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Abstract 25 

The demographic history of a population, and the distribution of fitness effects (DFE) of 26 

newly arising mutations in functional genomic regions, are fundamental factors dictating 27 

both genetic variation and evolutionary trajectories. Although both demographic and DFE 28 

inference has been performed extensively in humans, these approaches have generally 29 

either been limited to simple demographic models involving a single population, or, where a 30 

complex population history has been inferred, without accounting for the potentially 31 

confounding effects of selection at linked sites. Taking advantage of the coding-sparse 32 

nature of the genome, we propose a 2-step approach in which coalescent simulations are 33 

first used to infer a complex multi-population demographic model, utilizing large non-34 

functional regions that are likely free from the effects of background selection. We then use 35 

forward-in-time simulations to perform DFE inference in functional regions, conditional on 36 

the complex demography inferred and utilizing expected background selection effects in the 37 

estimation procedure. Throughout, recombination and mutation rate maps were used to 38 

account for the underlying empirical rate heterogeneity across the human genome. 39 

Importantly, within this framework it is possible to utilize and fit multiple aspects of the 40 

data, and this inference scheme represents a generalized approach for such large-scale 41 

inference in species with coding-sparse genomes. 42 
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Introduction 48 

 49 

Genetic variation is a fundamental concern of population genetics. Prior to the advent of 50 

next-generation sequencing, the dominant debate within the field was centered on whether 51 

levels of genetic variation were expected to be minimal or substantial (known as the 52 

classical/balanced debate; see Lewontin 1987; Crow 1987). Selection was assumed as the 53 

dominant process in both cases, be it purifying selection depressing levels of variation, or 54 

balancing selection maintaining polymorphism (Dobzhansky 1955). Despite molecular 55 

evidence confirming plentiful levels of genetic variation, Motoo Kimura’s Neutral Theory of 56 

Molecular Evolution (Kimura 1968, 1983) instead posited that observed variation was largely 57 

a consequence of genetic drift; that is, of neutral alleles segregating in the process of 58 

drifting towards fixation or loss. This hypothesis – that neutral rather than selective 59 

processes can explain the majority of observed variation – has since been largely 60 

corroborated (as reviewed in Jensen et al. 2019).  61 

 62 

 However, quantifying the precise roles of selective and neutral processes in shaping 63 

observed levels of variation – and disentangling their individual effects - remains an ongoing 64 

challenge due to the similar manners in which multiple evolutionary processes affect 65 

patterns of variation. One notable example is the extent to which neutral population 66 

growth, background selection (BGS; Charlesworth et al. 1993), and recurrent selective 67 

sweeps (Maynard Smith and Haigh 1974) can all skew the site frequency spectrum (SFS, the 68 

distribution of allele frequencies) toward rare alleles (Kim 2006; Jensen et al. 2007; 69 

Nicolaisen and Desai 2012, 2013; Ewing and Jensen 2016; Johri et al. 2021; Soni et al. 2023; 70 

and see review of Charlesworth and Jensen 2021, 2024). The effects of these processes are 71 
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further modified by genomic heterogeneity in mutation and recombination rates in often 72 

complex ways (Soni et al. 2024b). Therefore, if one wishes to quantify the strength and 73 

frequency of rare and episodic processes such as positive selection, one must first construct 74 

an evolutionarily appropriate baseline model that accounts for the effects of constantly 75 

occurring processes including genetic drift as modulated by historical population size 76 

changes, as well as the effects of purifying selection and BGS resulting from the removal of 77 

deleterious mutations (Bank et al. 2014; Johri et al. 2022a), all whilst accounting for 78 

underlying mutation and recombination rate variation. Failure to account for these 79 

processes is likely to lead to misinference, particularly in light of the fact that many 80 

commonly studied populations and species are thought to have experienced not only 81 

population growth, but also recent and severe population bottlenecks [e.g. humans 82 

(Gutenkunst et al. 2009; Gravel et al. 2011; Excoffier et al. 2013), non-human primates 83 

(Terbot et al. 2024; Soni et al. 2024c) and Drosophila melanogaster (Li and Stephan 2006), as 84 

well as a variety of human pathogens (Irwin et al. 2016; Sackman et al. 2019; Jensen 2021; 85 

Morales-Arce et al. 2021)], a demographic history that is itself often strongly confounded 86 

with selective sweeps (Barton 1998; Poh et al. 2014; Matuszewski et al. 2018; Harris and 87 

Jensen 2020; Charlesworth and Jensen 2022; Jensen 2023). 88 

 89 

 Constructing an evolutionarily appropriate baseline model for a given population will 90 

therefore require inferring both a demographic history as well as the distribution of fitness 91 

effects (DFE) of new mutations. However, because population history can confound DFE 92 

inference, it is necessary to correct for the demographic history of the population in 93 

question (Eyre-Walker and Keightley 2007; Boyko et al. 2008). The most commonly used 94 

class of approaches are based on a framework in which demographic inference is performed 95 
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on putatively neutral sites, before utilizing that demographic history for DFE inference on 96 

functional sites (Eyre-Walker and Keightley 2007; Boyko et al. 2008; Galtier 2016; Tataru and 97 

