
Cognition and Behavior

Scale-Free Neural and Physiological Dynamics in
Naturalistic Stimuli Processing
Amy Lin,1,2 Brian Maniscalco,1,3 and Biyu J. He1,3,4

DOI:http://dx.doi.org/10.1523/ENEURO.0191-16.2016

1National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA,
2Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, Los Angeles, California
90095, 3Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA,
4Departments of Neurology, Neuroscience and Physiology, and Radiology, New York University Langone Medical
Center, New York, NY 10016

Abstract

Neural activity recorded at multiple spatiotemporal scales is dominated by arrhythmic fluctuations without a
characteristic temporal periodicity. Such activity often exhibits a 1/f-type power spectrum, in which power falls off
with increasing frequency following a power-law function: P�f� � 1/f�, which is indicative of scale-free dynamics.
Two extensively studied forms of scale-free neural dynamics in the human brain are slow cortical potentials
(SCPs)—the low-frequency (�5 Hz) component of brain field potentials—and the amplitude fluctuations of �
oscillations, both of which have been shown to carry important functional roles. In addition, scale-free dynamics
characterize normal human physiology such as heartbeat dynamics. However, the exact relationships among
these scale-free neural and physiological dynamics remain unclear. We recorded simultaneous magnetoencepha-
lography and electrocardiography in healthy subjects in the resting state and while performing a discrimination
task on scale-free dynamical auditory stimuli that followed different scale-free statistics. We observed that
long-range temporal correlation (captured by the power-law exponent �) in SCPs positively correlated with that
of heartbeat dynamics across time within an individual and negatively correlated with that of �-amplitude
fluctuations across individuals. In addition, across individuals, long-range temporal correlation of both SCP and
�-oscillation amplitude predicted subjects’ discrimination performance in the auditory task, albeit through
antagonistic relationships. These findings reveal interrelations among different scale-free neural and physiological
dynamics and initial evidence for the involvement of scale-free neural dynamics in the processing of natural
stimuli, which often exhibit scale-free dynamics.

Key words: � oscillations; arrhythmic brain activity; heart rate variability; natural stimuli; scale-free dynamics;
slow cortical potentials

Significance Statement

Many time-varying natural stimuli such as natural soundscapes, speech, and music exhibit scale-free
dynamics characterized by a 1/f-type power spectrum. In parallel, scale-free neural dynamics are prominent
across observational levels in the brain. Two well-established forms of scale-free neural activity are slow
cortical potentials and amplitude fluctuations of � oscillations. However, it is unknown whether they are
related. In addition, the interbeat interval fluctuation of the healthy human heart follows scale-free dynamics,
but its relationship with scale-free neural dynamics is not fully characterized. We observed novel relation-
ships between these different scale-free neural and physiological dynamics. Moreover, naturalistic stimuli
exhibiting scale-free dynamics modulate scale-free neural dynamics, and baseline characteristics of
scale-free neural dynamics predict an individual’s ability to process naturalistic stimuli.
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Introduction
Many natural stimuli exhibit scale-free temporal or spa-

tial patterns, such that no particular temporal or spatial
periodicity predominates (Mandelbrot, 1999). In the spa-
tial domain, it is well documented that natural images
follow a P�f� � 1/f� spatial power spectrum, where f is the
spatial frequency (Field, 1987). In the temporal domain,
scale-free dynamics are characterized by a P�f� � 1/f�

temporal power spectrum, where f is the temporal fre-
quency and the power-law exponent � captures the
strength of autocorrelation in the signal over time. In
dynamics with a larger �, trends tend to persist over
longer periods of time (Fig. 1A–C). Time-varying natural
images (i.e., natural movies) typically follow a P�f� � 1/f�

-type temporal power spectrum (Dong and Atick, 1995).
Loudness and pitch fluctuations of natural soundscapes,
such as urban and rural environmental noise (De Coensel
et al., 2003), speech, and music (Voss and Clarke, 1975),
also exhibit 1/f-type temporal power spectra.

