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ABSTRACT
Background. Begomoviruses are widely distributed and causing devastating diseases
in many crops. According to the number of genomic components, a begomovirus is
known as either monopartite or bipartite begomovirus. Both the monopartite and
bipartite begomoviruses have the DNA-A component which encodes all essential
proteins for virus functions, while the bipartite begomoviruses still contain the DNA-
B component. The satellite molecules, known as betasatellites, alphasatellites or
deltasatellites, sometimes exist in the begomoviruses. So, the genomic components
of begomoviruses are complex and varied. Different genomic components have
different gene structures and functions. Classifying the components of begomoviruses
is important for studying the virus origin and pathogenic mechanism.
Methods. We propose a model combining Subsequence Natural Vector (SNV)method
with Support Vector Machine (SVM) algorithm, to classify the genomic components
of begomoviruses and predict the genes of begomoviruses. First, the genome sequence
is represented as a vector numerically by the SNV method. Then SVM is applied on
the datasets to build the classification model. At last, recursive feature elimination
(RFE) is used to select essential features of the subsequence natural vectors based on
the importance of features.
Results. In the investigation, DNA-A, DNA-B, and different satellite DNAs are selected
to build the model. To evaluate our model, the homology-based method BLAST and
two machine learning algorithms Random Forest and Naive Bayes method are used
to compare with our model. According to the results, our classification model can
classify DNA-A, DNA-B, and different satellites with high accuracy. Especially, we
can distinguish whether a DNA-A component is from a monopartite or a bipartite
begomovirus. Then, based on the results of classification, we can also predict the genes
of different genomic components. According to the selected features, we find that the
content of four nucleotides in the second and tenth segments (approximately 150-
350 bp and 1,450–1,650 bp) are the most different between DNA-A components of
monopartite and bipartite begomoviruses, whichmay be related to the pre-coat protein
(AV2) and the transcriptional activator protein (AC2) genes. Our results advance the
understanding of the unique structures of the genomic components of begomoviruses.
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INTRODUCTION
The family Geminiviridae contains plants viruses of circular single-stranded (ss) DNA
with a twinned quasi-icosahedral (geminate) shape. According to the Tenth Report
of the International Committee on Taxonomy of Virus (ICTV) published in 2017,
the Geminiviridae is divided into nine genera: Begomovirus, Becurtovirus, Mastrevirus,
Curtovirus, Capulavirus, Eragrovirus, Turncurtovirus, Topocuvirus andGrablovirus (Varsani
et al., 2014; Varsani et al., 2017; Zerbini et al., 2017). Among these nine genera, the genus
Begomovirus is the largest geminivirus genus, including more than 420 species (Dominguez-
Duran et al., 2018; Fauquet et al., 2003; Martinez-Marrero et al., 2020). Viruses in the other
eight genera only have monopartite genomes, whereas those in the genus Begomovirus
have monopartite or bipartite genomes (Zerbini et al., 2017). The genomes of bipartite
begomoviruses consist of two components, referred to as DNA-A and DNA-B, each
of 2.5–2.6 kb. The DNA-A component encodes all virus functions required for DNA
replication, gene expression, and insect transmission, while DNA-B is responsible for
systemic infection. The DNA-A component of bipartite begomoviruses encodes six
proteins including the coat protein, the replication-associated protein or AC1 protein,
the transcriptional activator protein (TrAP) or AC2 protein, the replication enhancer
protein (REn) or AC3 protein, the symptom determinant protein or AC4 protein and AC5
protein which is related to the suppression of antiviral defenses based on RNA silencing (Li
et al., 2015; Van Wezel et al., 2002). The DNA-B component has a common region of 200
to 250 bp as DNA-A. But it only encompasses two proteins including movement protein
or BV1 protein, and nuclear shuttle protein (NSP) or BC1 protein which are involved in
inter- and intracellular movement (Krenz, Jeske & Kleinow, 2012). However, the DNA-A
component of monopartite begomoviruses encodes one more protein, pre-coat protein
(V2) related to movement and transport of viral genome into the plant (Wang et al., 2018).