Bataillon 2020; and see review of Johri et al. 2022b). Eyre-Walker and Keightley (2007) 98 

obtained the first computationally inferred DFE estimates using this approach, and further 99 

work incorporated a beneficial class of mutations into the inferred DFE (Boyko et al. 2008; 100 

Eyre-Walker and Keightley 2009; Schneider et al. 2011; Galtier 2016).  101 

 102 

 Notably, this type of 2-step approach is often performed on functional regions under 103 

the assumption that all sites are independent and unlinked, and that synonymous sites are 104 

selectively neutral. However, these synonymous sites are likely experiencing BGS effects 105 

(Charlesworth et al. 1993) due to linkage with directly selected and adjacent non-106 

synonymous sites, resulting in a skew in the SFS and thus mis-inference; in particular, these 107 

BGS effects are often misinterpreted as population growth (Ewing and Jensen 2014; Johri et 108 

al. 2021; and see review of Johri et al. 2022b). More generally speaking, there is indeed 109 

substantial evidence that the effects of selection at linked sites may be widespread across 110 

the genomes of many commonly studies species (see reviews of Cutter and Payseur 2013; 111 

Charlesworth and Jensen 2021). Although recent work has shown that DFE inference is 112 

relatively robust to the biasing effects of selection at linked sites (Kim et al. 2017; Huang et 113 

al. 2021), that is not the case for demographic inference (Messer and Petrov 2013; 114 

Nicolaisen and Desai 2013; Ewing and Jensen 2016; Schrider et al. 2016; Johri et al. 2021). It 115 

is also noteworthy that these 2-step approaches are generally constrained to relatively 116 

simple population histories utilizing a two-epoch model (Williamson et al. 2005; Keightley 117 

and Eyre-Walker 2007; Kousanthanas and Keightley 2013). 118 

 119 
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The second class of methods involve using forward-in-time simulations (e.g., in SLiM; 120 

Haller and Messer 2023) to jointly and simultaneously infer population history with the DFE 121 

in an approximate Bayesian (ABC) framework (see Beaumont et al. 2002), as proposed by 122 

Johri et al. (2020). Within this simultaneous inference scheme, it is neither necessary to 123 

assume a priori the neutrality of synonymous sites, nor is it necessary to assume 124 

independence amongst sites; as such, background selection can be directly modelled and 125 

incorporated. While 2-step methods commonly infer a continuous distribution for the DFE, 126 

this ABC framework infers a number of discrete DFE categories for various ranges of 2Nes, 127 

the population-scaled selection coefficient, where Ne is the effective population size and s is 128 

the strength of selection acting on new mutations within the DFE category of interest. The 129 

main drawback of such methods is that they are computationally expensive given the large 130 

parameter space that must be explored when jointly inferring both demographic and DFE 131 

parameters. As such, the inferred demographic models have thus far been limited to single-132 

step size changes in which the ancestral and current population sizes, as well as the timing 133 

of size change, are inferred (Johri et al. 2020, 2023). Importantly however, in coding-dense 134 

and/or non-recombining species in which sufficiently neutral, unlinked genomic regions may 135 

not exist in the genome (thus precluding the needed neutral demographic inference 136 

underlying 2-step approaches), this simultaneous inference framework remains the only 137 

viable approach (e.g., Howell et al. 2023; Terbot et al. 2023a,b; Soni et al. 2024a).  138 

 139 

It thus stands as an outstanding evolutionary inference question of how best to 140 

accurately infer a necessarily complex and realistic demographic model, along with a 141 

realistic DFE governing functional genomic regions, all whilst accounting for the variety of 142 

discussed potential biases. Here we have investigated a modified 2-step approach applied to 143 
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human populations, in which the population history was inferred using non-functional 144 

regions sufficiently distant from functional sites in order to avoid BGS effects, DFE inference 145 

was then performed on exonic regions accounting for BGS effects and conditional on the 146 

demographic history inferred in Step 1, and mutation and recombination rate maps were 147 

utilized to account for the modulating effects of this underlying heterogeneity. By inferring 148 

these parameters separately, a more biologically realistic population history was possible 149 

accounting for the complexities of population size change, structure, and migration patterns 150 

in these studied human populations, while the utilization of these distant non-functional 151 

regions allowed for the reduction or elimination of the biasing effects of BGS on 152 

demographic inference. Whilst a number of coalescent and diffusion approximation-based 153 

approaches would be easily incorporated into our framework (e.g., Gutenkunst et al. 2009; 154 

Excoffier et al. 2013; Jouganous et al. 2017; Wang et al. 2020), this approach – like the ABC 155 

approach of Johri et al. (2020, 2022a) - has the benefit of utilizing various aspects of 156 

population genomic data, including the SFS, associations between variants (linkage 157 

disequilibrium, LD), and population differentiation.  158 

 159 

As human populations have naturally been highly studied, with numerous published 160 

demographic models, we here provide an optimized and well-fitting 4-population 161 

demographic model for the Out-of-Africa (OOA) expansion. Conditional on this model, we 162 

additionally optimized a DFE using genic regions, fitting both levels and patterns of 163 

polymorphism and divergence, and finding consistency with the recent DFE estimates of 164 

