predisposing for
injuries to list are pre-existing lameness or injury, early sea-
son competition and lack of warm-up. Among diagnostic
techniques, ultrasonography (USG) is recognized as a useful
imaging procedure [3] in which muscle or tendon enlarge-
ment and loss of normal echogenicity consistent with fibre
disruption can be noticed in acute injuries. Another non-
invasive procedure is thermography which enables the
pictorial representation of the surface temperature of an ob-
ject allowing for visualization of inflammatory changes [4].
Additionally, elastography-ultrasound technique allows to de-
tect and measure tissue strain, providing valuable informa-
tion regarding equine tendon, muscle and ligament injuries
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[5]. Repeated injury to certain muscle group may result in
fibrosis and ossification, finally contributing to mechanical
lameness. Horses affected with strains, depending on its
severity, are provided with anti-inflammatory, muscle re-
laxants and non-steroidal drugs while exercise activity is
reduced from days to months [6]. Among injuries, suspen-
sory ligament (SL) damage in horses is the most common
cause of lameness especially in athletic individuals in com-
peting dressage. Ligament sprain leads to swelling, pain
and heat. Interestingly, usually, the proximal aspect of the
SL is affected [7]. Healing of SL injury is still problematic,
and even proper rehabilitation does not guarantee return-
ing to the initial performance level. Tendon is a tissue
characterized by limited regeneration caused by the for-
mation of scar tissue resulting from relatively low number
of resident cells in relation to amount of matrix. One of
the therapeutic approaches for tendon injuries is conser-
vative management which includes cold applications,
controlled exercises, eccentric tendon training and extra-
corporeal shockwave therapy [8]. In case of severe injuries,
surgical therapy (fasciotomy) is recommended. New ap-
proaches are focused on the regenerative medicine and its
tools. Application of platelet-rich plasma (PRP) and stem
cell therapies is more and more common [9, 10].
Nowadays, mesenchymal stem cells (MSCs) are widely

applied in both human and veterinary medicine. Due to
their unique properties, e.g. multilineage differentiation
and immunomodulatory action, MSCs have afforded
great promise in the treatment of numerous diseases
[11]. There are 344 registered clinical trials in different
clinical trial phases aimed at investigating the potential
of MSC therapy worldwide [12]. Since now, MSCs have
been proved to be effective in the treatment of tissue in-
jury, immune and musculoskeletal diseases and neurode-
generative disorders [13–15]. Although MSCs have a
tendency to home to damaged tissue sites, their thera-
peutic mechanism probably is other than differentiation
in particular cell type. It was shown that MSC trans-
plantation promoted the regeneration of skeletal muscle
in a rat injury model; however, cells did not differentiate
into myofibers indicating that distinct mechanism is re-
sponsible for therapeutic outcome [16].
Accumulating body of evidence has revealed that

therapeutic benefits of MSC mainly depend on their
ability to secrete a wide range of trophic factors. It was
demonstrated that the paracrine activity of those cells
can be utilized in the treatment of multiple disorders in-
cluding liver, kidney, lung and myocardial injuries [13].
It was showed that MSC secrete a wide range of growth
factors including vascular endothelial growth factor
(VEGF), basic fibroblast growth factors (bFGF), hepato-
cyte growth factor (HGF), insulin-like growth factor 1
(IGF-1), interleukin 6 (IL-6) and chemokine (C-C motif)
ligand 2 (CCL-2) [17]. Most of them act as key