In the brain, scale-free dynamics are prominent across
multiple observational levels (He, 2014) and manifest in
human behavioral output (Gilden, 2001). Two well-studied
forms of scale-free neural dynamics are the slow cortical
potentials (SCPs; He et al., 2010) and amplitude fluctua-
tions of brain oscillations (Linkenkaer-Hansen et al.,
2001). The SCPs are the low-frequency (�5 Hz) compo-
nent of broadband field potentials that exhibit a 1/f-type
power spectrum. Changes in arousal state and task per-
formance alter the power-law exponent in the SCP range
recorded by electrocorticography in humans (He et al.,
2010). In addition, the SCP correlates with functional MRI
(fMRI) signals in both spontaneous fluctuations and
stimulus-driven responses (He et al., 2008; He and
Raichle, 2009; Kahn et al., 2013; Pan et al., 2013), and the
spontaneous fMRI signals exhibit prominent scale-free
dynamics (He, 2011).

A parallel line of research has established that ampli-
tude fluctuations of brain � oscillations also follow scale-
free dynamics (Linkenkaer-Hansen et al., 2001). Its
power-law exponent has been shown to vary with task
performance (Linkenkaer-Hansen et al., 2004), have a
genetic contribution (Linkenkaer-Hansen et al., 2007), in-
crease during development (Smit et al., 2011), and differ

between patients with Alzheimer’s disease and controls
(Montez et al., 2009). Moreover, the power-law exponent
of �-oscillation amplitude predicts that of behavioral fluc-
tuations across individuals (Palva et al., 2013; Smit et al.,
2013), indicating a link between neural and behavioral
long-range temporal correlation.

Although existing data suggest that SCP phase modu-
lates �-oscillation amplitude (He, 2014), whether scale-
free dynamics in the SCP and �-amplitude fluctuations
are related remains unknown. In addition, a rich literature
establishes that the healthy human heart is characterized
by scale-free dynamics in its interbeat interval, and failure
thereof accompanies heart disease or aging (Goldberger
et al., 2002). Currently, the literature remains mixed about
whether and how scale-free dynamics in the SCP and �
amplitude interact with heartbeat dynamics (Palva et al.,
2013; Zhigalov et al., 2015). This question is especially
intriguing in light of recent data showing that afferent
signals from the heart interact with not only the limbic
system but also perceptual and cognitive systems in the
brain (Park et al., 2014).

We recorded simultaneous magnetoencephalography
(MEG) and electrocardiography (ECG) in human subjects
in the resting state and while listening to auditory tone
sequences whose pitch fluctuations constituted scale-
free dynamics with varying degrees of autocorrelation.
These auditory stimuli captured second-order statistics in
natural stimuli, since their temporal power spectra fol-
lowed a power-law distribution. Subjects discriminated
tone sequences with different degrees of autocorrelation,
as captured by the power-law exponent �. We investi-
gated the relationships among scale-free neural and
heartbeat dynamics across sensors and individuals and
over time within an individual. We further examined
whether the degree of autocorrelation in scale-free audi-
tory stimuli modulated scale-free neural and heartbeat
dynamics, and whether scale-free neural dynamics pre-
dicted an individual’s ability to discriminate stimuli with
different degrees of autocorrelation. We hypothesized,
first, that scale-free dynamics in the SCP, �-amplitude
fluctuations, and heartbeat dynamics are interrelated, and
second, that scale-free neural dynamics are involved in
the processing of dynamic, scale-free stimuli.

Materials and Methods
Subjects

The experiment was approved by the Institutional Re-
view Board of the National Institute of Neurological Dis-
orders and Stroke. All subjects were right-handed and
neurologically healthy with normal hearing. Nineteen sub-
jects between 19 and 30 years old (mean age 24.7; 12
females) participated in a �3-h long MEG session with
simultaneous ECG recording. Two subjects did not have
ECG data because one subject was tested before
the ECG recording was implemented, and the other sub-
ject’s ECG data was too noisy to reliably extract R peaks.
All subjects provided written informed consent.
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Stimulus creation
We created auditory tone sequences whose pitch fluc-

tuations had five levels of autocorrelation strength, span-
ning from fractional Gaussian noise (fGn) to fractional
Brownian motion (fBm). We used a circulant embedding
algorithm (Helgason et al., 2011) to create fGn time series
with Hurst exponents of 0.5, 0.6, and 0.75 (corresponding
to power-law exponent � � 0, 0.2, and 0.5, respectively,
where � � 2H – 1), as well as fBm time series with Hurst
exponents of 0.25 and 0.5 (corresponding to power-law
exponent � � 1.5 and 2, where � � 2H � 1). We created
six unique 600-element long series for each level of �,