Johri et al. (2023). Finally, we have evaluated the degree to which positively selected 165 

mutations may be identifiable within the context of this fit model. This work thus provides a 166 
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valuable and improved framework for evolutionary inference in coding-sparse genomes, 167 

and for the construction of evolutionary baseline models in such species. 168 

 169 

 170 

Methods and Materials 171 

Data 172 

 This study was based on the GRCh37 human reference genome, with SNP data and 173 

accessibility masks obtained from 1000 genomes variant call format and bed files, 174 

respectively (The 1000 Genomes Project Consortium 2015). The data was split into 175 

continental populations, informed by levels of admixture, as determined by The 1000 176 

Genomes Project Consortium (2015). The total number of samples from each of the four 177 

considered populations were: African – 99; European – 502; East Asian – 104; South Asian – 178 

489. We obtained recombination and mutation rate maps from Halldorsson et al. (2019) and 179 

Francioli et al. (2015), respectively, gene annotations from NCBI (Sayers et al. 2022), 180 

ancestral sequences from the six-way EPO alignments available from Ensembl (Flicek et al. 181 

2014; Cunningham et al. 2022), and we identified conserved elements via the 100-way 182 

PhastCons score (Siepel et al. 2005; Pollard et al. 2010). See Supplementary Table S1 for 183 

links to all downloaded data. 184 

 185 

Selecting non-functional regions for demographic inference 186 

 For demographic inference we identified non-functional regions of the human 187 

genome that were at a distance of at least 10kb from the nearest functional region (as per 188 

the NCBI GFF file [Sayers et al. 2022]). We then masked these regions using both strict 189 

accessibility masking (The 1000 Genomes Project Consortium 2015) and conserved element 190 
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masks (i.e., with a phastCons score > 0 [Siepel et al. 2005; Pollard et al. 2010], in order to 191 

remove sites potentially experiencing purifying selection and generating background 192 

selection effects (e.g., binding sites (Simkin et al. 2014))). Across each region, we calculated 193 

mean recombination and mutation rates, with any regions lacking this information being 194 

removed. Finally, we set a minimum length threshold of 15kb to ensure that regions were 195 

long enough to reliably calculate summary statistics. Following these steps, we were left 196 

with a total of 146 non-functional regions. Finally, we used the B maps of McVicker et al. 197 

(2009) to compare the distribution of B values (i.e., the estimated reduction in diversity 198 

attributed to BGS by McVicker et al. (2009)) to the distribution of our non-functional 199 

regions. For this analysis we lifted over B map coordinates from the hg18 human genome 200 

assembly to the GRCh37 assembly using the UCSC liftover tool (Karolchik et al. 2003). 201 

Supplementary Figure S1 provides plots of this comparison, as well as the distributions of 202 

region lengths, SNPs, and mutation and recombination rates for our set of curated non-203 

functional regions. 204 

 205 

Selecting exons for DFE inference 206 

 We used the set of exons curated by Johri et al. (2023), although our focus was on 207 

the exonic regions only, as opposed to the exons and the neighbouring intergenic regions. 208 

Because we used different recombination and mutation rate maps (as described in the data 209 

section above), we recalculated mean rates across the 465 exonic regions, removing regions 210 

for which we did not have rate information, leaving a total of 397 exonic regions. 211 

 212 

 213 

 214 
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Calculating empirical summary statistics 215 

 We calculated summary statistics for each population sampled using the python 216 

library for libsequence, Pylibseq v0.2.3 (Thornton 2003), except for FST which was estimated 217 

using scikit-allel (Miles et al. 2024). The number of segregating sites and FST were calculated 218 

per site, whilst Tajima’s D (Tajima 1989) and mean r
2

 were calculated over 10kb windows for 219 

each non-functional region, and per region for each exon. 220 

 221 

 Exonic divergence was calculated based on the number of fixed differences between 222 

the reference and ancestral sequences, with polymorphic sites masked, relative to total 223 

region size. 224 

 225 

Calculating summary statistics from simulated data 226 

 We calculated summary statistics from simulated data in a manner that replicated 227 

the empirical data, using the same software as described above. Thus, sites that had been 228 

masked in the empirical data were also masked in the simulated data prior to calculating 229 

summary statistics.  230 

 231 

 Exonic divergence was calculated as the number of fixations post-burn-in from 232 

forward-in-time simulations (see the 'Simulating human population history with selection 233 

using SLiM' section).  234 

 235 

 We calculated the mean and standard deviation for each region across its respective 236 

100 replicates. For plotting purposes, we plotted the mean of all regions as the data point, 237 

and the mean of the standard deviations across all regions as the confidence intervals. 238 
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 239 

Simulating human population history using Msprime 240 

 Step 1 in our 2-step inference framework was the inference of population history. 241 

We simulated human demography using the coalescent simulator Msprime (Baumdicker et 242 

al. 2022) for each of our 146 non-functional regions, with region specific mutation and 243 

recombination rates. Our demographic model was comprised of 5 populations (four 244 

sampled populations: African, European, South Asian and East Asian; as well as the 245 

unsampled ancestral Eurasian population) and 25 parameters. Parameter ranges were taken 246 

from the human demographic inference literature, with midpoints of all ranges used as the 247 

initial starting parameterization. A generation time of 26.9 years was used to appropriately 248 

scale simulations (Wang et al. 2023). For details of the demographic model see Figure 1 and 249 