Three classes of circular DNA satellites have been associated with begomoviruses:
betasatellites, alphasatellites and deltasastellites (Briddon et al., 2018; Fiallo-Olive,
Tovar & Navas-Castillo, 2016; Gnanasekaran et al., 2019; Zhou, 2013). Betasatellites of
approximately 1.3 kb contain a single ORF termed βC1 and are associated with many
monopartite begomoviruses, which play an important role in the induction of typical
disease symptoms (Gnanasekaran et al., 2019; Li et al., 2018). Alphasatellites are related
to the replication-associated protein -encoding components of nanoviruses. They are
associated with betasatellites and have no known contributions to the pathogenesis of
begomovirus-betasatellite disease complexes (Briddon et al., 2018). Deltasatellites are
approximately 0.7 kb and do not encode any proteins (Fiallo-Olive, Tovar & Navas-
Castillo, 2016). The number of genomic components and organization of the genomes
are the important criteria to establish the taxonomy of Begomovirus. For example, New
World begomoviruses are mostly bipartite, do not contain an AV2/V2 ORF, and can be
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associated with alphasatellites. Classifying the genomic components and predicting the
gene of begomoviruses is important for studying its origin and pathogenic mechanism
(Briddon et al., 2010; Zhou, 2013).

ICTV classifies nine genera in theGeminiviridae family based on host range (monocots or
dicots), type of vector (leafhoppers, treehoppers, whiteflies, aphids), genome organization
(mono- or bipartite), and phylogenetic relationships (Zerbini et al., 2017). With the
continuous development of the high-throughput sequencing methods, thousands of
complete genomes or partial sequences of geminiviruses are available in the public datasets.
Many different computational methods or algorithms are used to classify geminiviruses
only based on the genomic information. For example, Silva et al. (2017b) presented a
machine learning (ML) classification model, called Fangorn Forest (F2), based on only
genomic characteristics to classify genera and genes in the Geminiviridae family. All genera
of the family Geminiviridae could be classified with high accuracy (Silva et al., 2017b).
However, these methods cannot classify the genomic components of begomoviruses.
Especially, they cannot distinguish whether a DNA-A component is from a monopartite
or a bipartite begomovirus.

In this study, to classify the genomic components and predict the genes of begomoviruses,
we propose a machine learning model based on the subsequence natural vector (SNV)
method and Support Vector Machine (SVM) algorithm. First, the genome sequence is
represented as a numerical natural vector (He et al., 2020). Then SVM is applied to the
datasets to build the classification model. Benchmark results demonstrate that our method
is highly accurate for the classification than BLAST (Camacho et al., 2009), Random Forest,
and Naive Bayes methods. Our model can classify different genomic components of
begomoviruses and distinguish whether a DNA-A component is from a monopartite or a
bipartite begomovirus. Also, based on the importance of features of the vector by recursive
feature elimination (RFE) (Xiaoqiang, Qing & Jingjing, 2013), we find that the content
of four nucleotides in the second and tenth segments (approximately 150–350 bp and
1,450–1,650 bp) are the most different between DNA-A components of monopartite and
bipartite begomoviruses, which may be related to the AV2 and AC2 genes. Based on the
results of classification, we can also predict the genes of different genomic components.
All the results demonstrate our method performs well on the genomic components
classification and the genes prediction of begomoviruses.

MATERIALS & METHODS
Materials
Genomes of non-begomoviruses and begomoviruses are collected from theNational Center
for Biotechnology Information (NCBI). We intend to distinguish genome sequences
of begomoviruses from other geminiviruses. Non-begomovirus class is composed of
eight genera of Geminiviridae family. Complete genomes of the Begomovirus family
including DNA-A, DNA-B, alphasatellites, betasatellites, and deltasatellites are used in the
classification of sequence types of the Begomovirus genus. To ensure the accuracy of the
data, we validate the genomes on the Geminivirus data warehouse (Silva et al., 2017a).
Then we construct the training set and test set according to the ratio of 7: 3.
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Table 1 The data size used in training and testing datasets of the classification tasks.