x_� � �x1, x2, �, x600�, � � �0, 0.2, 0.5, 1.5, 2�,
1 � i � 6 ,

where each element xj of x�,i is taken to represent the
pitch of the jth tone in the sequence. We verified that each
synthesized x�,i indeed had the desired � by computing
the autocorrelation function and performing power spec-
tral analysis for each sequence (Fig. 1A and 1B, respec-
tively). Each auditory sequence i was unique to ensure
that subjects would respond to statistical properties of the
sequence rather than memorizing particular features.

After verifying the autocorrelation properties of the se-
quences, we translated and scaled each x�,i so that its

elements ranged from log(220) to log(880) and discretized
the series such that each element took on one of 25
values evenly spaced on the log scale. Let us refer to the
scaled, translated, and discretized series as p�,i . Each p�,i

thus represents a time series of tone pitches, where pitch
varies in semitone steps between 220 and 880 Hz and
exhibits autocorrelation prescribed by �. This range of
pitch values was chosen to span the isoloudness region
of human hearing (i.e., with identical amplitude, subjective
loudness varies minimally with changing pitch in this
range).

To produce an auditory stimulus for each tone se-
quence, we first computed the time series of tone fre-
quencies as f_�, i � exp�p_�, i�, in Hz. For each fj�f_�, i, we
constructed a sinusoidal sound wave of duration 300 ms
at a 44,100-Hz sampling frequency (thus yielding 13,230
samples for each tone) according to

y_ j,s � Acos�2�fj�s/SR� � 	j�, 1 � s � 13, 230 ,

where s denotes sample number, fj denotes tone fre-
quency, SR denotes the sampling frequency of 44,100 Hz,
and A � 1. The amplitude of the tones was kept identical
throughout the sequence, i.e., the tones were not
amplitude-modulated. The 300-ms duration was chosen
for ease of listening (Patel and Balaban, 2000). Because

Figure 1. Stimuli characteristics and behavioral performance. A, Lagged autocorrelation function for each class of stimulus
sequences, averaged across the six examples at each � level. B, Power spectra of stimulus sequences, averaged across the six
examples at each � level. C, Visual instruction presented to the subjects, showing example stimulus sequences at different � levels.
Sequences of two different overall range were presented (two left columns, large fluctuation range; two right columns, small range),
to demonstrate that trend strength (i.e., autocorrelation) is independent from overall range. D, Group-average (n � 19) conditional
probability of behavioral response given stimulus �, color-coded by the proportion of response � at each stimulus-� level. Each row
sums to 1.
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each tone was 300 ms and each sequence contained 600
tones, each sequence had a total duration of 180 s.

Cosine waves y_ j, s for each tone j were concatenated,
such that there was no silence period between consecu-
tive tones. For the first tone j � 1, the phase 	 was set to
0. For subsequent tones j � 1, the absolute value of 	 was
set to the arccosine of the final sample of tone j – 1. The
sign of 	 for tone j was set such that the first-order time
derivative was continuous across the transition from the
end of tone j – 1 to the start of tone j. This ensured that
there was a smooth and continuous transition between
cosine waves in the junctions where tone frequency
changed.

Auditory sequences were presented using the Psych-
PortAudio function of the Psychophysics Toolbox (Brain-
ard, 1997) in Matlab (Mathworks, Natick, MA). The audio
was delivered through specialized ear tubes that were
custom fitted to work within the MEG scanner. We used
Etymotic ER-3 Insert Headphones, in which the frequency
response is flat to 5 kHz. The plastic tubing from the
transducer to the earpiece had a speed-of-sound delay of
around 10 ms, which was corrected in MEG data analy-
ses.