Table S2. 100 replicates were simulated for each of the 146 non-functional regions, with a 250 

single mutation and recombination rate per region, calculated as the average across the 251 

region from the Francioli et al. (2015) mutation rate map and the Halldorsson et al. (2019) 252 

recombination rate map (see Supplementary Figure S1 for distributions of region lengths, 253 

mutation rates and recombination rates across curated regions). Parameters were 254 

optimized to the data using FST, the number of segregating sites, Tajima’s D (Tajima 1989) 255 

and mean r
2
, across all four populations. Demographic inference plots (e.g., Figure 1) were 256 

produced using Demes software (Gower et al. 2022). 257 

 258 

Simulating human population history with selection using SLiM 259 

 For Step 2, we simulated the inferred population history from Step 1 using the 260 

forward-in-time simulator SLiM (v4.0.1 [Haller and Messer 2023]), for our 397 exonic 261 

regions, with region specific mutation and recombination rates. We simulated to the 262 
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human-chimpanzee split (12mya; Moorjani et al. 2016). Thus, the simulations considered 12 263 

million years (446,100 generations) before starting the 10N generation burn-in period. 264 

Exonic mutations were drawn from a DFE comprised of 4 fixed classes (following Johri et al. 265 

2020), with frequencies denoted by fi: f0 with 0 ≤ 2NAFRancestral s < 1 (i.e., effectively neutral 266 

mutations), f1 with 1 ≤ 2NAFRancestral s < 10 (i.e., weakly deleterious mutations), f2 with 10≤ 267 

2NAFRancestral s < 100 (i.e., moderately deleterious mutations), and f3 with 100 ≤ 2NAFRancestral s 268 

(i.e., strongly deleterious mutations), where 2NAFRancestral  is the initial African population size 269 

and s is the reduction in fitness of the mutant homozygote relative to the wild-type. We 270 

initially simulated the DFE from Johri et al. (2023) - comprised of neutral and deleterious 271 

mutations - which fit the empirical data well. 272 

 273 

Simulating selective sweeps 274 

Recurrent 275 

 We simulated recurrent selective sweeps by adding a beneficial DFE category for our 276 

397 exonic regions. We simulated three different beneficial rates (0.1%, 1%, and 10% of new 277 

mutations), with the effectively neutral DFE category (f0) reduced to account for the 278 

addition of the beneficial category. Three different beneficial classes were separately 279 

simulated: 1 ≤ 2NAFRancestral sb < 10; 10 ≤ 2NAFRancestral sb < 100 and 100 ≤ 2NAFRancestral sb < 280 

1,000, where sb is the increase in mutant homozygote fitness relative to the wild-type.  281 

 282 

Individual 283 

 To simulate a single hard selective sweep, we ran our inferred demographic model 284 

with the inferred DFE, with three different scenarios for introducing a beneficial mutation: 285 

model 1) the beneficial mutation was introduced into the African population immediately 286 
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after burn-in; model 2) the beneficial mutation was introduced into the ancestral Eurasian 287 

population immediately after splitting from the African population; and model 3) the 288 

beneficial mutation was introduced into the European population immediately after 289 

splitting from the Eurasian population. In model 1, simulations were terminated and 290 

restarted if the beneficial mutation did not fix in all 4 sampled populations. In model 2, 291 

simulations were terminated and restarted if the hard sweep did not fix in the European, 292 

East Asian and South Asian populations. Finally, in model 3 simulations were terminated and 293 

restarted if the hard sweep did not fix in the European population. For each scenario, two 294 

different strengths of selection were simulated: 2Nesb  = 1,000 and 10,000, where Ne is the 295 

ancestral African population size (NAFRancestral) and sb  is the beneficial selection coefficient.  296 

 297 

 For these simulations, we utilized the chromosomal structure of Soni and Jensen 298 

(2024), with functional regions comprised of 9 exons (each of size 1,317bp) and 8 introns 299 

(each of size 1,520bp), separated by intergenic regions (each of size 4,322bp) [The 1000 300 

Genomes Project Consortium 2015]. The number of exons and introns per functional region 301 

were taken from Sakharkar et al. (2004). The chromosomal region contained 7 functional 302 

regions in total, resulting in a total simulated region length of 198,345bp. 303 

 304 

 Variable mutation and recombination rates were drawn from a uniform distribution 305 

such that the mean recombination rate across the simulated region for each replicate was 306 

equal to the Kong et al. (2010) mean, and the mean mutation rate across the simulated 307 

region for each replicate was equal to the Kessler et al. (2020) mean. 308 

 309 

 310 
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Sweep inference with SweepFinder2 311 

 We performed selective sweep inference by running SweepFinder2 (DeGiorgio et al. 312 

2016) on each simulated replicate of each exonic region from our hard sweep simulations. 313 