mediators in angiogenesis, regeneration and prevention
of cell apoptosis. These proteins are secreted as a cargo
in extracellular microvesicles (MVs) and exosomes. MVs
are membrane-covered vesicles of various shapes with a
diameter varying between 50 to 1000 nm and more,
formed by budding from the plasma membrane [18].
What is more, not only cytokines and growth factors
can be transferred within MVs but also messenger RNA
(mRNA), lipids, ribosomal RNA, siRNA and microRNA
(miRNA) [12]. Pro-regenerative functions of MVs were
proved in several tissues, including the kidney, heart,
liver, nervous tissues, lung and muscles [19]. Obtained
results indicated that MV functions are similar to those
of MSCs—they improve the regeneration process, sup-
press inflammation and modulate immune response.
Nowadays, MVs are of great interest in the scope of re-
generative medicine as they can pave the way for the de-
velopment of cell-free therapies. Currently, the most
common method of MV manufacturing in the laboratory
is ultracentrifugation of MSC culture medium [20]. In
order to obtain a great amount of MVs, cells are cul-
tured under certain distress as MVs are released with
their cargo to combat stressful condition [21]. Interest-
ingly, MV cargo can be modulated by the application of
certain stress-inducing factor [22]. What is more, MV
content strongly depends on cytophysiological properties
of MSC they are obtained from [23–25]. Our previous
studies have shown that a combination of 5-azacytydine
(AZA) and resveratrol (RES) reverses aged phenotype of
MSC isolated from equine metabolic syndrome diag-
nosed animals (MSC-EMS) [26–28]. In consequence,
those rejuvenated cells were characterized by an in-
creased proliferation rate, reduced apoptosis and en-
hanced synthesis of MVs. Furthermore, AZA/RES
diminished oxidative stress and improved mitochondrial
condition and dynamics in those cells reversing degen-
erative changes caused by EMS-associated systemic in-
flammation [27, 29]. In this report, we decided to
analyse the properties of MVs isolated from MSC-EMS
and test whether the combination of AZA/RES may be-
come a factor able to enrich MV cargo with pro-
regenerative proteins. As AZA/RES strongly modulates
metabolism of MSC, we hypothesized that naturally it
also regulates the amount and cargo of secreted MVs.
Since now, MVs have shown much promise and bene-

fits—due to their physiochemical stability in the body,
non-immunogenic character and unique cargo, they can
become alternative for stem cell-based therapies [30]. It
was proved that MSC-derived exosomes accelerate
muscle regeneration via promotion of myogenesis and
angiogenesis, mediated by miRNAs (e.g. miR-494) [31],
which supports their application in orthopaedics. In the
presented case, taking into consideration the beneficial
effects of AZA/RES on aged MSC, we decided to

Kornicka-Garbowska et al. Stem Cell Research & Therapy          (2019) 10:394 Page 2 of 10



investigate the clinical utility of MVs derived from MSC-
EMS treated with these substances. For that reason,
MVs were injected twice locally into injured suspensory
ligament of a horse athlete.

Methods
All reagents used in the study were purchased from
Sigma Aldrich Poland unless indicated otherwise.

Isolation and culture of ASC
Horses from which adipose tissue was collected were
characterized in our previous study [32]. Animals from
which samples were collected were divided into two
groups: diagnosed with equine metabolic syndrome
(EMS) and healthy (CTRL). ASCs were isolated in ac-
cordance with the procedure described before [29].
Briefly, adipose tissue was minced and incubated with 1
mg/ml solution of collagenase type I. After centrifuga-
tion, the remaining pellet was re-suspended in culture
media—Dulbecco’s modified Eagle’s medium (DMEM)
low glucose supplemented with 10% of foetal bovine
serum (FBS) and 1% of penicillin-streptomycin (PS) so-
lution. The media were changed every 2 days. After
reaching 90% confluence, cells were passaged with Try-
pleExpress (Life Technologies). In order to isolate MVs,
cells were passaged three times. When cells reach 80%
confluence, cells were cultured in the presence of
0.5 μM of AZA and 0.05 μM of RES. After 24 h, the
medium supplemented with AZA/RES was exchanged
for serum-free DMEM with 1% PS. After 24 h, serum-
free medium was collected for MV isolation.

MV isolation
Serum-free medium was collected from AZA/RES-treated
ASC isolated from EMS individuals, in order to isolate
MVs. MVs were harvested in accordance with the proto-
col described previously by Szatanek et al. [33]—differen-
tial centrifugation/ultracentrifugation. Briefly, the medium
was centrifuged at 300×g for 10min, 2000×g for 10min
and 10,000×g for 30min respectively. After each centrifu-
gation, the supernatant is transferred to a new tube while
the pellet discarded. The pellet from the last centrifuga-
tion was re-suspended in sterile Hank’s balanced salt solu-
tion (HBSS) as it consists of MV fraction. Those MVs
were applied in in vitro and in vivo part of the study and
are described in the figures as MVsAZA/RES.