Genus
classification

Genome
components
classification

Monopartite or
bipartite DNA-A
classification

Training dataset 976 491 349
Test dataset 419 212 120

The complete DNA-A components of monopartite begomoviruses and bipartite
begomoviruses are selected to determine whether the DNA-A is from a bipartite or a
monopartite begomovirus. The training set contains the monopartite DNA-A sequences
and the bipartite DNA-A sequences that have the corresponding DNA-B segments in
NCBI. The remaining DNA-A sequences that do not have corresponding DNA-B segments
in NCBI are the test dataset. Accordingly, the genes of genomic components in this training
dataset are used as training data for gene prediction, and the genes in this test dataset are
for prediction.

The data size used in training and testing datasets is shown in Table 1. All the accession
numbers of the complete genomes in the training and testing dataset are shown in Files S1
and S2 respectively.

Classification model
The classification model for genomic components of Begomovirus is composed of four
fundamental steps as illustrated in Fig. 1. First, we use the SNVmethod to extract attributes.
EachDNA sequence is converted to a vector in the Euclidean space by SNVmethod. Second,
the model can classify the vector as belonging to the Begomovirus genus by SVM. Then, if it
belongs to the Begomovirus genus, it can be classified amongDNA-A, DNA-B, betasatellites,
alphasatellites, and deltasatellites. And if it is classified as the DNA-A sequence, the model
can determinewhether it is from a bipartite ormonopartite begomovirus. Finally, according
to its classification, we can do genes prediction for the input DNA sequence.

Attribute extraction: Subsequence Natural Vector (SNV)
To build classification models, the genome sequences are represented numerically first. Let
S= s1s2 ...sN ,s∈ {A,C,G,T } be a DNA sequence of length N . To construct Subsequence
Natural Vector [17], we fix k as a preset integer less than N . We divide N by k:

q=
⌊
N
k

⌋
, r =N −q ·k, (1)

where q is the quotient and r is the remainder and k ∈ {3, 4, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47} (Zhao, He & Yau, 2011). Then the DNA sequence is divided into
k subsequences: the lengths of the first r subsequences are q+1, and the lengths of the
remaining k− r subsequences are q.

Next, we define NV (i) be the Natural Vector of ith subsequences as follows:
1. Let nl be the number of nucleotides l in the subsequence.
2. Let s[l][p] be the position of p-th nucleotide l in the subsequence. Then we take

µl =

∑nl
p=1s[l][p]

nl
as the mean position of nucleotide l .
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Figure 1 Flowchart of the classification model.
Full-size DOI: 10.7717/peerj.9625/fig-1

3. We define the second central moments as: Dl
2=

∑nl
p=1(s[l][p]−µl )2

nnl
, where n is the length

of the subsequence.
4. NV (i)=

(
nA,nC ,nG,nT ,µA,µC ,µG,µT ,DA

2 ,D
C
2 ,D

G
2 ,D

T
2
)
.

Finally, we put all NV (i) together and get Subsequence Natural Vector SNV of S,

SNV = (NV (1),...,NV (k)). (2)

Then SNV for each sequence is selected as input attributes of SVM algorithm.

Evaluation of machine learning methods
In our study, Support Vector Machine (SVM) method is used to perform the classification
tasks. SVM is implemented inClassification Learner inMATLABR2016awith parameters of
Preset: medium Gaussian SVMKernel, function: Gaussian, Kernel scale: 14, Box constraint
level: 1, Multiclass method: one-vs-One, Standardize data: true. Other three methods
including Random Forest, Naive Bayes and BLAST are tested for comparison. Random
Forest is implemented in Classification Learner in MATLAB R2016a with parameters of
Preset: Bagged Trees Ensemble, method: Bag, Type: Classification, Number of learners: 30.
The function ‘fitcnb’ in MATLAB R2016a is used to train multiclass naive Bayes model
with default parameters. Blastn in NCBI-2.10.0+ is used for BLAST analysis. All the codes
of our study are shown in File S3.

We use two different techniques to test the performance of the classification tasks. One
technique is a completely independent test set, and the other is 10-fold cross-validation.
For each test, the following measures are calculated to evaluate the model performance:
accuracy, recall, precision, F-measure, and AUC. True positives (TP) are the cases in which
the classification model predicts them to be true while those cases were indeed true. True
negatives (TN) are corresponding to the cases correctly predicted to be false. False positives
(FP) and False negatives (FN) refer to true or false cases that are incorrectly predicted.
Accuracy is to measure how often our classification model is correct, calculated as (TP +
TN)/ (total number). Recall (R), the proportion of actual negative cases correctly labeled
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Figure 2 Flowchart of the gene prediction model.
Full-size DOI: 10.7717/peerj.9625/fig-2

is calculated as TN/ (FP + TN), while precision (P) is the proportion of actual positive
cases correctly identified, which is calculated as TP/ (TP + FN). And F-measure is 2*P*R/
(P+R). AUC is defined as the area enclosed by the coordinate axis under the ROC curve.