Allele frequency files were generated for each replicate, following Huber et al.’s (2016) 314 

recommendation of including only polymorphic and substitution data. Inference was 315 

performed at each SNP via a grid file, following Nielsen et al. (2005). The background SFS 316 

was taken from the sweep-free simulations inferred in this study. The following command 317 

line was used for inference: 318 

SweepFinder2 -lru GridFile FreqFile SpectFile RecFile OutFile 319 

 320 

Sweep inference with H12 321 

 We ran the H12 method of Garud et al. (2015) on each simulated replicate of each 322 

exonic region from our hard sweep simulations, using a custom python script. H12 was 323 

estimated over 1kb, 2kb, 5kb, 10kb, 20kb, and 40kb windows at each SNP, with the SNP at 324 

the center of each window.  325 

 326 

 For both SweepFinder2 and H12 inference, we calculated true- and false-positive 327 

rates based on the inference values at each site, generating ROC curves from this 328 

information. 329 

 330 

331 
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Results and Discussion 332 

 333 

Our implemented 2-step approach to demographic and DFE inference involves 334 

inferring population history using non-functional regions that are at a sufficient distance 335 

from functional sites so as to reasonably ensure that they are not experiencing purifying or 336 

background selection effects. DFE inference is then performed on exonic regions in Step 2, 337 

conditional on the demographic history inferred in Step 1 and incorporating expected 338 

background selection effects. We have applied this approach to human population genomic 339 

data from the 1000 genomes project (The 1000 Genomes Project Consortium 2015), in 340 

order to better characterize the evolutionary parameters governing recent human history. 341 

 342 

Step 1: Demographic inference on non-functional regions 343 

In order to avoid the biasing effects of purifying selection and BGS, we performed 344 

demographic inference on our curated set of 146 non-functional regions, with mean 345 

recombination and mutation rates calculated for each region from the rate maps of 346 

Halldorsson et al. (2019) and Francioli et al. (2015), respectively. For details of the data 347 

curation steps, please see the Methods section. While one would typically begin with an  348 

evaluation of numerous demographic models and topologies in less well-characterized 349 

species (see Beaumont et al. 2002; Johri et al. 2020), given the considerable literature on 350 

human demographic history (e.g., Gutenkunst et al. 2009; Gravel et al. 2011; Schiffels and 351 

Durbin 2014; Terhorst et al. 2017; Hu et al. 2023), and inferred levels of admixture in The 352 

1000 Genomes dataset (The 1000 Genomes Project Consortium 2015), we began with a 353 

model of the Out-Of-Africa (OOA) colonization in which the ancestral Eurasian population 354 

splits from the African population, followed by the European, South Asian and East Asian 355 
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populations dispersing from the ancestral Eurasian population, along with the Bantu 356 

expansion in the African population. Thus, our demographic model was comprised of 5 357 

populations (African, ancestral Eurasian, European, South Asian and East Asian, of which all 358 

but the ancestral Eurasian population were sampled) and 25 parameters that capture 359 

population sizes, bottleneck severities, growth rates, timings of each event, and migration 360 

rates between populations. Parameter ranges were drawn from the extensive literature on 361 

human population history (Mellars 2006; Gutenkunst et al. 2009; Gravel et al. 2011; 362 

Tennessen et al. 2012; Terhorst et al. 2017). Figure 1a provides the parameter ranges for 363 

our model, and see Methods section for further details. 364 

 365 

We simulated 100 replicates for each of our 146 non-functional regions using the 366 

coalescent simulator MSprime (Baumdicker et al. 2022) with region-specific mutation and 367 

recombination rates, initially starting with midpoint values for each of our parameters (see 368 

Figure 1a). For each replicate we estimated four summary statistics for each population (or 369 

pairs of populations): the number of segregating sites, Tajima’s D (Tajima 1989), mean r
2
, 370 

and FST, giving us a total of 18 summary statistics. Fitting these four statistics enabled us to 371 

account for multiple aspects of the data including levels of diversity, the SFS, LD and 372 

population structure. Figure 1a provides the optimized fit of each parameter within the 373 

context of previously published parameter ranges, and Figure 1b the total inferred 374 

demographic model. As shown in Figure 2, the summary statistics resulting from this 375 

demographic model well fit observed empirical data. 376 

 377 

It is notable that the African population in our model is larger than the African 378 

populations in the Gutenkunst et al. (2009) and Gravel et al. (2011) best-fitting models. 379 
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There are two likely contributing factors. Firstly, these previous studies fit the model to the 380 

SFS, whereas we have here fit multiple diverse summaries of the data. Secondly, these 381 

previous studies modeled the African population with a fixed size that undergoes a single 382 

instantaneous expansion. Here we modelled the recent Bantu expansion, and thus our final 383 

African population size was notably larger, though our final African population size of 87,594 384 

falls within the range of previous estimates (Schiffels and Durbin 2014; Terhorst et al. 2017; 385 

Johri et al. 2023). Finally, it is worth noting that numerous other coalescent and diffusion 386 

approximation-based approaches have been used to infer the OOA model of human 387 

population history (Gutenkunst et al. 2009; Gravel et al. 2011; Excoffier et al. 2013; 388 

Jouganous et al. 2017; Wang et al. 2020). These studies have masked genic regions to avoid 389 

the biasing effects of selection. However, BGS can still affect demographic inference if not 390 

accounted for; nonetheless, our parameter estimates fall within previously inferred ranges, 391 

confirming the modest nature of BGS effects in humans (Johri et al. 2021; Buffalo and Kern 392 