Evaluation of cellular proliferation
Growth kinetics of ASCs was examined using a resazurin
assay kit (TOX8), following the manufacturer’s instruc-
tions as previously described [27]. To perform the assay,
cells were seeded in 24-well plates at an initial concen-
tration of 2 × 104 per well. The next day, after cells at-
tached, different concentrations of as MVsAZA/RES were

added to the wells. After 24 h of culture, the medium
was exchanged for DMEM low glucose supplemented
with 10% of TOX8, and after 120 min of incubation with
the dye, the first measurement was performed. The ab-
sorbance of the supernatants was measured at a wave-
length of 600 nm for resazurin, and 690 nm reference
wavelength (Epoch, BioTek). Measurements were
performed after 24, 48, 72 and 96 h of culture. DNA syn-
thesis was investigated by measuring the incorporation
of 5-bromo-2-deoxyuridine (BrdU) into cellular DNA
with BrdU Cell Proliferation ELISA Kit (Abcam) in ac-
cordance with the manufacturer’s protocol. In this ex-
periment, cells were pre-treated with 25 μg/ml
MVsAZA/RES for 24 h. Next, cells were incubated with
BrdU overnight at 37 °C. The incorporation of BrdU was
evaluated by incubation with anti-BrdU monoclonal
antibody. Colour reaction was developed using 3,3,5,5-
tetramethylbenzidine (TMB). Signal intensity was mea-
sured at a wavelength of 450/550 nm (Epoch; BioTek).

TUNEL staining
To perform the assay, cells were pre-treated with 25 μg/
ml MVsAZA/RES for 24 h. DNA fragmentation was de-
tected using TUNEL Assay Kit-BrdU-Red (Abcam,
ab66110) in accordance with the manufacturer’s instruc-
tions. Nuclei were counterstained with diamidino-2-
phenylindole (DAPI; 1:1000 in HBSS). Cells were ob-
served and imaged using an epifluorescence microscope
(AxioObserverA1; Zeiss).

Quantitative real-time reverse transcription polymerase
chain reaction (qPCR)
Cells were homogenized by TriReagent®, and total RNA
was isolated using the phenol–chloroform method as
previously described by Chomczynski and Sacchi [34].
cDNA synthesis and qPCR were performed as described
previously [26] using Tetro cDNA Synthesis Kit (Bioline)
and SensiFast SYBR & Fluorescein Kit (Bioline) respect-
ively. Primer concentration in each reaction equalled to
500 nM and their sequences are listed in Table 1. The
average fold change in the gene expression of experi-
mental cultures was compared with control cultures and
calculated by the 2−DDCt method in relation to the
housekeeping gene—GAPDH.

Case description
The study was performed after an approval by the Local
Ethics Committee in Wroclaw, Poland (84/2018). The
patient was a 6-year-old Dutch Warmblood gelding,
working in jumping (up to 1.1 m). The animal was diag-
nosed with lameness caused by suspensory ligament in-
jury in the right forelimb. Six days after the accident,
ultrasonography (USG), including histogram analysis,
real-time elastography (RTE), and Doppler ultrasound
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measurements (SamsungHM70) of both forelimbs, was
performed to evaluate the injured region. A complete
examination of the SL was performed during each ultra-
sound examination with both transverse and longitu-
dinal scans. Prior to thermography (Flir T335), the skin
in the injury area was shaved. Seven days after injury, a
USG-guided injection of MVsAZA/RES directly into the
injury site was performed. After 9 months of the first in-
jection, in the same time, swelling in the proximal-
lateral side of the right forelimb in the middle of the

cannon was also noted. The horse was injected the sec-
ond time with MVsAZA/RES. The first clinical evaluation
was performed after 10th while the second clinical evalu-
ation after 12th month of the first MVAZA/RES injection.
The injury of SL is shown in Fig. 1 while the timeframe
of the experiment in Fig. 2.

