1 Inferring demographic and selective histories from population genomic data using a two-2 step approach in species with coding-sparse genomes: an application to human data 3 Vivak Soni^{1,*} and Jeffrey D. Jensen^{1,*} 4 5 ¹School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, 6 7 AZ, US 8 9 ^{*}Corresponding authors: vsoni11@asu.edu; jeffrey.d.jensen@asu.edu 10 VS and JDJ conceptualized the project, VS wrote and implemented all code, VS performed 11 12 the formal analyses with input from JDJ, and VS and JDJ wrote the manuscript. This project 13 was funded by National Institutes of Health grant R35GM139383 to JDJ. 14 This research was conducted using resources provided by Research Computing at Arizona 15 16 State University (http://www.researchcomputing.asu.edu) and the Open Science Grid, 17 which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science. 18 19 20 All authors declare that they have no conflicts of interest. 21 22 Code to run simulations and perform analyses is available on GitHub: 23 (https://github.com/vivaksoni/human demog DFE/)

25 Abstract

26	The demographic history of a population, and the distribution of fitness effects (DFE) of
27	newly arising mutations in functional genomic regions, are fundamental factors dictating
28	both genetic variation and evolutionary trajectories. Although both demographic and DFE
29	inference has been performed extensively in humans, these approaches have generally
30	either been limited to simple demographic models involving a single population, or, where a
31	complex population history has been inferred, without accounting for the potentially
32	confounding effects of selection at linked sites. Taking advantage of the coding-sparse
33	nature of the genome, we propose a 2-step approach in which coalescent simulations are
34	first used to infer a complex multi-population demographic model, utilizing large non-
35	functional regions that are likely free from the effects of background selection. We then use
36	forward-in-time simulations to perform DFE inference in functional regions, conditional on
37	the complex demography inferred and utilizing expected background selection effects in the
38	estimation procedure. Throughout, recombination and mutation rate maps were used to
39	account for the underlying empirical rate heterogeneity across the human genome.
40	Importantly, within this framework it is possible to utilize and fit multiple aspects of the
41	data, and this inference scheme represents a generalized approach for such large-scale
42	inference in species with coding-sparse genomes.

44 Keywords

- 45 demography; distribution of fitness effects; background selection; selective sweeps; genome
- 46 scans; genetic hitchhiking

48 Introduction

50	Genetic variation is a fundamental concern of population genetics. Prior to the advent of					
51	next-generation sequencing, the dominant debate within the field was centered on whether					
52	levels of genetic variation were expected to be minimal or substantial (known as the					
53	<i>classical/balanced</i> debate; see Lewontin 1987; Crow 1987). Selection was assumed as the					
54	dominant process in both cases, be it purifying selection depressing levels of variation, or					
55	balancing selection maintaining polymorphism (Dobzhansky 1955). Despite molecular					
56	evidence confirming plentiful levels of genetic variation, Motoo Kimura's Neutral Theory of					
57	Molecular Evolution (Kimura 1968, 1983) instead posited that observed variation was largely					
58	a consequence of genetic drift; that is, of neutral alleles segregating in the process of					
59	drifting towards fixation or loss. This hypothesis – that neutral rather than selective					
60	processes can explain the majority of observed variation – has since been largely					
61	corroborated (as reviewed in Jensen et al. 2019).					
62						
63	However, quantifying the precise roles of selective and neutral processes in shaping					
64	observed levels of variation – and disentangling their individual effects - remains an ongoing					
65	challenge due to the similar manners in which multiple evolutionary processes affect					
66	patterns of variation. One notable example is the extent to which neutral population					
67	growth, background selection (BGS; Charlesworth et al. 1993), and recurrent selective					
68	sweeps (Maynard Smith and Haigh 1974) can all skew the site frequency spectrum (SFS, the					
69	distribution of allele frequencies) toward rare alleles (Kim 2006; Jensen et al. 2007;					
70	Nicolaisen and Desai 2012, 2013; Ewing and Jensen 2016; Johri et al. 2021; Soni et al. 2023;					
71	and see review of Charlesworth and Jensen 2021, 2024). The effects of these processes are					

72	further modified by genomic heterogeneity in mutation and recombination rates in often
73	complex ways (Soni et al. 2024b). Therefore, if one wishes to quantify the strength and
74	frequency of rare and episodic processes such as positive selection, one must first construct
75	an evolutionarily appropriate baseline model that accounts for the effects of constantly
76	occurring processes including genetic drift as modulated by historical population size
77	changes, as well as the effects of purifying selection and BGS resulting from the removal of
78	deleterious mutations (Bank et al. 2014; Johri et al. 2022a), all whilst accounting for
79	underlying mutation and recombination rate variation. Failure to account for these
80	processes is likely to lead to misinference, particularly in light of the fact that many
81	commonly studied populations and species are thought to have experienced not only
82	population growth, but also recent and severe population bottlenecks [e.g. humans
83	(Gutenkunst et al. 2009; Gravel et al. 2011; Excoffier et al. 2013), non-human primates
84	(Terbot et al. 2024; Soni et al. 2024c) and Drosophila melanogaster (Li and Stephan 2006), as
85	well as a variety of human pathogens (Irwin et al. 2016; Sackman et al. 2019; Jensen 2021;
86	Morales-Arce et al. 2021)], a demographic history that is itself often strongly confounded
87	with selective sweeps (Barton 1998; Poh et al. 2014; Matuszewski et al. 2018; Harris and
88	Jensen 2020; Charlesworth and Jensen 2022; Jensen 2023).

89

Constructing an evolutionarily appropriate baseline model for a given population will
therefore require inferring both a demographic history as well as the distribution of fitness
effects (DFE) of new mutations. However, because population history can confound DFE
inference, it is necessary to correct for the demographic history of the population in
question (Eyre-Walker and Keightley 2007; Boyko et al. 2008). The most commonly used
class of approaches are based on a framework in which demographic inference is performed

96	on putatively neutral sites, before utilizing that demographic history for DFE inference on
97	functional sites (Eyre-Walker and Keightley 2007; Boyko et al. 2008; Galtier 2016; Tataru and
98	Bataillon 2020; and see review of Johri et al. 2022b). Eyre-Walker and Keightley (2007)
99	obtained the first computationally inferred DFE estimates using this approach, and further
100	work incorporated a beneficial class of mutations into the inferred DFE (Boyko et al. 2008;
101	Eyre-Walker and Keightley 2009; Schneider et al. 2011; Galtier 2016).
102	
103	Notably, this type of 2-step approach is often performed on functional regions under
104	the assumption that all sites are independent and unlinked, and that synonymous sites are
105	selectively neutral. However, these synonymous sites are likely experiencing BGS effects
106	(Charlesworth et al. 1993) due to linkage with directly selected and adjacent non-
107	synonymous sites, resulting in a skew in the SFS and thus mis-inference; in particular, these
108	BGS effects are often misinterpreted as population growth (Ewing and Jensen 2014; Johri et
109	al. 2021; and see review of Johri et al. 2022b). More generally speaking, there is indeed
110	substantial evidence that the effects of selection at linked sites may be widespread across
111	the genomes of many commonly studies species (see reviews of Cutter and Payseur 2013;
112	Charlesworth and Jensen 2021). Although recent work has shown that DFE inference is
113	relatively robust to the biasing effects of selection at linked sites (Kim et al. 2017; Huang et
114	al. 2021), that is not the case for demographic inference (Messer and Petrov 2013;
115	Nicolaisen and Desai 2013; Ewing and Jensen 2016; Schrider et al. 2016; Johri et al. 2021). It
116	is also noteworthy that these 2-step approaches are generally constrained to relatively
117	simple population histories utilizing a two-epoch model (Williamson et al. 2005; Keightley

118 and Eyre-Walker 2007; Kousanthanas and Keightley 2013).

120	The second class of methods involve using forward-in-time simulations (e.g., in SLiM;
121	Haller and Messer 2023) to jointly and simultaneously infer population history with the DFE
122	in an approximate Bayesian (ABC) framework (see Beaumont et al. 2002), as proposed by
123	Johri et al. (2020). Within this simultaneous inference scheme, it is neither necessary to
124	assume <i>a priori</i> the neutrality of synonymous sites, nor is it necessary to assume
125	independence amongst sites; as such, background selection can be directly modelled and
126	incorporated. While 2-step methods commonly infer a continuous distribution for the DFE,
127	this ABC framework infers a number of discrete DFE categories for various ranges of $2N_es$,
128	the population-scaled selection coefficient, where N_e is the effective population size and s is
129	the strength of selection acting on new mutations within the DFE category of interest. The
130	main drawback of such methods is that they are computationally expensive given the large
131	parameter space that must be explored when jointly inferring both demographic and DFE
132	parameters. As such, the inferred demographic models have thus far been limited to single-
133	step size changes in which the ancestral and current population sizes, as well as the timing
134	of size change, are inferred (Johri et al. 2020, 2023). Importantly however, in coding-dense
135	and/or non-recombining species in which sufficiently neutral, unlinked genomic regions may
136	not exist in the genome (thus precluding the needed neutral demographic inference
137	underlying 2-step approaches), this simultaneous inference framework remains the only
138	viable approach (e.g., Howell et al. 2023; Terbot et al. 2023a,b; Soni et al. 2024a).
139	
140	It thus stands as an outstanding evolutionary inference question of how best to
141	accurately infer a necessarily complex and realistic demographic model, along with a
142	realistic DFE governing functional genomic regions, all whilst accounting for the variety of

discussed potential biases. Here we have investigated a modified 2-step approach applied to

144	human populations, in which the population history was inferred using non-functional
145	regions sufficiently distant from functional sites in order to avoid BGS effects, DFE inference
146	was then performed on exonic regions accounting for BGS effects and conditional on the
147	demographic history inferred in Step 1, and mutation and recombination rate maps were
148	utilized to account for the modulating effects of this underlying heterogeneity. By inferring
149	these parameters separately, a more biologically realistic population history was possible
150	accounting for the complexities of population size change, structure, and migration patterns
151	in these studied human populations, while the utilization of these distant non-functional
152	regions allowed for the reduction or elimination of the biasing effects of BGS on
153	demographic inference. Whilst a number of coalescent and diffusion approximation-based
154	approaches would be easily incorporated into our framework (e.g., Gutenkunst et al. 2009;
155	Excoffier et al. 2013; Jouganous et al. 2017; Wang et al. 2020), this approach – like the ABC
156	approach of Johri et al. (2020, 2022a) - has the benefit of utilizing various aspects of
157	population genomic data, including the SFS, associations between variants (linkage
158	disequilibrium, LD), and population differentiation.
159	
160	As human populations have naturally been highly studied, with numerous published
161	demographic models, we here provide an optimized and well-fitting 4-population
162	demographic model for the Out-of-Africa (OOA) expansion. Conditional on this model, we

- additionally optimized a DFE using genic regions, fitting both levels and patterns of
- 164 polymorphism and divergence, and finding consistency with the recent DFE estimates of
- 165 Johri et al. (2023). Finally, we have evaluated the degree to which positively selected
- 166 mutations may be identifiable within the context of this fit model. This work thus provides a