2024).  393 

 394 

In summary, by optimizing within previously published parameter ranges, we have 395 

identified a neutral demographic model that well explains multiple facets of the genomic 396 

data in distant non-coding regions. 397 

 398 

Step 2: DFE inference on functional regions 399 

 Given the strong fit of the neutral demographic model to the intergenic data, we 400 

next moved to Step 2: inference of the DFE using functional regions. We utilized the curated 401 

set of functional regions from Johri et al. (2023). After obtaining region-specific mutation 402 

and recombination rates we were left with a total of 397 functional regions. Unlike Johri et 403 
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al. (2023) who simulated exons and their neighboring regions, we focused on the exons only 404 

(given that the model fit was consistent across both exons and adjacent regions in their 405 

study). First, we simulated our 397 functional regions under the demographic model 406 

inferred in Step 1, using the forward-in-time simulator SLiM (v4.0.1 [Haller and Messer 407 

2023]). For the purpose of DFE inference, we simulated to the human-chimpanzee split time 408 

(12mya [Moorjani et al. 2016]) to allow us to compare empirical and simulated divergence, 409 

which is expected to be shaped by selection at functional sites. When simulating these 410 

functional regions under selective neutrality, we found that the fit to the empirical data was 411 

poorer than for the non-functional regions (Supplementary Figure S2); an expected result 412 

given the action of selection in these exonic regions. Next, we simulated under the Johri et 413 

al. (2023) DFE using our fit demographic model, and found a good fit of the simulated 414 

summary statistics to the empirical data (Figure 3). These results are encouraging given the 415 

differing approaches taken between the two studies: we here took the 2-step approach as 416 

described, whilst Johri et al. utilized a simultaneous inference scheme. Importantly 417 

however, both studies accounted for expected BGS effects, a relative rarity in DFE inference. 418 

 419 

 Though the inclusion of population history, purifying and background selection 420 

effects, and mutation and recombination rate heterogeneity were alone sufficient to explain 421 

empirically observed data patterns, that does not necessarily imply the absence of beneficial 422 

mutations; rather, it suggests that this additional parameter is not needed in order to fit 423 

observed patterns of variation. While this observation is itself meaningful, it indeed raises 424 

the question of what rate of beneficial mutation may be consistent with the data but simply 425 

unidentifiable. In order to investigate this question, we added a beneficial DFE category to 426 

the Johri et al. (2023) DFE, in an attempt to understand what rate of input of beneficial 427 
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mutations may be compatible with the observed levels of variation, the SFS, LD, divergence 428 

and FST. Initially, we considered three beneficial DFE proportions, fbo = [0.1%, 1%, or 10% of 429 

newly arising mutations], with 1 ≤ 2NAFRancestral sb < 10 (i.e., weakly beneficial mutations). 430 

Under this model, we correspondingly reduced f0 - the proportion of effectively neutral 431 

mutations – in order to account for the addition of this beneficial DFE class. Supplementary 432 

Figures S3-S5 provide the fit of the summary statistics from these simulations to the 433 

observed data. At fb0 = 0.1% or 1%, all summary statistics remain reasonably well fit - in 434 

other words, they are not significantly modified from the expectations in the absence of 435 

positive selection. However, divergence was notably increased relative to that observed at 436 

fb0 = 10%, due to the greater rate of beneficial fixation.  437 

 438 

 Given that this beneficial mutation rate of 10% appears inconsistent with empirical 439 

divergence, we next examined fb0 = 0.1% and 1% only, whilst increasing the population-440 

scaled strength of selection to 10 ≤ 2NAFRancestral sb < 100 (i.e., moderately beneficial 441 

mutations). Supplementary Figures S6 and S7 provide the fit of summary statistics from 442 

these simulations to the observed data. With this increased strength of selection, the 443 

modelled divergence only fit the empirical data at the lowest beneficial frequency, fB0 = 444 

0.1%. Finally, we increased the population-scaled strength of selection further to 100 ≤ 445 

2NAFRancestral sb < 1000 (i.e., strongly beneficial mutations), at fB0 = 0.1%. Even at this low 446 

frequency, the resulting divergence was too high relative to the empirical data (see 447 

Supplementary Figure S8 for all summary statistics). It is notable that regardless of beneficial 448 

mutation frequency or strength of selection, the other summary statistics fit the data well - 449 

this owes to the relative waiting time between selective sweeps under these models; that is, 450 

selective sweeps are too old on average to strongly impact patterns of polymorphism 451 
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(Jensen 2009), while being frequent enough to modify divergence over the 12mya time-452 

scale. 453 

 454 

 Taken together, these results suggest that whilst the addition of a beneficial DFE 455 

class is not necessary to explain the patterns observed in the human population genomic 456 

data here considered, a modest input of weakly beneficial mutations and/or a low input of 457 

moderately beneficial mutations would remain consistent with the observed data.  458 

 459 

Evaluating power to detect selective sweeps within this human baseline model 460 

Recurrent sweep models, such as the one studied above, involve a scenario in which 461 

beneficial mutations occur randomly across a chromosome according to a time-462 

homogenous Poisson process at a per-generation rate (Kaplan et al. 1989; Wiehe and 463 