Statistics
All experiments were performed at least in three repli-
cates. Differences between experimental groups were esti-
mated using the un-paired t test (Prism5.04; GraphPad
Software, La Jolla, CA, USA). Data normality was assessed
in all groups by the Shapiro–Wilk test. Differences with
probability of p < 0.05 were considered significant. Results
were presented as mean and standard deviation (SD).

Results
MVsAZA/RES exert beneficial effects on ASCEMS

Different concentrations of MVsAZA/RES were tested in the
co-culture with ASC isolated from EMS individuals (Fig. 3a).
For further experiments, the most beneficial concentration,
25 μg/ml, was applied. BrdU assay (Fig. 3b) confirmed that
MVsAZA/RES enhance ASC proliferation.

Table 1 Primer sequences

Gene Primer Sequence 5′-3′ Amplicon length (bp)

p53 F: TACTCCCCTGCCCTCAACAA 252

R: AGGAATCAGGGCCTTGAGGA

BAX F: GCCAGCAAATTGGTGCTCAA 260

R: AGCAGTCACTTCCATGGCTC

BCL-2 F: TTCTTTGAGTTCGGTGGGGT 164

R: GGGCCGTACAGTTCCACAA

GAPDH F: GATGCCCCAATGTTTGTGA 250

R: AAGCAGGGATGATGTTCTGG

p53 tumour suppressor p53; BAX Bcl-2-associated X protein; BCL-2 B cell
lymphoma 2; GAPDH glyceraldehyde-3-phosphate dehydrogenase

Fig. 1 Injury of SL imaged by USG. a Transverse image of the SL injury in B1 area. b Longitudinal image of the injury. c Comparison of SL
between left (health) and right (with injury) forelimbs. Decreased echogenicity and increased area in the transverse section are visible. d Increased
angiogenesis in the injury site. e RTE showing diverse elasticity in the injury site. f Histograms showing decreased value in the injury area (1) in
comparison to healthy tissue (2, 3)
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MVsAZA/RES exert anti-apoptotic effects on ASCEMS

TUNEL staining (Fig. 4a) revealed that MVsAZA/RES re-
duced the number of dead cells. What is more, MVA-

ZA/RES treatment reduced the expression of BAX
(Fig. 4b) and p53 (Fig. 4c) but enhanced the expression
of anti-apoptotic BCL-2 (Fig. 4d).

Clinical evaluation after MVAZA/RES injection
Following the injection, the horse showed any adverse
reactions. The first examination demonstrated an early
clinical improvement in the horse. Initiation of lesion fil-
ing with fibrous tissue was observed in transverse
(Fig. 5a) longitudinal (Fig. 5b) images. An increased
histogram value was observed in the injury site (Fig. 5c).
An enhanced vascularization (Fig. 5d) and decreased
elasticity (Fig. 5e) of the injury site resembling surround-
ing tissues were observed. Thermography revealed that
an increased temperature in the right forelimb indicates
an enhanced angiogenesis after MV injection (Fig. 5f).
In the second examination, transverse images of the

injured SL site (Fig. 6a) revealed slightly increased echo-
genicity and formation of scar tissue separated from sur-
rounding tissues with hypoechogenic fragments. Lesion
filling on longitudinal image (Fig. 6b) and increased his-
tograms of varying values between healthy and injured

tissue (Fig. 6c) in the injury site were observed as well.
Moderate blood supply in SL (Fig. 6d) and moderate dif-
ferences of elasticity (Fig. 6e) were observed. Thermog-
raphy showed no pathological changes in the injury site
(Fig. 6f).