- 167 valuable and improved framework for evolutionary inference in coding-sparse genomes,
- 168 and for the construction of evolutionary baseline models in such species.
- 169
- 170

171 Methods and Materials

172 Data

173 This study was based on the GRCh37 human reference genome, with SNP data and

- accessibility masks obtained from 1000 genomes variant call format and bed files,
- 175 respectively (The 1000 Genomes Project Consortium 2015). The data was split into
- 176 continental populations, informed by levels of admixture, as determined by The 1000
- 177 Genomes Project Consortium (2015). The total number of samples from each of the four
- 178 considered populations were: African 99; European 502; East Asian 104; South Asian –
- 489. We obtained recombination and mutation rate maps from Halldorsson et al. (2019) and
- 180 Francioli et al. (2015), respectively, gene annotations from NCBI (Sayers et al. 2022),
- ancestral sequences from the six-way EPO alignments available from Ensembl (Flicek et al.
- 182 2014; Cunningham et al. 2022), and we identified conserved elements via the 100-way
- 183 PhastCons score (Siepel et al. 2005; Pollard et al. 2010). See Supplementary Table S1 for
- 184 links to all downloaded data.
- 185

186 Selecting non-functional regions for demographic inference

- 187 For demographic inference we identified non-functional regions of the human
- 188 genome that were at a distance of at least 10kb from the nearest functional region (as per
- the NCBI GFF file [Sayers et al. 2022]). We then masked these regions using both strict
- 190 accessibility masking (The 1000 Genomes Project Consortium 2015) and conserved element

191	masks (i.e., with a phastCons score > 0 [Siepel et al. 2005; Pollard et al. 2010], in order to
192	remove sites potentially experiencing purifying selection and generating background
193	selection effects (e.g., binding sites (Simkin et al. 2014))). Across each region, we calculated
194	mean recombination and mutation rates, with any regions lacking this information being
195	removed. Finally, we set a minimum length threshold of 15kb to ensure that regions were
196	long enough to reliably calculate summary statistics. Following these steps, we were left
197	with a total of 146 non-functional regions. Finally, we used the B maps of McVicker et al.
198	(2009) to compare the distribution of B values (i.e., the estimated reduction in diversity
199	attributed to BGS by McVicker et al. (2009)) to the distribution of our non-functional
200	regions. For this analysis we lifted over B map coordinates from the hg18 human genome
201	assembly to the GRCh37 assembly using the UCSC liftover tool (Karolchik et al. 2003).
202	Supplementary Figure S1 provides plots of this comparison, as well as the distributions of
203	region lengths, SNPs, and mutation and recombination rates for our set of curated non-
204	functional regions.
205	
206	Selecting exons for DFE inference

207 We used the set of exons curated by Johri et al. (2023), although our focus was on 208 the exonic regions only, as opposed to the exons and the neighbouring intergenic regions. 209 Because we used different recombination and mutation rate maps (as described in the data 210 section above), we recalculated mean rates across the 465 exonic regions, removing regions 211 for which we did not have rate information, leaving a total of 397 exonic regions. 212

213

215 Calculating empirical summary statistics

216	We calculated summary statistics for each population sampled using the python						
217	library for libsequence, Pylibseq v0.2.3 (Thornton 2003), except for F_{ST} which was estimated						
218	using scikit-allel (Miles et al. 2024). The number of segregating sites and F_{ST} were calculated						
219	per site, whilst Tajima's D (Tajima 1989) and mean r^2 were calculated over 10kb windows for						
220	each non-functional region, and per region for each exon.						
221							
222	Exonic divergence was calculated based on the number of fixed differences between						
223	the reference and ancestral sequences, with polymorphic sites masked, relative to total						
224	region size.						
225							
226	Calculating summary statistics from simulated data						
227	We calculated summary statistics from simulated data in a manner that replicated						
228	the empirical data, using the same software as described above. Thus, sites that had been						
229	masked in the empirical data were also masked in the simulated data prior to calculating						
230	summary statistics.						
231							
232	Exonic divergence was calculated as the number of fixations post-burn-in from						
233	forward-in-time simulations (see the 'Simulating human population history with selection						
234	using SLiM' section).						
235							
236	We calculated the mean and standard deviation for each region across its respective						
237	100 replicates. For plotting purposes, we plotted the mean of all regions as the data point,						
238	and the mean of the standard deviations across all regions as the confidence intervals.						

239

240 Simulating human population history using Msprime

241	Step 1 in our 2-step inference framework was the inference of population history.
242	We simulated human demography using the coalescent simulator Msprime (Baumdicker et
243	al. 2022) for each of our 146 non-functional regions, with region specific mutation and
244	recombination rates. Our demographic model was comprised of 5 populations (four
245	sampled populations: African, European, South Asian and East Asian; as well as the
246	unsampled ancestral Eurasian population) and 25 parameters. Parameter ranges were taken
247	from the human demographic inference literature, with midpoints of all ranges used as the
248	initial starting parameterization. A generation time of 26.9 years was used to appropriately
249	scale simulations (Wang et al. 2023). For details of the demographic model see Figure 1 and
250	Table S2. 100 replicates were simulated for each of the 146 non-functional regions, with a
251	single mutation and recombination rate per region, calculated as the average across the
252	region from the Francioli et al. (2015) mutation rate map and the Halldorsson et al. (2019)
253	recombination rate map (see Supplementary Figure S1 for distributions of region lengths,
254	mutation rates and recombination rates across curated regions). Parameters were
255	optimized to the data using F_{ST} , the number of segregating sites, Tajima's D (Tajima 1989)
256	and mean r^2 , across all four populations. Demographic inference plots (e.g., Figure 1) were
257	produced using Demes software (Gower et al. 2022).

258

259 Simulating human population history with selection using SLiM

For Step 2, we simulated the inferred population history from Step 1 using the forward-in-time simulator SLiM (v4.0.1 [Haller and Messer 2023]), for our 397 exonic regions, with region specific mutation and recombination rates. We simulated to the

263	human-chimpanzee split (12mya; Moorjani et al. 2016). Thus, the simulations considered 12
264	million years (446,100 generations) before starting the 10N generation burn-in period.
265	Exonic mutations were drawn from a DFE comprised of 4 fixed classes (following Johri <i>et al.</i>
266	2020), with frequencies denoted by $fi: f_0$ with $0 \le 2N_{AFRancestral} s < 1$ (i.e., effectively neutral
267	mutations), f_1 with $1 \le 2N_{AFRancestral} s < 10$ (i.e., weakly deleterious mutations), f_2 with $10 \le 10$
268	$2N_{AFRancestral} s < 100$ (i.e., moderately deleterious mutations), and f_3 with $100 \le 2N_{AFRancestral} s$
269	(i.e., strongly deleterious mutations), where $2N_{AFRancestral}$ is the initial African population size
270	and <i>s</i> is the reduction in fitness of the mutant homozygote relative to the wild-type. We
271	initially simulated the DFE from Johri et al. (2023) - comprised of neutral and deleterious
272	mutations - which fit the empirical data well.
273	
274	Simulating selective sweeps
275	Recurrent
275 276	<u>Recurrent</u> We simulated recurrent selective sweeps by adding a beneficial DFE category for our
275 276 277	Recurrent We simulated recurrent selective sweeps by adding a beneficial DFE category for our 397 exonic regions. We simulated three different beneficial rates (0.1%, 1%, and 10% of new
275 276 277 278	Recurrent We simulated recurrent selective sweeps by adding a beneficial DFE category for our 397 exonic regions. We simulated three different beneficial rates (0.1%, 1%, and 10% of new mutations), with the effectively neutral DFE category (f_0) reduced to account for the
275 276 277 278 279	Recurrent We simulated recurrent selective sweeps by adding a beneficial DFE category for our 397 exonic regions. We simulated three different beneficial rates (0.1%, 1%, and 10% of new mutations), with the effectively neutral DFE category (f_0) reduced to account for the addition of the beneficial category. Three different beneficial classes were separately
275 276 277 278 279 280	Recurrent We simulated recurrent selective sweeps by adding a beneficial DFE category for our 397 exonic regions. We simulated three different beneficial rates (0.1%, 1%, and 10% of new mutations), with the effectively neutral DFE category (f_0) reduced to account for the addition of the beneficial category. Three different beneficial classes were separately simulated: $1 \le 2N_{AFRancestral} s_b < 10$; $10 \le 2N_{AFRancestral} s_b < 100$ and $100 \le 2N_{AFRancestral} s_b < 100$
275 276 277 278 279 280 281	Recurrent We simulated recurrent selective sweeps by adding a beneficial DFE category for our 397 exonic regions. We simulated three different beneficial rates (0.1%, 1%, and 10% of new mutations), with the effectively neutral DFE category (f_0) reduced to account for the addition of the beneficial category. Three different beneficial classes were separately simulated: $1 \le 2N_{AFRancestral} s_b < 10$; $10 \le 2N_{AFRancestral} s_b < 100$ and $100 \le 2N_{AFRancestral} s_b < 1$,000, where s_b is the increase in mutant homozygote fitness relative to the wild-type.
275 276 277 278 279 280 281 282	RecurrentWe simulated recurrent selective sweeps by adding a beneficial DFE category for our397 exonic regions. We simulated three different beneficial rates (0.1%, 1%, and 10% of newmutations), with the effectively neutral DFE category (f_0) reduced to account for theaddition of the beneficial category. Three different beneficial classes were separatelysimulated: $1 \le 2N_{AFRancestral} s_b < 10$; $10 \le 2N_{AFRancestral} s_b < 100$ and $100 \le 2N_{AFRancestral} s_b < 1$,000, where s_b is the increase in mutant homozygote fitness relative to the wild-type.
275 276 277 278 279 280 281 282 282 283	RecurrentWe simulated recurrent selective sweeps by adding a beneficial DFE category for our397 exonic regions. We simulated three different beneficial rates (0.1%, 1%, and 10% of newmutations), with the effectively neutral DFE category (f_0) reduced to account for theaddition of the beneficial category. Three different beneficial classes were separatelysimulated: $1 \le 2N_{AFRancestral} s_b < 10$; $10 \le 2N_{AFRancestral} s_b < 100$ and $100 \le 2N_{AFRancestral} s_b < 1$ 1,000, where s_b is the increase in mutant homozygote fitness relative to the wild-type.
 275 276 277 278 279 280 281 282 283 284 	RecurrentWe simulated recurrent selective sweeps by adding a beneficial DFE category for our397 exonic regions. We simulated three different beneficial rates (0.1%, 1%, and 10% of newmutations), with the effectively neutral DFE category (f_0) reduced to account for theaddition of the beneficial category. Three different beneficial classes were separatelysimulated: $1 \le 2N_{AFRancestral} s_b < 10$; $10 \le 2N_{AFRancestral} s_b < 100$ and $100 \le 2N_{AFRancestral} s_b < 10$ 1,000, where s_b is the increase in mutant homozygote fitness relative to the wild-type.IndividualTo simulate a single hard selective sweep, we ran our inferred demographic model
275 276 277 278 279 280 281 282 283 284 285	Recurrent We simulated recurrent selective sweeps by adding a beneficial DFE category for our 397 exonic regions. We simulated three different beneficial rates (0.1%, 1%, and 10% of new mutations), with the effectively neutral DFE category (f_0) reduced to account for the addition of the beneficial category. Three different beneficial classes were separately simulated: $1 \le 2N_{AFRancestral} s_b < 10; 10 \le 2N_{AFRancestral} s_b < 100 and 100 \le 2N_{AFRancestral} s_b <$