Stephan 1993; Stephan 1995; Pavlidis et al. 2010; Soni et al. 2023). Although this is a more 464 

realistic model of positive selection, in that the beneficial mutations underlying selective 465 

sweeps naturally occur at a per-generation rate - meaning that they are naturally associated 466 

with an average time since fixation - the more commonly studied model involves a single 467 

selective sweep in which fixation occurred immediately prior to sampling. As such, these 468 

models consider a best-case scenario for sweep detection, both in that sweeps are as recent 469 

as possible thus maximizing detectable polymorphism-based patterns (see review of Nielsen 470 

2005), but also because it avoids the possibility of interference between positively selected 471 

mutations (i.e., Hill and Robertson 1966). 472 

Furthermore, these models are often simulated on otherwise neutral backgrounds, 473 

which is additionally unrealistic in the sense that beneficial mutations occur in functional 474 

regions, which will be dominated by newly arising deleterious mutations.  Thus, as a step 475 
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towards biological reality, we here have modelled single selective sweeps within the context 476 

of our evolutionary baseline model, using our inferred demographic history, DFE, as well as 477 

mutation and recombination rate maps, thereby accounting for constantly-operating 478 

evolutionary processes in order to characterize the power to identify an episodic selective 479 

sweep (as described by Johri et al. 2022a).  480 

 481 

Under this model, we simulated a large genomic region comprised of functional and 482 

non-functional regions in which a single hard selective sweep occurred in a functional 483 

element (see Methods section for more details about simulated chromosomal structure, as 484 

well as parameterizations). Sweep inference was conducted using two methods: the 485 

composite-likelihood ratio (CLR) SFS-based method, SweepFinder2 (DeGiorgio et al. 2016), 486 

and a haplotype-based approach, H12. Three different sweep models were simulated: 1) a 487 

beneficial mutation introduced into the ancestral African population immediately after 488 

simulation burn-in, with the fixed beneficial present in the sampled African, European, East 489 

Asian and South Asian populations; 2) a beneficial mutation introduced into the ancestral 490 

Eurasian population immediately after splitting from the ancestral African population, with 491 

the fixed beneficial present in the sampled European, East Asian and South Asian 492 

populations; and 3) a beneficial mutation introduced into the European population 493 

immediately after splitting from the Eurasian population, with the fixed beneficial present in 494 

the sampled European population. Figure 4 presents ROC plots, plotting the false positive 495 

rate (FPR) against the true positive rate (TPR) for inference on each model across 100 496 

replicates with SweepFinder2 (with inference performed at each SNP) and H12 (with 497 

inference performed across 1kb windows, centered on each SNP; see Supplementary 498 

Figures S9-13 for additional window sizes).  499 
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 500 

At the lowest strength of selection (2Nesb = 100), no beneficial mutations reached 501 

fixation by the sampling time (i.e., the present day) across the replicates. As such, Figure 4 502 

presents ROC plots for 2Nesb values of 1,000 and 10,000 only. Although SweepFinder2 503 

showed greater inference power than H12, there was limited power to detect selective 504 

sweeps for both approaches. While potentially appearing counter-intuitive, in some 505 

circumstances 2Nesb = 1,000 had greater power than 2Nesb = 10,000, as the fixations of the 506 

former were more recent given the longer sojourn time, and thus experienced less post-507 

fixation decay in patterns of polymorphism (Kim and Stephan 2000; Soni et al. 2023). These 508 

results thus suggest that detectable selective sweeps would necessarily be the result of 509 

positive selection that was strong and recent enough to leave a detectable signature, 510 

consistent with previous work (Przeworski 2002; Kim and Stephan 2002; Jensen et al. 2007; 511 

Crisci et al. 2013). Moreover, the modest power under our baseline model is likely explained 512 

by the severe bottlenecks and expansions characterizing these populations, as the 513 

fundamental difficulty in distinguishing between population bottlenecks and selective 514 

sweeps has been previously demonstrated (Barton 1998; Jensen et al. 2005). These results 515 

suggest that caution is needed when performing genomic scans for selection in humans due 516 

to their complex recent demographic history, and likely supports previous assertions that 517 

strong selective sweeps have been rare in recent human history (Hernandez et al. 2011). 518 

 519 

Conclusions 520 

In this study we have demonstrated the viability of a 2-step approach for inferring 521 

population history along with the DFE in coding-sparse genomes, such as that characterizing 522 

humans. This condition, together with being a recombining genome, is important for the 523 
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existence and availability of non-functional regions sufficiently distant from functional sites 524 

so as to be free from the effects of purifying and background selection, as such regions are 525 

necessary for the accurate inference of population history. By contrast, organisms with 526 

genomes that are either coding dense or experience limited recombination may not have 527 

such regions in sufficient number, in which case demographic inference must be performed 528 

within the context of background selection effects. As these background selection effects 529 

will be dictated partially by the DFE in functional regions, this genomic architecture requires 530 

the joint and simultaneous inference of demographic and selective parameters - a situation 531 

that spans organisms ranging from Drosophila to many viruses (see review of Johri et al. 532 