Discussion
Multiple reports, including our own, have indicated that
MSC therapeutic potential depends on several factors,
including patients’ age, lifestyle and health condition [23,
24, 35–37]. Our group has revealed for the first time
that in horses diagnosed with equine metabolic syn-
drome (EMS), isolated ASC suffers from great impair-
ment of their cytophysiological properties [32]. EMS is
characterized by obesity, hyperinsulinemia and insulin
resistance and frequently leads to the development of
laminitis. The main cause of disease is a high-starch diet
combined with the lack of physical activity. We have
shown that, in vitro culture, ASC from EMS individuals
displayed decreased proliferation rate, increased apop-
tosis and senescence together with mitochondria deteri-
oration [32]. In our previous research, we have
demonstrated that autophagy is a rescue mechanism in
those cells allowing them to maintain at least a part of
their “stemness” [26, 38]. That fact has a profound effect

Fig. 2 Timeframe of the study. D, diagnosis of SL in jury in right forelimb, week after MVsAZA/RES injection; 7, horse back to training; 9, swelling
noted in the proximal-lateral side of the right forelimb in the middle of the cannon, second MVsAZA/RES injection; 10, first clinical evaluation; 12,
second clinical evaluation

Fig. 3 MVs derived from AZA/RES-treated ASC enhance ASCEMS proliferation. Different dosages of MVs were added to ASC in order to investigate
whether MVs work in a dose-dependent manner (a). The first measurement was performed after 24 h of co-culture. After that time, the medium
was exchanged and cell proliferation was monitored till 96 h of culture. For further experiments, cells were cultured for 24 with 25 μg/ml of MVs.
BrdU analysis confirmed that selected concentration enhances cellular proliferation. Results are expressed as mean ± SD, *p < 0.05; ***p < 0.001
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on regenerative medicine which utilizes stem cells for
the treatment of different disorders including musculo-
skeletal injuries. As autologous stem cell therapies are
still most desirable, searching for innovative methods
able to rejuvenate impaired cells before therapy is
strongly recommended. Since now, it was showed that
pre-incubation of ASC with certain chemicals, including
algae extracts, vitamins and basic fibroblast growth fac-
tors, exerts beneficial effects on cell metabolism [24, 39–
41]. In our recent research, we have demonstrated that
the combination of AZA and RES rejuvenate EMS de-
rived ASC by inhibition of mitochondrial fission [27, 29].
Treated cells were characterized by an increased prolif-
eration rate, reduce apoptosis and senescence, improve-
ment of mitochondria metabolism and enhanced
secretion of MVs. In the presented study, we decided to
investigate the therapeutic potential of MVs derived
from these rejuvenated cells for the treatment of muscle

injury in a horse. As MVs are immune privileged, we de-
cided to perform allogenic therapy, using MVs obtained
from our previous experiments—MVs were harvested
from ASC isolated from EMS individuals treated in vitro
with AZA/RES. Our hypothesis was that similar to reju-
venated ASC, their MVs will be characterized by en-
hanced bioactivity.
As MVs were shown to mimic the beneficial effects of

MSC, they are thought to be at least partially responsible
for their regenerative properties. In vitro experiments
revealed that MVs derived from AZA/RES-treated cells
stimulated the proliferation rate of ASC in co-culture in
a dose-dependent manner. Similarly, Bruno et al. re-
vealed that MSC-derived MVs increased the prolifera-
tion rate of tubular epithelial cells after in vitro injury
[42]. What is more, they decreased apoptosis in EMS de-
rived ASC. TUNEL staining indicated that MV treat-
ment reduced the number of dead cells in culture, while

Fig. 4 MVs derived from AZA/RES-treated ASC decrease apoptosis in ASCEMS. TUNEL staining revealed that MV treatment decreased the number
of dead cells in ASCEMS (A). qPCR results revealed that the expression of pro-apoptotic genes BAX (b) and p53 (c) was decreased in ASCEMS

cultured in the presence of MVs. On the other hand, the expression of anti-apoptotic BCL-2 (d) was enhanced. Results are expressed as mean ±
SD, *p < 0.05; **p < 0.01; ***p < 0.001
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qPCR results revealed a decreased expression of pro-
apoptotic genes, e.g. p53 and BAX, while anti-apoptotic
gene Bcl-2 expression was enhanced. In a cisplatin-
induced lethal model of acute kidney injury, several in-
jections of MVs derived from MSC increased anti-
apoptotic gene expression, including Bcl-2, in tubular
epithelial cells [43]. Similar protective effects of MVs
were shown in a model of renal ischaemia/reperfusion
injury where MVs inhibited apoptosis and stimulated
cellular proliferation [44]. On the other hand, Herrera
et al. demonstrated that in human and rat hepatocytes,
MVs enhanced proliferation and decreased apoptosis
through mRNA shuttled into recipient cells [45].
Due to their frequent and demanding physical activity,