287	after burn-in; model 2) the beneficial mutation was introduced into the ancestral Eurasian
288	population immediately after splitting from the African population; and model 3) the
289	beneficial mutation was introduced into the European population immediately after
290	splitting from the Eurasian population. In model 1, simulations were terminated and
291	restarted if the beneficial mutation did not fix in all 4 sampled populations. In model 2,
292	simulations were terminated and restarted if the hard sweep did not fix in the European,
293	East Asian and South Asian populations. Finally, in model 3 simulations were terminated and
294	restarted if the hard sweep did not fix in the European population. For each scenario, two
295	different strengths of selection were simulated: $2N_e s_b = 1,000$ and 10,000, where N_e is the
296	ancestral African population size ($N_{AFRancestral}$) and s_b is the beneficial selection coefficient.
297	
298	For these simulations, we utilized the chromosomal structure of Soni and Jensen
298 299	For these simulations, we utilized the chromosomal structure of Soni and Jensen (2024), with functional regions comprised of 9 exons (each of size 1,317bp) and 8 introns
298 299 300	For these simulations, we utilized the chromosomal structure of Soni and Jensen (2024), with functional regions comprised of 9 exons (each of size 1,317bp) and 8 introns (each of size 1,520bp), separated by intergenic regions (each of size 4,322bp) [The 1000
298 299 300 301	For these simulations, we utilized the chromosomal structure of Soni and Jensen (2024), with functional regions comprised of 9 exons (each of size 1,317bp) and 8 introns (each of size 1,520bp), separated by intergenic regions (each of size 4,322bp) [The 1000 Genomes Project Consortium 2015]. The number of exons and introns per functional region
298 299 300 301 302	For these simulations, we utilized the chromosomal structure of Soni and Jensen (2024), with functional regions comprised of 9 exons (each of size 1,317bp) and 8 introns (each of size 1,520bp), separated by intergenic regions (each of size 4,322bp) [The 1000 Genomes Project Consortium 2015]. The number of exons and introns per functional region were taken from Sakharkar et al. (2004). The chromosomal region contained 7 functional
 298 299 300 301 302 303 	For these simulations, we utilized the chromosomal structure of Soni and Jensen (2024), with functional regions comprised of 9 exons (each of size 1,317bp) and 8 introns (each of size 1,520bp), separated by intergenic regions (each of size 4,322bp) [The 1000 Genomes Project Consortium 2015]. The number of exons and introns per functional region were taken from Sakharkar et al. (2004). The chromosomal region contained 7 functional regions in total, resulting in a total simulated region length of 198,345bp.
 298 299 300 301 302 303 304 	For these simulations, we utilized the chromosomal structure of Soni and Jensen (2024), with functional regions comprised of 9 exons (each of size 1,317bp) and 8 introns (each of size 1,520bp), separated by intergenic regions (each of size 4,322bp) [The 1000 Genomes Project Consortium 2015]. The number of exons and introns per functional region were taken from Sakharkar et al. (2004). The chromosomal region contained 7 functional regions in total, resulting in a total simulated region length of 198,345bp.
 298 299 300 301 302 303 304 305 	For these simulations, we utilized the chromosomal structure of Soni and Jensen (2024), with functional regions comprised of 9 exons (each of size 1,317bp) and 8 introns (each of size 1,520bp), separated by intergenic regions (each of size 4,322bp) [The 1000 Genomes Project Consortium 2015]. The number of exons and introns per functional region were taken from Sakharkar et al. (2004). The chromosomal region contained 7 functional regions in total, resulting in a total simulated region length of 198,345bp.

307 equal to the Kong et al. (2010) mean, and the mean mutation rate across the simulated

308 region for each replicate was equal to the Kessler et al. (2020) mean.

309

311 Sweep inference with SweepFinder2

312	We performed s	elective sweep	inference by	running S	SweepFinder2	(DeGiorgio et al.
-----	----------------	----------------	--------------	-----------	--------------	-------------------

- 313 2016) on each simulated replicate of each exonic region from our hard sweep simulations.
- 314 Allele frequency files were generated for each replicate, following Huber et al.'s (2016)
- 315 recommendation of including only polymorphic and substitution data. Inference was
- performed at each SNP via a grid file, following Nielsen et al. (2005). The background SFS
- 317 was taken from the sweep-free simulations inferred in this study. The following command
- 318 line was used for inference:
- 319 SweepFinder2 -Iru GridFile FreqFile SpectFile RecFile OutFile
- 320

Sweep inference with H12

322 We ran the H12 method of Garud et al. (2015) on each simulated replicate of each

323 exonic region from our hard sweep simulations, using a custom python script. H12 was

- 324 estimated over 1kb, 2kb, 5kb, 10kb, 20kb, and 40kb windows at each SNP, with the SNP at
- the center of each window.

326

327 For both SweepFinder2 and H12 inference, we calculated true- and false-positive

- rates based on the inference values at each site, generating ROC curves from this
- information.

330

332 **Results and Discussion**

334	Our implemented 2-step approach to demographic and DFE inference involves
335	inferring population history using non-functional regions that are at a sufficient distance
336	from functional sites so as to reasonably ensure that they are not experiencing purifying or
337	background selection effects. DFE inference is then performed on exonic regions in Step 2,
338	conditional on the demographic history inferred in Step 1 and incorporating expected
339	background selection effects. We have applied this approach to human population genomic
340	data from the 1000 genomes project (The 1000 Genomes Project Consortium 2015), in
341	order to better characterize the evolutionary parameters governing recent human history.
342	
343	Step 1: Demographic inference on non-functional regions
344	In order to avoid the biasing effects of purifying selection and BGS, we performed
345	demographic inference on our curated set of 146 non-functional regions, with mean
346	recombination and mutation rates calculated for each region from the rate maps of
347	Halldorsson et al. (2019) and Francioli et al. (2015), respectively. For details of the data
348	curation steps, please see the Methods section. While one would typically begin with an
349	evaluation of numerous demographic models and topologies in less well-characterized
350	species (see Beaumont et al. 2002; Johri et al. 2020), given the considerable literature on
351	human demographic history (e.g., Gutenkunst et al. 2009; Gravel et al. 2011; Schiffels and
352	Durbin 2014; Terhorst et al. 2017; Hu et al. 2023), and inferred levels of admixture in The
353	1000 Genomes dataset (The 1000 Genomes Project Consortium 2015), we began with a
354	model of the Out-Of-Africa (OOA) colonization in which the ancestral Eurasian population
355	splits from the African population, followed by the European, South Asian and East Asian

356	populations dispersing from the ancestral Eurasian population, along with the Bantu
357	expansion in the African population. Thus, our demographic model was comprised of 5
358	populations (African, ancestral Eurasian, European, South Asian and East Asian, of which all
359	but the ancestral Eurasian population were sampled) and 25 parameters that capture
360	population sizes, bottleneck severities, growth rates, timings of each event, and migration
361	rates between populations. Parameter ranges were drawn from the extensive literature on
362	human population history (Mellars 2006; Gutenkunst et al. 2009; Gravel et al. 2011;
363	Tennessen et al. 2012; Terhorst et al. 2017). Figure 1a provides the parameter ranges for
364	our model, and see Methods section for further details.
365	
366	We simulated 100 replicates for each of our 146 non-functional regions using the
367	coalescent simulator MSprime (Baumdicker et al. 2022) with region-specific mutation and
368	recombination rates, initially starting with midpoint values for each of our parameters (see
369	Figure 1a). For each replicate we estimated four summary statistics for each population (or
370	pairs of populations): the number of segregating sites, Tajima's D (Tajima 1989), mean r^2 ,
371	and F_{ST} , giving us a total of 18 summary statistics. Fitting these four statistics enabled us to
372	account for multiple aspects of the data including levels of diversity, the SFS, LD and
373	
515	population structure. Figure 1a provides the optimized fit of each parameter within the

374 context of previously published parameter ranges, and Figure 1b the total inferred

demographic model. As shown in Figure 2, the summary statistics resulting from this

376 demographic model well fit observed empirical data.

377

378 It is notable that the African population in our model is larger than the African
379 populations in the Gutenkunst et al. (2009) and Gravel et al. (2011) best-fitting models.

380	There are two likely contributing factors. Firstly, these previous studies fit the model to the
381	SFS, whereas we have here fit multiple diverse summaries of the data. Secondly, these
382	previous studies modeled the African population with a fixed size that undergoes a single
383	instantaneous expansion. Here we modelled the recent Bantu expansion, and thus our final
384	African population size was notably larger, though our final African population size of 87,594
385	falls within the range of previous estimates (Schiffels and Durbin 2014; Terhorst et al. 2017;
386	Johri et al. 2023). Finally, it is worth noting that numerous other coalescent and diffusion
387	approximation-based approaches have been used to infer the OOA model of human
388	population history (Gutenkunst et al. 2009; Gravel et al. 2011; Excoffier et al. 2013;
389	Jouganous et al. 2017; Wang et al. 2020). These studies have masked genic regions to avoid
390	the biasing effects of selection. However, BGS can still affect demographic inference if not
391	accounted for; nonetheless, our parameter estimates fall within previously inferred ranges,
392	confirming the modest nature of BGS effects in humans (Johri et al. 2021; Buffalo and Kern
393	2024).
394	
395	In summary, by optimizing within previously published parameter ranges, we have

identified a neutral demographic model that well explains multiple facets of the genomic
 data in distant non-coding regions.