2022b). However, given the multiple jointly inferred parameters, the demographic histories 533 

under these joint inference schemes have been highly simplified in current 534 

implementations. Thus, this 2-step approach has a distinct advantage for coding-sparse 535 

genomes, in that previously developed and sophisticated neutral demographic inference 536 

approaches may be leveraged in Step 1 - such as that employed here estimating a 25-537 

parameter human demographic model consisting of multiple population size changes, split 538 

times, and migration rates - allowing DFE inference to be focused upon in Step 2 conditional 539 

on that inferred history.  540 

It is additionally important to consider the extent to which a consideration of these 541 

BGS effects matters for human demographic inference. Indeed, given the coding-sparseness 542 

of the genome, these effects are expected a priori to be limited, and that is fully consistent 543 

with the observation that our optimized demographic parameter values fall within 544 

previously published parameter ranges. However, apart from accounting for the effects of 545 

selection at linked sites, this approach also utilizes patterns of variation in addition to the 546 

site frequency spectrum (e.g., linkage disequilibrium and population-differentiation), which 547 
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provide a further valuable 'sanity check' on estimated models. This combination of factors 548 

has resulted in incrementally improved - but indeed improved - parameter estimates for the 549 

populations studied, as assessed by the fit between the estimated model and the empirical 550 

data. Thus, this proof-of-principle approach applied here to publicly-available human data 551 

will likely provide a highly relevant and informative inference framework for the analysis of 552 

future genomic resources in comparatively poorly-studied species with a similar genomic 553 

architecture (e.g., non-human primates). 554 

 555 

 556 
 557 
 558 
 559 
 560 
 561 
  562 
 563 
 564 
  565 
 566 
 567 
 568 
 569 
 570 

571 
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Figure 1: Demographic model representing the Out-of-Africa expansion. a) Parameter ranges for all 25 parameters (represented by the blue 

bars on the plots). Orange dots indicate the best fitting parameter values identified. b) Plot of demographic model with the best fitting 

parameter values. Population key: AFRancestral = initial ancestral African population; AFR = African population; EURASI = unsampled Eurasian 

population; EUR = European population; EAS = East Asian population; SAS = South Asian population. Parameter key: τ = time of splits between 

specified populations (with τBANTU representing the time of start of the Bantu expansion in the African population); r = growth parameter; N = 

population size; B = bottleneck severity; m = migration rate. Demographic model graphic generated using Demes software (Gower et al. 2022). 
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Figure 2: Summary statistics calculated from putatively neutral non-functional regions from population samples for empirical (blue) data, 

compared to simulated (red) data under the best-fitting demographic model. Means and standard deviations were calculated for 100 

replicates. Data points represent the mean across regions, while bars represent the mean of the standard deviations across all regions. 
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Figure 3: a) to e) Summary statistics calculated from functional regions from population samples for empirical (blue) data, compared to 

simulated (red) data under the best-fitting neutral demographic model with the addition of purifying and background selection modelled using 
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the Johri et al. (2023) DFE (shown in panel f).  Following this DFE, exonic mutations were drawn from a DFE comprised of 4 fixed classes with 

frequencies denoted by fi: f0 with 0 ≤ 2NAFRancestral s < 1 (i.e., effectively neutral mutations), f1 with 1 ≤ 2NAFRancestral s < 10 (i.e., weakly 

deleterious mutations), f2 with 10 ≤ 2NAFRancestral s < 100 (i.e., moderately deleterious mutations), and f3 with 100 ≤ 2NAFRancestral s (i.e., strongly 

deleterious mutations), where NAFRancestral was the initial population size and s the reduction in fitness of the mutant homozygote relative to 

wild-type. Means and standard deviations were calculated for 100 replicates. Data points represent the mean across regions, while bars 

represent the mean of the standard deviations across all regions. 
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Figure 4:  ROC curves, providing the change in true-positive rate (TPR) with false-positive rate (FPR), for sweep inference with SweepFinder2 

(SF2) and the H12 statistic under the demographic model inferred in this study (see Figure 1) together with the Johri et al. (2023) DFE for 

functional regions, and variable mutation and recombination rates (see Methods section).  Here, a single beneficial mutation was introduced 

into the population at three different time points and in three different populations: Model 1: the beneficial mutation was introduced into the 

ancestral African population immediately after the burn-in period, the beneficial fixation is present in all populations, and sweep inference was 

conducted on all sampled populations; Model 2: the beneficial mutation was introduced into the ancestral Eurasian population immediately 

upon splitting from the ancestral African population, the beneficial fixation is present in all non-African populations, and sweep inference was 

conducted on the European, East Asian and South Asian populations; Model 3: the beneficial mutation was introduced into the European 

population immediately upon splitting from the Eurasian population, the beneficial fixation is present in the European population, and sweep 

inference was conducted on this population only.  For each model, two different strengths of selection were modelled: 2Nesb = 1,000 and 2Nesb 

= 10,000, where Ne 

is the size of the ancestral African population and sb is the selection coefficient of the beneficial mutation. Inference with 

SweepFinder2 was performed on each SNP and substitution, whilst H12 inference was performed on each SNP over a 1kb window, with the 

SNP at the center of the window. 
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