Feature selection
To evaluate the importance of features for the models built on our datasets, we used a
MATLAB package SVM-REF (https://www.mathworks.com/matlabcentral/fileexchange/
50701-feature-selection-with-svm-rfe, MATLAB Central File Exchange). SVM-RFE is a
powerful feature selection algorithm in machine learning (Xiaoqiang, Qing & Jingjing,
2013). The method is suitable to avoid over-fitting when the number of features is high.
It is a sequence backward selection algorithm based on SVM maximum interval principle.
It uses the model training samples, then ranks each feature, removes the features with the
smallest feature score, then trains the model again with the remaining features, performs
the next iteration, and finally selects the required number of features.

Genes prediction model
The procedure of genes prediction is shown in Fig. 2. To predict genes by our model, the
candidate open reading frames (ORFs) should be selected first. According to that all start
codons are ATG (5′→ 3′) and CAT (3′→ 5′), we find all the possible start codons in the
sense or anti-sense sequence. Similarly, all stop codons TAG, TAA, TGA TAG, TAA, TGA
(5′ → 3′) and CTA, TTA, TCA (3′ → 5′) can be located. Then each fragment between
each pair of start codon and stop codon in the same sense is a candidate ORF. However,
before starting our model, we need to check the basic requirement of each candidate ORF
(in 5′→ 3′ or 3′→ 5′): whether the translated amino acid sequence is not truncated and
is greater or equal to 33 amino acids. Then we can obtain all candidate ORFs. The SNVs of
different genes of the training data are used to construct convex hulls in Euclidean space.
The distances between all the candidate ORFs and convex hulls can be calculated by Tian’s
work (Tian, Zhao & Yau, 2018). At last, the closet candidate ORF is our predicted gene.
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Table 2 The performance of the classification tasks by SNV-SVM, Random Forest, Naive Bayes and Blastn.

Accuracy Precision Recall F-measure AUC Time
(s)

SNV-SVM 0.990 0.987 0.992 0.990 0.998 0.553
Random Forest 0.980 0.974 0.988 0.981 0.997 3.158
Naive Bayes 0.867 0.871 0.896 0.884 0.923 1.717

Genus classification

Blastn 0.990 0.990 0.990 0.990 0.995 5.718
SNV-SVM 0.995 0.995 0.995 0.995 0.998 1.148
Random Forest 0.995 0.996 0.996 0.996 0.996 2.765
Naive Bayes 0.982 0.976 0.988 0.981 0.995 2.050

Genome component
classification

Blastn 1.000 1.000 1.000 1.000 1.000 3.745
SNV-SVM 0.987 0.985 0.991 0.988 0.998 0.293
Random Forest 0.952 0.947 0.953 0.952 0.980 1.862
Naive Bayes 0.977 0.967 0.987 0.977 0.973 0.219

Mono-or bipartite
DNA-A classification

Blastn 0.818 0.750 0.844 0.794 0.834 1.050

RESULTS
Performance of the classification model
The performance of the models for genus, genomic components, and monopartite or
bipartite DNA-A classification by 10-folds validation are shown in Table 2, which are
trained by SVM, BLAST, Random Forest and Naive Bayes methods. The performance
results show that SVM is superior to other methods for the classification tasks, especially
for the monopartite or bipartite DNA-A classification. For the classification of the genus
Begomovirus, the SVM algorithm achieves the performance of accuracy, recall, precision F-
measure and AUC of 0.990. 0.992, 0.987, 0.990, 0.998, respectively. The mean performance
of SVM for genomic components classification is the accuracy, recall, precision, F-measure,
and AUC of 0.993, 0.983. 0.990, 0.986, 0.998, respectively. For monopartite or bipartite
DNA-A classification, the SVMmethod achieves the accuracy, precision, recall, F-measure,
and AUC of 0.987, 0.985, 0.988, 0.990, 0.998, respectively. The confusionmatrices and ROC
curves of genus, genomic components, and monopartite or bipartite DNA-A classification
by SVM are shown in Fig. 3.