398

399 Step 2: DFE inference on functional regions

Given the strong fit of the neutral demographic model to the intergenic data, we next moved to Step 2: inference of the DFE using functional regions. We utilized the curated set of functional regions from Johri et al. (2023). After obtaining region-specific mutation and recombination rates we were left with a total of 397 functional regions. Unlike Johri et

404	al. (2023) who simulated exons and their neighboring regions, we focused on the exons only
405	(given that the model fit was consistent across both exons and adjacent regions in their
406	study). First, we simulated our 397 functional regions under the demographic model
407	inferred in Step 1, using the forward-in-time simulator SLiM (v4.0.1 [Haller and Messer
408	2023]). For the purpose of DFE inference, we simulated to the human-chimpanzee split time
409	(12mya [Moorjani et al. 2016]) to allow us to compare empirical and simulated divergence,
410	which is expected to be shaped by selection at functional sites. When simulating these
411	functional regions under selective neutrality, we found that the fit to the empirical data was
412	poorer than for the non-functional regions (Supplementary Figure S2); an expected result
413	given the action of selection in these exonic regions. Next, we simulated under the Johri et
414	al. (2023) DFE using our fit demographic model, and found a good fit of the simulated
415	summary statistics to the empirical data (Figure 3). These results are encouraging given the
416	differing approaches taken between the two studies: we here took the 2-step approach as
417	described, whilst Johri et al. utilized a simultaneous inference scheme. Importantly
418	however, both studies accounted for expected BGS effects, a relative rarity in DFE inference.
419	
420	Though the inclusion of population history, purifying and background selection
421	effects, and mutation and recombination rate heterogeneity were alone sufficient to explain
422	empirically observed data patterns, that does not necessarily imply the absence of beneficial
423	mutations; rather, it suggests that this additional parameter is not needed in order to fit
424	observed patterns of variation. While this observation is itself meaningful, it indeed raises
425	the question of what rate of beneficial mutation may be consistent with the data but simply
426	unidentifiable. In order to investigate this question, we added a beneficial DFE category to
427	the Johri et al. (2023) DFE, in an attempt to understand what rate of input of beneficial

428	mutations may be compatible with the observed levels of variation, the SFS, LD, divergence
429	and F_{ST} . Initially, we considered three beneficial DFE proportions, f_{bo} = [0.1%, 1%, or 10% of
430	newly arising mutations], with $1 \le 2N_{AFRancestral} s_b < 10$ (i.e., weakly beneficial mutations).
431	Under this model, we correspondingly reduced f_0 - the proportion of effectively neutral
432	mutations – in order to account for the addition of this beneficial DFE class. Supplementary
433	Figures S3-S5 provide the fit of the summary statistics from these simulations to the
434	observed data. At f_{b0} = 0.1% or 1%, all summary statistics remain reasonably well fit - in
435	other words, they are not significantly modified from the expectations in the absence of
436	positive selection. However, divergence was notably increased relative to that observed at
437	f_{b0} = 10%, due to the greater rate of beneficial fixation.
438	
439	Given that this beneficial mutation rate of 10% appears inconsistent with empirical
440	divergence, we next examined f_{b0} = 0.1% and 1% only, whilst increasing the population-

441 scaled strength of selection to $10 \le 2N_{AFRancestral} s_b < 100$ (i.e., moderately beneficial

442 mutations). Supplementary Figures S6 and S7 provide the fit of summary statistics from

these simulations to the observed data. With this increased strength of selection, the

444 modelled divergence only fit the empirical data at the lowest beneficial frequency, f_{B0} =

445 0.1%. Finally, we increased the population-scaled strength of selection further to $100 \leq$

446 $2N_{AFRancestral} s_b < 1000$ (i.e., strongly beneficial mutations), at $f_{BO} = 0.1\%$. Even at this low

447 frequency, the resulting divergence was too high relative to the empirical data (see

448 Supplementary Figure S8 for all summary statistics). It is notable that regardless of beneficial

- 449 mutation frequency or strength of selection, the other summary statistics fit the data well -
- 450 this owes to the relative waiting time between selective sweeps under these models; that is,
- 451 selective sweeps are too old on average to strongly impact patterns of polymorphism

452 (Jensen 2009), while being frequent enough to modify divergence over the 12mya time-

- 453 scale.
- 454

455	Taken together, these results suggest that whilst the addition of a beneficial DFE
456	class is not necessary to explain the patterns observed in the human population genomic
457	data here considered, a modest input of weakly beneficial mutations and/or a low input of
458	moderately beneficial mutations would remain consistent with the observed data.
459	
460	Evaluating power to detect selective sweeps within this human baseline model
461	Recurrent sweep models, such as the one studied above, involve a scenario in which
462	beneficial mutations occur randomly across a chromosome according to a time-
463	homogenous Poisson process at a per-generation rate (Kaplan et al. 1989; Wiehe and
464	Stephan 1993; Stephan 1995; Pavlidis et al. 2010; Soni et al. 2023). Although this is a more
465	realistic model of positive selection, in that the beneficial mutations underlying selective
466	sweeps naturally occur at a per-generation rate - meaning that they are naturally associated
467	with an average time since fixation - the more commonly studied model involves a single
468	selective sweep in which fixation occurred immediately prior to sampling. As such, these
469	models consider a best-case scenario for sweep detection, both in that sweeps are as recent
470	as possible thus maximizing detectable polymorphism-based patterns (see review of Nielsen
471	2005), but also because it avoids the possibility of interference between positively selected
472	mutations (i.e., Hill and Robertson 1966).
473	Furthermore, these models are often simulated on otherwise neutral backgrounds,
474	which is additionally unrealistic in the sense that beneficial mutations occur in functional

475 regions, which will be dominated by newly arising deleterious mutations. Thus, as a step

towards biological reality, we here have modelled single selective sweeps within the context
of our evolutionary baseline model, using our inferred demographic history, DFE, as well as
mutation and recombination rate maps, thereby accounting for constantly-operating
evolutionary processes in order to characterize the power to identify an episodic selective
sweep (as described by Johri et al. 2022a).

482 Under this model, we simulated a large genomic region comprised of functional and 483 non-functional regions in which a single hard selective sweep occurred in a functional 484 element (see Methods section for more details about simulated chromosomal structure, as 485 well as parameterizations). Sweep inference was conducted using two methods: the 486 composite-likelihood ratio (CLR) SFS-based method, SweepFinder2 (DeGiorgio et al. 2016), and a haplotype-based approach, H12. Three different sweep models were simulated: 1) a 487 488 beneficial mutation introduced into the ancestral African population immediately after 489 simulation burn-in, with the fixed beneficial present in the sampled African, European, East 490 Asian and South Asian populations; 2) a beneficial mutation introduced into the ancestral 491 Eurasian population immediately after splitting from the ancestral African population, with 492 the fixed beneficial present in the sampled European, East Asian and South Asian 493 populations; and 3) a beneficial mutation introduced into the European population 494 immediately after splitting from the Eurasian population, with the fixed beneficial present in 495 the sampled European population. Figure 4 presents ROC plots, plotting the false positive 496 rate (FPR) against the true positive rate (TPR) for inference on each model across 100 497 replicates with SweepFinder2 (with inference performed at each SNP) and H12 (with 498 inference performed across 1kb windows, centered on each SNP; see Supplementary 499 Figures S9-13 for additional window sizes).

500

501	At the lowest strength of selection ($2N_es_b = 100$), no beneficial mutations reached
502	fixation by the sampling time (i.e., the present day) across the replicates. As such, Figure 4
503	presents ROC plots for $2N_{esb}$ values of 1,000 and 10,000 only. Although SweepFinder2
504	showed greater inference power than H12, there was limited power to detect selective
505	sweeps for both approaches. While potentially appearing counter-intuitive, in some
506	circumstances $2N_es_b = 1,000$ had greater power than $2N_es_b = 10,000$, as the fixations of the
507	former were more recent given the longer sojourn time, and thus experienced less post-
508	fixation decay in patterns of polymorphism (Kim and Stephan 2000; Soni et al. 2023). These
509	results thus suggest that detectable selective sweeps would necessarily be the result of
510	positive selection that was strong and recent enough to leave a detectable signature,
511	consistent with previous work (Przeworski 2002; Kim and Stephan 2002; Jensen et al. 2007;
512	Crisci et al. 2013). Moreover, the modest power under our baseline model is likely explained
513	by the severe bottlenecks and expansions characterizing these populations, as the
514	fundamental difficulty in distinguishing between population bottlenecks and selective
515	sweeps has been previously demonstrated (Barton 1998; Jensen et al. 2005). These results
516	suggest that caution is needed when performing genomic scans for selection in humans due
517	to their complex recent demographic history, and likely supports previous assertions that
518	strong selective sweeps have been rare in recent human history (Hernandez et al. 2011).
519	
520	Conclusions

521 In this study we have demonstrated the viability of a 2-step approach for inferring 522 population history along with the DFE in coding-sparse genomes, such as that characterizing 523 humans. This condition, together with being a recombining genome, is important for the

524	existence and availability of non-functional regions sufficiently distant from functional sites
525	so as to be free from the effects of purifying and background selection, as such regions are
526	necessary for the accurate inference of population history. By contrast, organisms with
527	genomes that are either coding dense or experience limited recombination may not have
528	such regions in sufficient number, in which case demographic inference must be performed
529	within the context of background selection effects. As these background selection effects
530	will be dictated partially by the DFE in functional regions, this genomic architecture requires
531	the joint and simultaneous inference of demographic and selective parameters - a situation
532	that spans organisms ranging from <i>Drosophila</i> to many viruses (see review of Johri et al.
533	2022b). However, given the multiple jointly inferred parameters, the demographic histories
534	under these joint inference schemes have been highly simplified in current
535	implementations. Thus, this 2-step approach has a distinct advantage for coding-sparse
536	genomes, in that previously developed and sophisticated neutral demographic inference
537	approaches may be leveraged in Step 1 - such as that employed here estimating a 25-
538	parameter human demographic model consisting of multiple population size changes, split
539	times, and migration rates - allowing DFE inference to be focused upon in Step 2 conditional
540	on that inferred history.
541	It is additionally important to consider the extent to which a consideration of these
542	BGS effects matters for human demographic inference. Indeed, given the coding-sparseness
543	of the genome, these effects are expected <i>a priori</i> to be limited, and that is fully consistent

544 with the observation that our optimized demographic parameter values fall within

545 previously published parameter ranges. However, apart from accounting for the effects of

546 selection at linked sites, this approach also utilizes patterns of variation in addition to the

547 site frequency spectrum (e.g., linkage disequilibrium and population-differentiation), which

548	provide a further valuable 'sanity check' on estimated models. This combination of factors
549	has resulted in incrementally improved - but indeed improved - parameter estimates for the
550	populations studied, as assessed by the fit between the estimated model and the empirical
551	data. Thus, this proof-of-principle approach applied here to publicly-available human data
552	will likely provide a highly relevant and informative inference framework for the analysis of
553	future genomic resources in comparatively poorly-studied species with a similar genomic
554	architecture (e.g., non-human primates).
555	
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570	