sport horses suffer from great mechanical overload of
musculoskeletal system which makes them especially
prone for traumatization and injuries. Especially com-
mon is injury of the suspensory ligament (SL) which
contributes to pain and lameness. Since now, regenera-
tive properties of MVs were mainly studied in different

animal models of tissue injury [42, 44]. In the presented
study, we decided to inject MVs from rejuvenated ASC
into injured suspensory ligament in order to decrease in-
flammation, enhance angiogenesis and trigger a regen-
erative response of resident cells. Previous studies as a
therapeutic approach for SL injuries utilized platelet-rich
plasma (PRP), cellular bone marrow or tenogenically in-
duced allogeneic peripheral blood mesenchymal stem
cells [10, 46]. In the study performed by Vandenberghe
et al. [47], allogeneic tenogenically induced peripheral
blood-derived MSCs combined with PRP were utilized
for the treatment of a proximal SL injury with positive
outcome. On the other hand, studies performed in vitro
revealed that PRP and acellular bone marrow (ACB) in-
creased the expression of cartilage oligomeric matrix
protein (COMP) production in equine suspensory liga-
ment fibroblasts (SLF) [46]. As equine ABM and PRP
are rich in anabolic factors that promote matrix synthe-
sis, their application to injured ligaments is also justified.
Our report for the first time demonstrated the

Fig. 5 Clinical evaluation after the first MVAZA/RES injection. The resolution of a focal lesion within the SL of the right forelimb. a Initiation of lesion
filling—transverse image. b Lesion filling on a longitudinal image. c Increased histogram value in the injury site. d Transverse image of enhanced
vascularization. e Decreased elasticity of the injury site resembling surrounding tissues. f Increased temperature in the right forelimb indicates an
enhanced angiogenesis after MV injection
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application of MSC-derived MVs for SL injury treat-
ment. The obtained results correspond with the data ob-
tained in the research mentioned above. SL ligament is a
complex structure as it is composed of soft tissue and
bone components. In the presented report, diagnosis
was made by USG, Doppler, RTE and thermography. A
strong limitation of our study is the lack of angiography
which could bring more information about lesion sever-
ity. As MSCs were shown to form ectopic bone in the
calcified area [48], the application of MVs for SL injury
seems to be a safe and reasonable alternative. The first
application of MVs resulted in an initiation of lesion fill-
ing with scar tissue, increased parallel fibre pattern and
moderate diffuse decrease in echogenicity. What is more,
we observed an increased temperature in the area of le-
sion which correlated with the increased angiogenesis in
the injury site.
In recent years, regenerative medicine has focused on

soluble factors released by MSC, including MVs. As

MVs mimic several of the biological actions exerted by
MSC, they have become an alternative for stem cell-
based therapies. Here, we proved for the first time the
safe and effective application of MVs isolated from
AZA/RES-treated cells for the treatment of suspensory
ligament in athletic horse. Still, further research needs to
be performed in order to fully understand the mechan-
ism and therapeutic potential of these bioactive factors.

Conclusions
Here, we presented that MVsAZA/RES exert rejuvenating
effects in vitro as they enhanced cellular proliferation
and decreased apoptosis. Beneficial effects of MVsA-
ZA/RES were confirmed in vivo for the treatment of SL in-
jury in horse, as enhanced vascularization and healing
were observed.
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ACB: Acellular bone marrow; ASCs: Adipose-derived stem cells; AZA: 5-
Azacytidine; bFGF: Basic fibroblast growth factors; CCL-2: Chemokine (C-C

Fig. 6 Clinical evaluation after the second MVAZA/RES injection. a Transverse images of the injured SL site with a slightly increased echogenicity;
the formation of scar tissue separated from surrounding tissues with hypoechogenic fragments can be observed. b Longitudinal image. c Histograms of
varying values between healthy and injured tissue. d Moderate blood supply in SL. e Moderate differences of elasticity in SL. f Thermography showed no
pathological changes
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