Then we use SVM to predict the test dataset. And the accuracy for genus, genomic
components, and monopartite or bipartite DNA-A classification is 0.990, 0.981, and
0.972, respectively. Especially, for monopartite or bipartite DNA-A classification,
there are five mismatches. Only one of DNA-As which is predicted as bipartite is
inconsistent with corresponding reference (NC013413). The biochemical experiments
on a begomovirus DNA-B component or virus-associated satellite DNA cannot find in
any of the samples by PCR using the DNA-B general primer pairs DNABLC1/DNABLV2
and DNABLC2/DNABLV2 and the satellite detection primer pair Beta01/Beta02 (Tsai et
al., 2009). However, sometimes the DNA-B component (DNA-B) cannot be successfully
tested, maybe owning to the low concentration of this component in infected tissues (Salim
& Thushari, 2010). For those predicted as monopartite, three bipartite begomoviruses are
misclassified (NC014845, NC014894, and NC030403). But the phylogenetic analysis
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Figure 3 The confusionmatrices and ROC curves of genus, genomic components andmonopartite
or bipartite DNA-A classification by SVM. (A) the confusion matrix of genus classification; (B) the ROC
curves of genus classification; (C) the confusion matrix of genomic components classification; (D) the
ROC curves of genomic components classification; (E) the confusion matrix of monopartite or bipartite
DNA-A classification; (F) the ROC curves of monopartite or bipartite DNA-A classification.

Full-size DOI: 10.7717/peerj.9625/fig-3

indicates that the three sequences are typical old-world bipartite begomoviruses
(Leke et al., 2016; Qazi et al., 2007; Venkataravanappa et al., 2012). As a result, the
organization of genes of these three bipartite is closer to monopartite begomoviruses.

Performance of the gene prediction model
Genomic components have various numbers of genes that encoding different proteins.
Bipartite DNA-As contain six ORFs: coat protein (CP), replication-associated protein
(Zerbini et al.), AC2, AC3, AC4, and AC5, while monopartite DNA-As have seven ORFs:
CP, V2, Rep, C2, C3, C4 and C5. DNA-Bs encode two ORFs: BV1 and BC1. Betasatellites
and alphasatellites encode βC1 and Rep proteins, respectively. Because AC5 proteins are
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Figure 4 Two-dimensional projection of the convex hulls of different genes of different DNA types
by Linear Discrimination Analysis. X-axis and Y -axis are two directions of projection. (A) Two-
dimensional projection of the convex hulls of different genes DNA-A; (B) two-dimensional projection of
the convex hulls of different genes DNA-B.

Full-size DOI: 10.7717/peerj.9625/fig-4

recently studied, the number of AC5 proteins is significantly less than other proteins.
There are only 15 bipartite DNA-A sequences annotated AC5 protein in our dataset, so
the prediction of AC5 protein is ignored in our model. After the classification model
established for begomoviruses, we can accurately determine the genomic component of
a given sequence of the virus. Then we use training data to construct the convex hulls of
the virus genes. Figure 4 is two-dimensional projection of the convex hulls of the genes in
genomic components by linear discrimination analysis. We can see that for each genomic
component, the convex hulls of genes are disjoint from each other. Because the genomic
structures of DNA-B and satellites are relatively simple, all the prediction results of DNA-B
and satellites by our model are consistent with gene annotation on NCBI. For DNA-A,
there are four Reps and one AC2 predicted wrong which are shorter than annotation
on NCBI, and one AV1 predicted longer than annotation. So, the mean accuracy of our
prediction model of DNA-A components is 0.9791.

The importance of features
The sequences of DNA-A components in the monopartite and bipartite begomoviruses
are similar, but it can be classified with high accuracy by our model. So, we can further
study the differences of DNA-A genome sequences between bipartite and monopartite
begomoviruses by the importance of features in the classification model. Because of the
best performance of classification by SVM, REF in SVM is applied to perform variable
selection. The result of predictor importance by Random Forest is also shown in Table S1.
According to the importance of features by RFE, the top eight dimensions of SNV are 109th
to 112th dimensions and 13th to 16th dimensions, which are numbers of four nucleotides
in the tenth and second segments. It means that the contents of four nucleotides in the tenth
and second segments are the most divergent in monopartite and bipartite begomoviruses.