572 **References**

- 573 574 Bank, C., Ewing, G. B., Ferrer-Admettla, A., Foll, M., & Jensen, J. D. (2014). Thinking too 575 positive? Revisiting current methods of population genetic selection inference. Trends 576 in Genetics, 30(12), 540-546. https://doi.org/10.1016/j.tig.2014.09.010 577 Barton, N. H. (1998). The effect of hitch-hiking on neutral genealogies. *Genetical Research*, 578 72(2), 123-133. https://doi.org/10.1017/S0016672398003462 579 Baumdicker, F., Bisschop, G., Goldstein, D., Gower, G., Ragsdale, A. P., Tsambos, G., Zhu, S., 580 Eldon, B., Ellerman, E. C., Galloway, J. G., Gladstein, A. L., Gorjanc, G., Guo, B., Jeffery, 581 B., Kretzschumar, W. W., Lohse, K., Matschiner, M., Nelson, D., Pope, N. S., ... Kelleher, 582 J. (2022). Efficient ancestry and mutation simulation with msprime 1.0. Genetics, 583 220(3), iyab229. https://doi.org/10.1093/genetics/iyab229 Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian Computation in 584 585 population genetics. Genetics, 162(4), 2025-2035. 586 https://doi.org/10.1093/genetics/162.4.2025 587 Boyko, A. R., Williamson, S. H., Indap, A. R., Degenhardt, J. D., Hernandez, R. D., Lohmueller, 588 K. E., Adams, M. D., Schmidt, S., Sninsky, J. J., Sunyaev, S. R., White, T. J., Nielsen, R., 589 Clark, A. G., & Bustamante, C. D. (2008). Assessing the evolutionary impact of amino 590 acid mutations in the human genome. *PLoS Genetics*, 4(5), e1000083. 591 https://doi.org/10.1371/journal.pgen.1000083 592 Buffalo, V., & Kern, A. D. (2024). A quantitative genetic model of background selection in 593 humans. PLOS Genetics, 20(3), e1011144. 594 https://doi.org/10.1371/journal.pgen.1011144 595 Charlesworth, B., & Jensen, J. D. (2021). Effects of selection at linked Sites on patterns of 596 genetic variability. Annual Review of Ecology, Evolution, and Systematics, 52(1), 177-597 197. https://doi.org/10.1146/annurey-ecolsys-010621-044528 598 Charlesworth, B., & Jensen, J.D. (2022). Some complexities in interpreting apparent effects 599 of hitchhiking: a commentary on Gompert et al. 2022. Molecular Ecology, 31, 4440-600 4443. 601 https://doi.org/10.1111/mec.16573 602 Charlesworth, B., & Jensen, J.D. (2024). Population genetics. Encyclopedia of Biodiversity, 603 3rd ed. Elsevier Ltd. Vol. 7: 467-483. 604 Charlesworth, B., Morgan, M. T., & Charlesworth, D. (1993). The effect of deleterious 605 mutations on neutral molecular variation. Genetics, 134(4), 1289-1303. 606 Crisci, J. L., Poh, Y.-P., Mahajan, S., & Jensen, J. D. (2013). The impact of equilibrium 607 assumptions on tests of selection. Frontiers in Genetics, 4. 608 https://doi.org/10.3389/fgene.2013.00235 609 Crow, J. F. (1987). Muller, Dobzhansky, and overdominance. Journal of the History of 610 Biology, 20(3), 351-380. https://doi.org/10.1007/BF00139460 Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., 611 612 Austine-Orimoloye, O., Azov, A. G., Barnes, I., Bennett, R., Berry, A., Bhai, J., Bignell, A., 613 Billis, K., Boddu, S., Brooks, L., Charkhchi, M., Cummins, C., Da Rin Fioretto, L., ... Flicek, 614 P. (2022). Ensembl 2022. Nucleic Acids Research, 50(D1), D988–D995. 615 https://doi.org/10.1093/nar/gkab1049 616 Cutter, A. D., & Payseur, B. A. (2013). Genomic signatures of selection at linked sites: Unifying the disparity among species. Nature Reviews. Genetics, 14(4), 262-274. 617
- 618 https://doi.org/10.1038/nrg3425

- 619 Dobzhansky T. 1955. A review of some fundamental concepts and problems of population 620 genetics. Cold Spring Harb Symp Quant Biol. 20:1–15. 621 doi:10.1101/SQB.1955.020.01.003.
- 622 DeGiorgio, M., Huber, C. D., Hubisz, M. J., Hellmann, I., & Nielsen, R. (2016). SweepFinder2: 623 Increased sensitivity, robustness and flexibility. *Bioinformatics*, 32(12), 1895–1897. 624 https://doi.org/10.1093/bioinformatics/btw051
- 625 Ewing, G. B., & Jensen, J. D. (2014). Distinguishing neutral from deleterious mutations in 626 growing populations. Frontiers in Genetics, 5. 627 https://doi.org/10.3389/fgene.2014.00007
- 628 Ewing, G. B., & Jensen, J. D. (2016). The consequences of not accounting for background 629 selection in demographic inference. *Molecular Ecology*, 25(1), 135–141. 630 https://doi.org/10.1111/mec.13390
- 631 Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust 632 demographic inference from genomic and SNP data. PLoS Genetics, 9(10), e1003905. 633 https://doi.org/10.1371/journal.pgen.1003905
- 634 Eyre-Walker, A., & Keightley, P. D. (2009). Estimating the Rate of Adaptive Molecular 635 Evolution in the Presence of Slightly Deleterious Mutations and Population Size 636 Change. Molecular Biology and Evolution, 26(9), 2097-2108.
- 637 https://doi.org/10.1093/molbev/msp119
- 638 Eyre-Walker, A., & Keightley, P. D. (2007). The distribution of fitness effects of new 639 mutations. Nature Reviews Genetics, 8(8), 610–618. https://doi.org/10.1038/nrg2146
- 640 Flicek, P., Amode, M. R., Barrell, D., Beal, K., Billis, K., Brent, S., Carvalho-Silva, D., Clapham, 641 P., Coates, G., Fitzgerald, S., Gil, L., Girón, C. G., Gordon, L., Hourlier, T., Hunt, S., 642 Johnson, N., Juettemann, T., Kähäri, A. K., Keenan, S., ... Searle, S. M. J. (2014). Ensembl 643 2014. Nucleic Acids Research, 42(D1), D749–D755.

644 https://doi.org/10.1093/nar/gkt1196

- 645 Francioli, L. C., Polak, P. P., Koren, A., Menelaou, A., Chun, S., Renkens, I., Genome of the 646 Netherlands Consortium, van Duijn, C. M., Swertz, M., Wijmenga, C., van Ommen, G., 647 Slagboom, P. E., Boomsma, D. I., Ye, K., Guryev, V., Arndt, P. F., Kloosterman, W. P., de
- 648 Bakker, P. I. W., & Sunyaev, S. R. (2015). Genome-wide patterns and properties of de 649 novo mutations in humans. Nature Genetics, 47(7), 822-826.
- 650 https://doi.org/10.1038/ng.3292
- 651 Galtier, N. (2016). Adaptive protein evolution in animals and the effective population size 652 Hypothesis. PLOS Genetics, 12(1), e1005774. 653
 - https://doi.org/10.1371/journal.pgen.1005774
- Garud, N. R., Messer, P. W., Buzbas, E. O., & Petrov, D. A. (2015). Recent selective sweeps in 654 655 North American Drosophila melanogaster show signatures of soft sweeps. PLOS 656 Genetics, 11(2), e1005004. https://doi.org/10.1371/journal.pgen.1005004
- 657 Gower, G., Ragsdale, A. P., Bisschop, G., Gutenkunst, R. N., Hartfield, M., Noskova, E., 658 Schiffels, S., Struck, T. J., Kelleher, J., & Thornton, K. R. (2022). Demes: A standard 659 format for demographic models. *Genetics*, 222(3), iyac131. 660 https://doi.org/10.1093/genetics/iyac131
- 661 Gravel, S., Henn, B. M., Gutenkunst, R. N., Indap, A. R., Marth, G. T., Clark, A. G., Yu, F.,
- 662 Gibbs, R. A., The 1000 Genomes Project, Bustamante, C. D., Altshuler, D. L., Durbin, R.
- 663 M., Abecasis, G. R., Bentley, D. R., Chakravarti, A., Clark, A. G., Collins, F. S., De La Vega,
- 664 F. M., Donnelly, P., ... McVean, G. A. (2011). Demographic history and rare allele sharing

665	among human populations. Proceedings of the National Academy of Sciences, 108(29),
666	11983–11988. <u>https://doi.org/10.1073/pnas.1019276108</u>
667	Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. (2009). Inferring
668	the Joint demographic history of multiple populations from multidimensional SNP
669	frequency data. <i>PLoS Genetics, 5</i> (10), e1000695.
670	https://doi.org/10.1371/journal.pgen.1000695
671	Halldorsson, B. V., Palsson, G., Stefansson, O. A., Jonsson, H., Hardarson, M. T., Eggertsson,
672	H. P., Gunnarsson, B., Oddsson, A., Halldorsson, G. H., Zink, F., Gudjonsson, S. A.,
673	Frigge, M. L., Thorleifsson, G., Sigurdsson, A., Stacey, S. N., Sulem, P., Masson, G.,
674	Helgason, A., Gudbjartsson, D. F., Stefansson, K. (2019). Characterizing mutagenic
675	effects of recombination through a sequence-level genetic map. <i>Science, 363</i> (6425),
676	eaau1043. <u>https://doi.org/10.1126/science.aau1043</u>
677	Haller, B. C., & Messer, P. W. (2023). SLiM 4: Multispecies eco-evolutionary modeling. <i>The</i>
678	American Naturalist, 201(5), E127–E139. <u>https://doi.org/10.1086/723601</u>
679	Harris, R. B., & Jensen, J. D. (2020). Considering genomic scans for selection as coalescent
680	model choice. <i>Genome Biology and Evolution, 12</i> (6), 871–877.
681	https://doi.org/10.1093/gbe/evaa093
682	Henn, B. M., Botigué, L. R., Peischl, S., Dupanloup, I., Lipatov, M., Maples, B. K., Martin, A. R.,
683	Musharoff, S., Cann, H., Snyder, M. P., Excoffier, L., Kidd, J. M., & Bustamante, C. D.
684	(2016). Distance from sub-Saharan Africa predicts mutational load in diverse human
685	genomes. Proceedings of the National Academy of Sciences, 113(4), E440–E449.
686	<u>https://doi.org/10.1073/pnas.1510805112</u>
687	Hernandez, R.D., Kelley, J.L., Elyashiv, E., Melton, S.C., Auton, A., McVean, G., 1000 Genomes
688	Project, Sella, G., & Przeworski, M. (2011). Classic selective sweeps were rare in recent
689	human evolution. <i>Science</i> , 331(6019), 920-924.
690	https://doi.org/10.1126/science.1198878
691	Hill, W. G., & Robertson, A. (1966). The effect of linkage on limits to artificial selection.
692	Genetical Research, 8(3), 269–294.
693	Howell, A.A., Terbot, J., Soni, V., Johri, P., Jensen, J.D., & Pfeifer, S.P. (2023). Developing an
694	appropriate evolutionary baseline model for the study of human cytomegalovirus.
695	Genome Biology and Evolution, 15, evad059.
696	https://doi.org/10.1093/gbe/evad059
697	Hu, W., Hao, Z., Du, P., Di Vincenzo, F., Manzi, G., Cui, J., Fu, YX., Pan, YH., & Li, H. (2023).
698	Genomic inference of a severe human bottleneck during the Early to Middle
699	Pleistocene transition. <i>Science, 381</i> (6661), 979–984.
700	https://doi.org/10.1126/science.abq7487
701	Huang, X., Fortier, A. L., Coffman, A. J., Struck, T. J., Irby, M. N., James, J. E., León-Burguete,
702	J. E., Ragsdale, A. P., & Gutenkunst, R. N. (2021). Inferring genome-wide correlations of
703	mutation fitness effects between populations. <i>Molecular Biology and Evolution, 38</i> (10),
704	4588–4602. <u>https://doi.org/10.1093/molbev/msab162</u>
705	Huber, C. D., DeGiorgio, M., Hellmann, I., & Nielsen, R. (2016). Detecting recent selective
706	sweeps while controlling for mutation rate and background selection. <i>Molecular</i>
707	Ecology, 25(1), 142–156. <u>https://doi.org/10.1111/mec.13351</u>
708	Irwin, K. K., Laurent, S., Matuszewski, S., Vuilleumier, S., Ormond, L., Shim, H., Bank, C., &
709	Jensen, J. D. (2016). On the importance of skewed offspring distributions and
710	background selection in virus population genetics. <i>Heredity</i> , <i>117</i> (6), 393–399.
711	https://doi.org/10.1038/hdy.2016.58

712 713	Jensen, J.D. (2009). On reconciling single and recurrent hitchhiking models. <i>Genome Biology</i> and Evolution. 1, 320-324.
714	https://doi.org/10.1093/gbe/evp031
715	Jensen, J. D. (2021). Studying population genetic processes in viruses: From drug-resistance
716	evolution to patient infection dynamics. <i>Encyclopedia of Virology</i> (pp. 227–232).
717	Elsevier. https://doi.org/10.1016/B978-0-12-814515-9.00113-2
718	Jensen, J.D. (2023). Population genetic concerns related to the interpretation of empirical
719	outliers and the neglect of common evolutionary processes. <i>Heredity,</i> 130, 109-110.
720	https://doi.org/10.1038/s41437-022-00575-5
721	Jensen, J.D., Kim, Y., Bauer DuMont, V., Aquadro, C.F., & Bustamante, C.D. (2005).
722	Distinguishing between selective sweeps and demography using DNA polymorphism
723	data. <i>Genetics,</i> 170, 1401-1410.
724	https://doi.org/10.1534/genetics.104.038224
725	Jensen, J. D., Payseur, B. A., Stephan, W., Aquadro, C. F., Lynch, M., Charlesworth, D., &
726	Charlesworth, B. (2019). The importance of the Neutral Theory in 1968 and 50 years
727	on: A response to Kern and Hahn 2018: COMMENTARY. Evolution, 73(1), 111–114.
728	https://doi.org/10.1111/evo.13650
729	Jensen, J. D., Thornton, K. R., Bustamante, C. D., & Aquadro, C. F. (2007). On the utility of
730	linkage disequilibrium as a statistic for identifying targets of positive selection in
731	nonequilibrium populations. <i>Genetics, 176</i> (4), 2371–2379.
732	https://doi.org/10.1534/genetics.106.069450
733	Johri, P., Aquadro, C. F., Beaumont, M., Charlesworth, B., Excoffier, L., Eyre-Walker, A.,
734	Keightley, P. D., Lynch, M., McVean, G., Payseur, B. A., Pfeifer, S. P., Stephan, W., &
735	Jensen, J. D. (2022a). Recommendations for improving statistical inference in
736	population genomics. <i>PLOS Biology, 20</i> (5), e3001669.
737	https://doi.org/10.1371/journal.pbio.3001669
738	Johri, P., Charlesworth, B., & Jensen, J. D. (2020). Toward an evolutionarily appropriate null
739	model: Jointly inferring demography and purifying selection. <i>Genetics, 215</i> (1), 173–192.
740	https://doi.org/10.1534/genetics.119.303002
741	Johri, P., Eyre-Walker, A., Gutenkunst, R. N., Lohmueller, K. E., & Jensen, J. D. (2022b). On
742	the prospect of achieving accurate joint estimation of selection with population history.
743	Genome Biology and Evolution, 14(7), evac088. <u>https://doi.org/10.1093/gbe/evac088</u>
744	Johri, P., Pfeifer, S. P., & Jensen, J. D. (2023). Developing an evolutionary baseline model for
745	humans: Jointly inferring purifying selection with population history. <i>Molecular Biology</i>
746	and Evolution, 40(5), msad100. <u>https://doi.org/10.1093/molbev/msad100</u>
747	Johri, P., Riall, K., Becher, H., Excoffier, L., Charlesworth, B., & Jensen, J. D. (2021). The
748	impact of purifying and background selection on the inference of population history:
749	Problems and prospects. <i>Molecular Biology and Evolution</i> , 38(7), 2986–3003.
750	https://doi.org/10.1093/molbev/msab050
751	Jouganous, J., Long, W., Ragsdale, A. P., & Gravel, S. (2017). Inferring the Joint Demographic
752	History of Multiple Populations: Beyond the Diffusion Approximation. <i>Genetics, 206</i> (3),
753	1549–1567. <u>https://doi.org/10.1534/genetics.117.200493</u>
754	Kaplan, N. L., Hudson, R. R., & Langley, C. H. (1989). The 'hitchhiking effect' revisited.
755	Genetics, 123(4), 887–899. <u>https://doi.org/10.1093/genetics/123.4.887</u>
756	Karolchik, D., Baertsch, R., Diekhans, M., Furey, T.S., Hinrichs, A., Lu, Y.T., Roskin, K.M.,
757	Schwartz, M., Sugnet, C.W., Thomas, D.J., et al. (2003). The UCSC Genome Browser
758	Database. Nucleic Acids Res. 31: 51–54.