To further study the differences in the tenth and second segments, we calculate the GC
content of the second and tenth genome segments of all the DNA-A genome sequences.
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Table 3 The results of T -test of GC content.

Monopartite Bipartite T-statistic p-value

GC content (2nd segment) 0.430(±0.044) 0.474(±0.047) −7.578 0.000
GC content (10th segment) 0.493(±0.035) 0.479(±0.037) 2.962 0.003

Figure 5 Genomic regions, transcripts, and products of a monopartite begomoviruse (Tomato yellow
leaf curl virus, NC_004005).

Full-size DOI: 10.7717/peerj.9625/fig-5

The GC content between monopartite and bipartite DNA-A components is compared
with the independent T -test. The results are shown in Table 3. We can conclude that
the average GC content of the second segment of the DNA-A genome sequences of
bipartite begomoviruses is significantly higher than that of the DNA-A genome sequences
of monopartite begomoviruses. However, the average GC content of the tenth segment of
the DNA-A genome sequences of bipartite begomoviruses is significantly lower than that
of the DNA-A genome sequences of monopartite begomoviruses.

Then we map these two segments to the original sequence and find that the second
segment is located at the V2 (AV2) gene and the other one is located at the C2 (AC2)
gene (Fig. 5). The divergence of genes between monopartite and bipartite begomoviruses
has been well documented. For example, in (Matic, Pegoraro & Noris, 2016; Mubin et al.,
2010), because monopartite begomoviruses do not have a DNA B component and therefore
lack the nuclear shuttle protein (NSP) that is the elicitor of cell death, they argued that the
protein encoded by the V2 gene of monopartite begomoviruses was a pathogen-encoded a
virulence determinant and the cell death elicited by the V2 protein was suppressed by the
product encoded by the C2 gene, a homolog of the bipartite begomovirus-encoded TrAP.

DISCUSSION
This paper proposes a newmodel based on SNVmethod and SVM algorithm to classify the
genomic components of Begomovirus. According to the results, our classification model
can classify DNA-A, DNA-B, and different satellites with high accuracy. Especially, it can
distinguishwhether aDNA-A component is from amonopartite or a bipartite begomovirus.
Then we can predict the genes of the sequence based on its genomic components by our
model accurately. To further investigate the differences between the DNA-A sequences, we
examine the feature importance of the dimensions of SNV by REF algorithm. There is a
significant difference inGC content between the second and tenth segments (approximately
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150–350 bp and 1,450–1,650 bp) of monopartite and bipartite begomoviruses, which may
be related to the AV2 and AC2 genes.

The previous studies only classify the satellites of begomoviruses based on the proportion
of nucleotides. In our study, five different genomic components of begomovirueses can
be classified accurately based on the proportion and the distribution of four nucleotides.
Our method can identify multiple begomovirus sequences at the same time. Particularly
when the number of sequences is large, our method has more obvious advantages. So, it is
a powerful customized method for the classification of begomoviruses with high accuracy
that can result in expressive economic impacts.

CONCLUSIONS
The genus Begomovirus is the largest genus of Geminiviridae, and comprises viruses with
either monopartite or bipartite genomes, and some satellites. In addition, the sequence
similarity between DNA-A components of monopartite and bipartite begomoviruses is
very high. Identifying DNA components of this genus has become a challenge due to
high similarity and many sequences available in databases. In this study, we propose
a classification model based on SNV method and SVM algorithm. The SNV method
can compare the genome sequences accurately by dividing the sequences into several
segments and then extract the proportion and the distribution of for nucleotides of each
segment. SVM is applied to build the classification models. The results show that our
method is efficient to classify genomic components of begomoviruses and predict genes of
begomoviruses with high precision. In addition, each genome sequence is associated with
a numerical vector in the Euclidean space by SNV method. Then, the Euclidean distance
between different vectors can be used to measure the biology distance between sequences.
Therefore, our method can be used to perform the phylogenetic analysis based on the
Euclidean distance.
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