 refects of deterhous indications and population demography based on indicedide polymorphism Frequencies. <i>Genetics</i>, 177(4), 2251–2261. https://doi.org/10.1534/genetics.107.080663 Kessler, M. D., Loesch, D. P., Perry, J. A., Heard-Costa, N. L., Taliun, D., Cade, B. E., Wang, H., Daya, M., Ziniti, J., Datta, S., Celedón, J. C., Soto-Quiros, M. E., Avila, L., Weiss, S. T., Barnes, K., Redline, S. S., Vasan, R. S., Johnson, A. D., Mathias, R. A., Zoellner, S. (2020). De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population. <i>Proceedings of the National Academy</i> of <i>Sciences</i>, 117(5), 2560–2569. https://doi.org/10.1073/pnas.1902766117 Kim, B. Y., Huber, C. D., & Lohmueller, K. E. (2017). Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. <i>Genetics</i>, 206(1), 345–361. https://doi.org/10.1534/genetics.116.197145 Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics</i>, 172(3), 1967–1978. https://doi.org/10.1534/genetics.105.048447 Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, 155(3), 1415–1427. https://doi.org/10.1093/genetics/155.3.1415 Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. https://doi.org/10.1093/genetics/160.2.765 Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, 217(5129), 624–626. https://doi.org/10.1038/217624a0 	
 https://doi.org/10.1534/genetics.107.080663 Kessler, M. D., Loesch, D. P., Perry, J. A., Heard-Costa, N. L., Taliun, D., Cade, B. E., Wang, H., Daya, M., Ziniti, J., Datta, S., Celedón, J. C., Soto-Quiros, M. E., Avila, L., Weiss, S. T., Barnes, K., Redline, S. S., Vasan, R. S., Johnson, A. D., Mathias, R. A., Zoellner, S. (2020). De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population. <i>Proceedings of the National Academy</i> <i>of Sciences</i>, <i>117</i>(5), 2560–2569. <u>https://doi.org/10.1073/pnas.1902766117</u> Kim, B. Y., Huber, C. D., & Lohmueller, K. E. (2017). Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. <i>Genetics</i>, <i>206</i>(1), 345–361. <u>https://doi.org/10.1534/genetics.116.197145</u> Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics</i>, <i>172</i>(3), 1967–1978. <u>https://doi.org/10.1534/genetics.105.048447</u> Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, <i>155</i>(3), 1415–1427. <u>https://doi.org/10.1093/genetics/155.3.1415</u> Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. <u>https://doi.org/10.1093/genetics/160.2.765</u> Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, <i>217</i>(5129), 624–626. <u>https://doi.org/10.1038/217624a0</u> 	
 Kessler, M. D., Loesch, D. P., Perry, J. A., Heard-Costa, N. L., Taliun, D., Cade, B. E., Wang, H., Daya, M., Ziniti, J., Datta, S., Celedón, J. C., Soto-Quiros, M. E., Avila, L., Weiss, S. T., Barnes, K., Redline, S. S., Vasan, R. S., Johnson, A. D., Mathias, R. A., Zoellner, S. (2020). De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population. <i>Proceedings of the National Academy</i> <i>of Sciences</i>, <i>117</i>(5), 2560–2569. <u>https://doi.org/10.1073/pnas.1902766117</u> Kim, B. Y., Huber, C. D., & Lohmueller, K. E. (2017). Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. <i>Genetics</i>, <i>206</i>(1), 345–361. <u>https://doi.org/10.1534/genetics.116.197145</u> Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics</i>, <i>172</i>(3), 1967–1978. <u>https://doi.org/10.1534/genetics.105.048447</u> Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, <i>155</i>(3), 1415–1427. <u>https://doi.org/10.1093/genetics/155.3.1415</u> Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. <u>https://doi.org/10.1093/genetics/160.2.765</u> Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, <i>217</i>(5129), 624–626. <u>https://doi.org/10.1038/217624a0</u> 	
 Kessler, M. D., Boster, D. P., Ferry, J. A., freurd Costa, R. E., Fullin, D., Cade, D. E., Wang, H., Daya, M., Ziniti, J., Datta, S., Celedón, J. C., Soto-Quiros, M. E., Avila, L., Weiss, S. T., Barnes, K., Redline, S. S., Vasan, R. S., Johnson, A. D., Mathias, R. A., Zoellner, S. (2020). De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population. <i>Proceedings of the National Academy</i> of <i>Sciences</i>, <i>117</i>(5), 2560–2569. https://doi.org/10.1073/pnas.1902766117 Kim, B. Y., Huber, C. D., & Lohmueller, K. E. (2017). Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. <i>Genetics</i>, <i>206</i>(1), 345–361. https://doi.org/10.1534/genetics.116.197145 Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics</i>, <i>172</i>(3), 1967–1978. https://doi.org/10.1534/genetics.105.048447 Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, <i>155</i>(3), 1415–1427. https://doi.org/10.1093/genetics/155.3.1415 Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, <i>160</i>, 765-777. https://doi.org/10.1093/genetics/160.2.765 Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, <i>217</i>(5129), 624–626. https://doi.org/10.1038/217624a0 	
 Barnes, K., Redline, S. S., Vasan, R. S., Johnson, A. D., Mathias, R. A., Zoellner, S. (2020). De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population. <i>Proceedings of the National Academy</i> <i>of Sciences</i>, <i>117</i>(5), 2560–2569. https://doi.org/10.1073/pnas.1902766117 Kim, B. Y., Huber, C. D., & Lohmueller, K. E. (2017). Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. <i>Genetics</i>, <i>206</i>(1), 345–361. https://doi.org/10.1534/genetics.116.197145 Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics</i>, <i>172</i>(3), 1967–1978. https://doi.org/10.1534/genetics.105.048447 Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, <i>155</i>(3), 1415–1427. https://doi.org/10.1093/genetics/155.3.1415 Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. https://doi.org/10.1093/genetics/160.2.765 Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, <i>217</i>(5129), 624–626. https://doi.org/10.1038/217624a0 	
 Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, 155(3), 1415–1427. Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765–777. Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765–777. Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765–777. Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765–777. Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, 217(5129), 624–626. https://doi.org/10.1038/217624a0 	
 and reductions in the Amish founder population. <i>Proceedings of the National Academy</i> of Sciences, 117(5), 2560–2569. https://doi.org/10.1073/pnas.1902766117 Kim, B. Y., Huber, C. D., & Lohmueller, K. E. (2017). Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. <i>Genetics, 206</i>(1), 345–361. https://doi.org/10.1534/genetics.116.197145 Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics, 172</i>(3), 1967–1978. https://doi.org/10.1534/genetics.105.048447 Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics, 155</i>(3), 1415–1427. https://doi.org/10.1093/genetics/155.3.1415 Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics,</i> 160, 765-777. https://doi.org/10.1093/genetics/160.2.765 Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature, 217</i>(5129), 624–626. https://doi.org/10.1038/217624a0 	
 of Sciences, 117(5), 2560–2569. https://doi.org/10.1073/pnas.1902766117 Kim, B. Y., Huber, C. D., & Lohmueller, K. E. (2017). Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. <i>Genetics, 206</i>(1), 345–361. https://doi.org/10.1534/genetics.116.197145 Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics, 172</i>(3), 1967–1978. https://doi.org/10.1534/genetics.105.048447 Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics, 155</i>(3), 1415–1427. https://doi.org/10.1093/genetics/155.3.1415 Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics, 160, 765-777.</i> https://doi.org/10.1093/genetics/160.2.765 Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature, 217</i>(5129), 624–626. https://doi.org/10.1038/217624a0 	
 Kim, B. Y., Huber, C. D., & Lohmueller, K. E. (2017). Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples. <i>Genetics, 206</i>(1), 345–361. <u>https://doi.org/10.1534/genetics.116.197145</u> Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics, 172</i>(3), 1967–1978. <u>https://doi.org/10.1534/genetics.105.048447</u> Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics, 155</i>(3), 1415–1427. <u>https://doi.org/10.1093/genetics/155.3.1415</u> Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics, 160, 765-777.</i> <u>https://doi.org/10.1093/genetics/160.2.765</u> Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature, 217</i>(5129), 624–626. <u>https://doi.org/10.1038/217624a0</u> 	
 coefficients for new nonsynonymous mutations using large samples. <i>Genetics</i>, 206(1), 345–361. <u>https://doi.org/10.1534/genetics.116.197145</u> Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics</i>, 172(3), 1967–1978. <u>https://doi.org/10.1534/genetics.105.048447</u> Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, 155(3), 1415–1427. <u>https://doi.org/10.1093/genetics/155.3.1415</u> Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. <u>https://doi.org/10.1093/genetics/160.2.765</u> Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, 217(5129), 624–626. <u>https://doi.org/10.1038/217624a0</u> 	
 345–361. https://doi.org/10.1534/genetics.116.197145 Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics</i>, 172(3), 1967–1978. https://doi.org/10.1534/genetics.105.048447 Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, 155(3), 1415–1427. https://doi.org/10.1093/genetics/155.3.1415 Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. https://doi.org/10.1093/genetics/160.2.765 Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, 217(5129), 624–626. https://doi.org/10.1038/217624a0 	
 Kim, Y. (2006). Allele frequency distribution under recurrent selective sweeps. <i>Genetics</i>, 172(3), 1967–1978. <u>https://doi.org/10.1534/genetics.105.048447</u> Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, 155(3), 1415–1427. <u>https://doi.org/10.1093/genetics/155.3.1415</u> Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. <u>https://doi.org/10.1093/genetics/160.2.765</u> Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, 217(5129), 624–626. <u>https://doi.org/10.1038/217624a0</u> 	
 172(3), 1967–1978. https://doi.org/10.1534/genetics.105.048447 Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, 155(3), 1415–1427. https://doi.org/10.1093/genetics/155.3.1415 Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. https://doi.org/10.1093/genetics/160.2.765 Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, 217(5129), 624–626. https://doi.org/10.1038/217624a0 	
 Kim, Y., & Stephan, W. (2000). Joint Effects of Genetic Hitchhiking and Background Selection on Neutral Variation. <i>Genetics</i>, 155(3), 1415–1427. https://doi.org/10.1093/genetics/155.3.1415 Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. https://doi.org/10.1093/genetics/160.2.765 Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, 217(5129), 624–626. https://doi.org/10.1038/217624a0 	
 on Neutral Variation. <i>Genetics</i>, 155(3), 1415–1427. <u>https://doi.org/10.1093/genetics/155.3.1415</u> Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. <u>https://doi.org/10.1093/genetics/160.2.765</u> Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, 217(5129), 624–626. <u>https://doi.org/10.1038/217624a0</u> 	
 https://doi.org/10.1093/genetics/155.3.1415 Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. https://doi.org/10.1093/genetics/160.2.765 Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, 217(5129), 624–626. https://doi.org/10.1038/217624a0 	
 Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. <i>Genetics</i>, 160, 765-777. <u>https://doi.org/10.1093/genetics/160.2.765</u> Kimura, M. (1968). Evolutionary rate at the molecular level. <i>Nature</i>, 217(5129), 624–626. <u>https://doi.org/10.1038/217624a0</u> 	
778 recombining chromosome. Genetics, 160, 765-777. 779 <u>https://doi.org/10.1093/genetics/160.2.765</u> 780 Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217(5129), 624–626. 781 <u>https://doi.org/10.1038/217624a0</u>	
779 https://doi.org/10.1093/genetics/160.2.765 780 Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217(5129), 624–626. 781 https://doi.org/10.1038/217624a0	
780 Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217(5129), 624–626. 781 https://doi.org/10.1038/217624a0	
781 <u>https://doi.org/10.1038/217624a0</u>	
782 Kimura M (1082) The Neutral Theory of Malagular Evolution (1st ad) Combridge	
782 Kimura, M. (1983). The Neutral Theory of Molecular Evolution (1st ed.). Cambridge	
784 Kong A Thorleifsson G Gudbiartsson D E Masson G Sigurdsson A Jonasdottir A	
785 Walters G B Jonasdottir A Gylfason A Kristinsson K Th Gudionsson S A Frigge	
786 M. L., Helgason, A., Thorsteinsdottir, U., & Stefansson, K. (2010). Fine-scale	,
787 recombination rate differences between sexes, populations and individuals, <i>Nature</i> .	
788 467(7319), 1099–1103. https://doi.org/10.1038/nature09525	
789 Kousathanas, A., & Keightley, P. D. (2013). A comparison of models toi the distribution of	
fitness effects of new mutations. <i>Genetics</i> , 193(4), 1197–1208.	
791 <u>https://doi.org/10.1534/genetics.112.148023</u>	
The The Terror T	
793 Journal of the History of Biology, 20(3), 337–349. <u>https://doi.org/10.1007/BF00139459</u>	
Li, H., & Stephan, W. (2006). Inferring the demographic history and rate of adaptive	
795 substitution in <i>Drosophila</i> . <i>PLoS Genetics</i> , 2(10), e166.	
796 <u>https://doi.org/10.1371/journal.pgen.0020166</u>	
797 Matuszewski, M., Hildebrandt, M., Achaz, G., & Jensen, J.D. (2018). Coalescent processes	
with skewed offspring distributions and non-equilibrium demography. <i>Genetics, 208,</i>	
199 323-38. 800 https://doi.org/10.1524/gapatics.117.200400	
801 Maynard Smith J. & Haigh J. (1974) The hitch hiking effect of a favourable gone. <i>Consticut</i>	1
802 Research 23(1) 23-35 https://doi.org/10.1017/S0016672300014634	
803 McVicker, G., Gordon, D., Davis, C. & Green, P. (2009). Widespread genomic signatures of	
804 natural selection in hominid evolution. <i>PLoS Genetics</i> . 5(5). e1000471.	
805 <u>https://doi.org/10.1371/journal.pgen.1000471</u>	

806	Mellars, P. (2006). Why did modern human populations disperse from Africa <i>ca</i> . 60,000
807	years ago? A new model. Proceedings of the National Academy of Sciences, 103(25),
808	9381–9386. https://doi.org/10.1073/pnas.0510792103
809	Messer, P. W., & Petrov, D. A. (2013). Frequent adaptation and the McDonald-Kreitman test.
810	Proceedings of the National Academy of Sciences of the United States of America,
811	110(21), 8615–8620. <u>https://doi.org/10.1073/pnas.1220835110</u>
812	Miles, A., Rodrigues, M.F., Ralph, P., Kelleher, J., Schelker, M., Pisupati, R., Rae, S., & Millar,
813	T. (2024). scikit-allel: V1.3.8 (v1.3.8) #. <u>https://doi.org/10.5281/ZENODO.10876220</u>
814	Moorjani, P., Amorim, C. E. G., Arndt, P. F., & Przeworski, M. (2016). Variation in the
815	molecular clock of primates. <i>Proceedings of the National Academy of Sciences, 113</i> (38),
816	10607–10612. <u>https://doi.org/10.1073/pnas.1600374113</u>
817	Morales-Arce, A. Y., Johri, P., & Jensen, J. D. (2022). Inferring the distribution of fitness
818	effects in patient-sampled and experimental virus populations: Two case studies.
819	Heredity, 128(2), 79–87. <u>https://doi.org/10.1038/s41437-021-00493-y</u>
820	Nicolaisen, L. E., & Desai, M. M. (2013). Distortions in genealogies due to purifying selection
821	and recombination. <i>Genetics, 195</i> (1), 221–230.
822	https://doi.org/10.1534/genetics.113.152983
823	Nielsen, R. (2005). Molecular Signatures of Natural Selection. Annual Review of Genetics,
824	<i>39</i> (1), 197–218. <u>https://doi.org/10.1146/annurev.genet.39.073003.112420</u>
825	Nielsen, R., Williamson, S., Kim, Y., Hubisz, M. J., Clark, A. G., & Bustamante, C. (2005).
826	Genomic scans for selective sweeps using SNP data. Genome Research, 15(11), 1566–
827	1575. <u>https://doi.org/10.1101/gr.4252305</u>
828	Pavlidis, P., Jensen, J. D., & Stephan, W. (2010). Searching for Footprints of Positive Selection
829	in Whole-Genome SNP Data From Nonequilibrium Populations. <i>Genetics, 185</i> (3), 907–
830	922. <u>https://doi.org/10.1534/genetics.110.116459</u>
831	Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R., & Siepel, A. (2010). Detection of nonneutral
832	substitution rates on mammalian phylogenies. <i>Genome Research, 20</i> (1), 110–121.
833	https://doi.org/10.1101/gr.097857.109
834	Poh, YP., Domingues, V., Hoekstra, H.E., & Jensen, J.D. (2014). On the prospect of
835	identifying adaptive loci in recently bottlenecked populations. <i>PLoS One</i> , 9(11),
836	e110579.
837	https://doi.org/10.1371/journal.pone.0110579
838	Przeworski, M., (2002). The signature of postive selection at randomly chosen loci. <i>Genetics</i> ,
839	160, 1179-1189.
840	https://doi.org/10.1093/genetics/160.3.1179
841	Sackman, A., Harris, R., & Jensen, J.D. (2019). Inferring demography and selection in
842	organisms characterized by skewed offspring distributions. <i>Genetics</i> , 211, 1019-28.
843	https://doi.org/10.1534/genetics.118.301684
844	Sakharkar, M. K., Chow, V. I. K., & Kangueane, P. (2004). Distributions of exons and introns
845	In the human genome. In Silico Biology, 4(4), 387–393.
846	Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R.,
04/ 010	Furik, K., Kelly, C., Kim, S., Madej, T., Marchier-Bauer, A., Lanczycki, C., Lathrop, S., Lu,
04ð 940	Z., Hindaud-Missen, F., Murphy, F., Phan, L., Skripchenko, Y., Sherry, S. F. (2022).
047 050	Pacapase resources of the national center for biotechnology information. NUCLEIC ACIDS
030	research, 50(01), 020-020. <u>https://doi.org/10.1093/har/gka01112</u>

851	Schiffels, S., & Durbin, R. (2014). Inferring human population size and separation history
852	from multiple genome sequences. <i>Nature Genetics, 46</i> (8), 919–925.
853	https://doi.org/10.1038/ng.3015
854	Schneider, A., Charlesworth, B., Eyre-Walker, A., & Keightley, P. D. (2011). A Method for
855	inferring the rate of occurrence and fitness effects of advantageous mutations.
856	Genetics, 189(4), 1427–1437. https://doi.org/10.1534/genetics.111.131730
857	Schrider, D. R., Shanku, A. G., & Kern, A. D. (2016). Effects of linked selective sweeps on
858	demographic inference and model selection. <i>Genetics</i> , 204(3), 1207–1223.
859	https://doi.org/10.1534/genetics.116.190223
860	Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou, M., Rosenbloom, K., Clawson, H.,
861	Spieth, J., Hillier, L. W., Richards, S., Weinstock, G. M., Wilson, R. K., Gibbs, R. A., Kent,
862	W. J., Miller, W., & Haussler, D. (2005). Evolutionarily conserved elements in
863	vertebrate, insect, worm, and yeast genomes. <i>Genome Research, 15</i> (8), 1034–1050.
864	https://doi.org/10.1101/gr.3715005
865	Simkin, A., Bailey, J., Theurkauf, B., Gao, FB., & Jensen, J.D. (2014). Inferring the
866	evolutionary history of primate miRNA binding sites: overcoming motif counting biases.
867	Molecular Biology & Evolution, 31, 1894-1901.
868	https://doi.org/10.1093/molbev/msu129
869	Soni, V., & Jensen, J. D. (2024). Temporal challenges in detecting balancing selection from
870	population genomic data. G3: Genes, Genomes, Genetics, 14(6), jkae069.
871	https://doi.org/10.1093/g3journal/jkae069
872	Soni, V., Terbot, J., & Jensen, J.D. (2024a). Population genetic considerations regarding the
873	interpretation of within-patient SARS-CoV-2 polymorphism data. <i>Nature</i>
874	Communications, 15, 3240.
875	https://doi.org/10.1038/s41467-024-46261-4
876	Soni, V., Johri, P., & Jensen, J. D. (2023). Evaluating power to detect recurrent selective
877	sweeps under increasingly realistic evolutionary null models. <i>Evolution</i> , qpad120.
878	https://doi.org/10.1093/evolut/qpad120
879	Soni, V., Pfeifer, S. P., & Jensen, J. D. (2024b). The effects of mutation and recombination
880	rate heterogeneity on the inference of demography and the distribution of fitness
881	effects. Genome Biology and Evolution, 16(2), evae004.
882	<u>https://doi.org/10.1093/gbe/evae004</u>
883	Soni, V., Terbot, J. W., Versoza, C. J., Pfeifer, S. P., & Jensen, J. D. (2024c). A whole-genome
884	scan for evidence of recent positive and balancing selection in aye-ayes (Daubentonia
885	madagascariensis) utilizing a well-fit evolutionary baseline model. In preprint, BioRxiv.
886	https://www.biorxiv.org/content/10.1101/2024.11.08.622667v1
887	Stephan, W. (1995). Perturbation analysis of a two-locus model with directional selection
888	and recombination. <i>Journal of Mathematical Biology, 34</i> (1), 95–109.
889	https://doi.org/10.1007/BF00180138
890	Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA
891	polymorphism. <i>Genetics, 123</i> (3), 585–595.
892	Tataru, P., & Bataillon, T. (2020). polyDFE: Inferring the distribution of fitness effects and
893	properties of beneficial mutations from polymorphism data. In J. Y. Dutheil (Ed.),
894	Statistical Population Genomics (Vol. 2090, pp. 125–146). Springer US.
895	https://doi.org/10.1007/978-1-0716-0199-0_6
896	Tennessen, J. A., Bigham, A. W., O'Connor, T. D., Fu, W., Kenny, E. E., Gravel, S., McGee, S.,
897	Do, R., Liu, X., Jun, G., Kang, H. M., Jordan, D., Leal, S. M., Gabriel, S., Rieder, M. J.,

898 899 900 901	Abecasis, G., Altshuler, D., Nickerson, D. A., Boerwinkle, E., NHLBI Exome Sequencing Project. (2012). Evolution and functional impact of rare coding variation from deep sequencing of human exomes. <i>Science (New York, N.Y.), 337</i> (6090), 64–69. https://doi.org/10.1126/science.1219240
902	Terbot, J., Cooper, B., Good, J, & Jensen, J.D. (2023a). A simulation framework for modeling
903	the within-patient evolutionary dynamics of SARS-CoV-2. Genome Biology & Evolution,
904	15, evad 204.
905	https://doi.org/10.1093/gbe/evad204
906	Terbot, J. W., Johri, P., Liphardt, S. W., Soni, V., Pfeifer, S. P., Cooper, B. S., Good, J. M., &
907	Jensen, J. D. (2023b). Developing an appropriate evolutionary baseline model for the
908	https://doi.org/10.1271/journal.ppat.1011265
910	Terhot I W Soni V Versoza C I Pfeifer S P & Jensen I D (2024) Inferring the
911	demographic history of ave-aves (<i>Daubentonia madagascariensis</i>) from high-quality.
912	whole-genome, population-level data. In preprint, BioRxiv.
913	https://www.biorxiv.org/content/10.1101/2024.11.08.622659v1
914	Terhorst, J., Kamm, J. A., & Song, Y. S. (2017). Robust and scalable inference of population
915	history from hundreds of unphased whole genomes. <i>Nature Genetics, 49</i> (2), 303–309.
916	https://doi.org/10.1038/ng.3748
917	The 1000 Genomes Project Consortium. (2015). A global reference for human genetic
918	variation. <i>Nature, 526</i> (7571), 68–74. <u>https://doi.org/10.1038/nature15393</u>
919	Thornton, K. (2003). libsequence: A C++ class library for evolutionary genetic analysis.
920	Bioinformatics, 19(17), 2325–2327. <u>https://doi.org/10.1093/bioinformatics/btg316</u>
921	Wang, K., Mathieson, I., O'Connell, J., & Schiffels, S. (2020). Tracking human population
922	structure through time from whole genome sequences. <i>PLOS Genetics, 16</i> (3),
923	e1008552. <u>https://doi.org/10.1371/journal.pgen.1008552</u>
924	Wang, R. J., Al-Saffar, S. I., Rogers, J., & Hahn, M. W. (2023). Human generation times across
925	the past 250,000 years. <i>Science Advances, 9</i> (1), eabm7047.
926	https://doi.org/10.1126/sciadv.abm7047
927	Wiehe, T. H. E., & Stephan, W. (1993). Analysis of a genetic hitchhiking model, and its
928	application to DNA polymorphism data from Drosophila melanogaster. <i>Molecular</i>
929	Biology and Evolution. <u>https://doi.org/10.1093/oxfordjournals.molbev.a040046</u>
930	Williamson, S. H., Hernandez, R., Fledel-Alon, A., Zhu, L., Nielsen, R., & Bustamante, C. D.
931	(2005). Simultaneous inference of selection and population growth from patterns of
932	variation in the numan genome. Proceedings of the National Academy of Sciences,
933	102(22), 7882–7887. <u>https://doi.org/10.1073/phas.0502300102</u>

Figure 1: Demographic model representing the Out-of-Africa expansion. a) Parameter ranges for all 25 parameters (represented by the blue bars on the plots). Orange dots indicate the best fitting parameter values identified. b) Plot of demographic model with the best fitting parameter values. Population key: AFRancestral = initial ancestral African population; AFR = African population; EURASI = unsampled Eurasian population; EUR = European population; EAS = East Asian population; SAS = South Asian population. Parameter key: τ = time of splits between specified populations (with τ_{BANTU} representing the time of start of the Bantu expansion in the African population); r = growth parameter; N = population size; B = bottleneck severity; m = migration rate. Demographic model graphic generated using Demes software (Gower et al. 2022).

Figure 2: Summary statistics calculated from putatively neutral non-functional regions from population samples for empirical (blue) data, compared to simulated (red) data under the best-fitting demographic model. Means and standard deviations were calculated for 100 replicates. Data points represent the mean across regions, while bars represent the mean of the standard deviations across all regions.

Figure 3: a) to e) Summary statistics calculated from functional regions from population samples for empirical (blue) data, compared to simulated (red) data under the best-fitting neutral demographic model with the addition of purifying and background selection modelled using

the Johri et al. (2023) DFE (shown in panel f). Following this DFE, exonic mutations were drawn from a DFE comprised of 4 fixed classes with frequencies denoted by f_i : f_0 with $0 \le 2N_{AFRancestral} \ s < 1$ (i.e., effectively neutral mutations), f_1 with $1 \le 2N_{AFRancestral} \ s < 10$ (i.e., weakly deleterious mutations), f_2 with $10 \le 2N_{AFRancestral} \ s < 100$ (i.e., moderately deleterious mutations), and f_3 with $100 \le 2N_{AFRancestral} \ s < 100$ (i.e., strongly deleterious mutations), where $N_{AFRancestral}$ was the initial population size and s the reduction in fitness of the mutant homozygote relative to wild-type. Means and standard deviations were calculated for 100 replicates. Data points represent the mean across regions, while bars represent the mean of the standard deviations across all regions.

Figure 4: ROC curves, providing the change in true-positive rate (TPR) with false-positive rate (FPR), for sweep inference with SweepFinder2 (SF2) and the H12 statistic under the demographic model inferred in this study (see Figure 1) together with the Johri et al. (2023) DFE for functional regions, and variable mutation and recombination rates (see Methods section). Here, a single beneficial mutation was introduced into the population at three different time points and in three different populations: Model 1: the beneficial mutation was introduced into the ancestral African population immediately after the burn-in period, the beneficial fixation is present in all populations, and sweep inference was conducted on all sampled populations; Model 2: the beneficial mutation was introduced into the ancestral Eurasian population immediately upon splitting from the ancestral African population, the beneficial fixation is present in all non-African populations, and sweep inference was conducted on the European, East Asian and South Asian populations; Model 3: the beneficial mutation was introduced into the European population only. For each model, two different strengths of selection were modelled: $2N_es_b = 1,000$ and $2N_es_b = 10,000$, where N_e is the size of the ancestral African population and s_b is the selection coefficient of the beneficial mutation. Inference with SweepFinder2 was performed on each SNP and substitution, whilst H12 inference was performed on each SNP over a 1kb window, with the SNP at the center of the window.