Experimental design
After presentation of each auditory tone sequence (3

min long), subjects were asked to judge its “trend
strength” on a scale of 0 to 4. Higher “trend strength” was
explained to the subjects as the tendency for a trend to
persist over longer period of time, which captured the
strength of autocorrelation in the time series. Ascending
entries on the “trend strength” scale corresponded to
ascending levels of stimulus �. Visual performance feed-
back was presented after every trial to assist subjects in
learning how to use the scale to accurately characterize
stimulus �. The feedback indicated what trend strength
rating had been entered by the subject, what the true
trend strength of the sequence was, and whether the
subject’s trend strength rating was correct, close to cor-
rect (off by one level of trend strength), or incorrect (off by
two or more levels of trend strength). To ensure adequate
task performance, all subjects were trained during an
initial behavioral session that took place at least a few
days previously in which shortened versions of stimuli
sequences were used. Subjects who performed ade-
quately (behavioral 
 � 0.2, see below) were invited back
for the MEG/ECG experiment (82.4% of all subjects
tested). At the start of the initial behavioral session as well
as the main MEG/ECG experiment, subjects were visually
presented with shortened examples of each level of trend
strength, as exemplified in Fig. 1C, which shows that
trend strength was independent of overall range. Subjects
also completed one practice block at the start of the main
experiment.

Stimulus sequences were initially created with the in-
tention of having � values of 0, 0.5, 1.01, 1.5, and 2, and
feedback presented to the subject was consistent with
this scheme. However, because of an aliasing artifact,
stimuli with an intended � � 1.01 had an empirical �
closer to 0.2 (Fig. 1A,B), and so we treat these stimuli as

having � � 0.2 in all analyses. Because of this complica-
tion, the implicit mapping between trend strength rating
and stimulus � communicated to subjects via visual feed-
back was erroneous for the � � 0.2 case. Nonetheless,
subjects demonstrated an ability to accurately detect that
pitch autocorrelation was weaker for stimulus � � 0.2
than for � � 0.5 (Fig. 1D). This suggests that subjects
were able to accurately classify stimulus � in spite of the
feedback error and further justifies our treatment of these
stimuli as � � 0.2 rather than � � 1.01. Additionally, we
verified that no analysis presented herein yielded different
statistical inference if using the originally intended value of
stimulus � � 1.01 rather than the empirically derived value
of � � 0.2.

We also included a rest condition (3-min long trials) in
which no auditory stimulus was presented. Throughout
the experiment—during both auditory task and resting
state—subjects were asked to keep their gaze fixed on a
cross presented at the center of the screen to minimize
eye movement. Each subject completed 36 trials in total,
which included six trials per condition (five stimulus �
levels plus rest condition). The stimulus sequences dif-
fered across trials within the same � level. The trials were
grouped in blocks of three, resulting in 12 blocks in total.
Stimulus � was randomized across blocks, whereas rest
trials were evenly dispersed throughout the experiment
(always presented as the second trial of even numbered
blocks). The head position of the subject was measured
with respect to the MEG sensor array using coils placed
on the left and right preauricular points and the nasion.
Before each block subsequent to the first block, the sub-
ject self-corrected the head position to the same position
recorded at the start of the first block using a custom
visual-feedback program to minimize head displacement
across the experiment. Video monitoring of the subject
during the experiment ensured that subjects stayed alert
and did not close their eyes for extended periods of time.
After excluding trials that had failure of behavioral re-
sponse or drowsiness as shown by eye closure, 14 sub-
jects had all 36 trials, two subjects had 35 trials, two
subjects had 33 trials, and one subject had 30 trials.

Data acquisition and preprocessing
Experiments were conducted in a whole-head 275-

channel CTF MEG scanner (VSM MedTech, Coquitlam,
BC, Canada). MEG data were collected with a sampling
rate of 600 Hz and an anti-aliasing filter at �150 Hz.
Analyses were performed on 271 sensors after excluding
four malfunctioning sensors. The Fieldtrip package (Oost-
enveld et al., 2011) implemented in Matlab was used for
data preprocessing, and analyses were conducted using
Fieldtrip and custom-written code. We used independent
component analysis to remove artifacts related to eye
blinks, eye movements, heartbeat, breathing, and slow
movement drift. Empty-room recording was collected in a
prior experiment to verify that instrument noise was or-
ders of magnitude lower than the signal we analyzed.

Measuring scale-free parameters
Various scale-invariance measures are mathematically

related and thus can be reasonably compared (Eke et al.,
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2002). Power-law exponents of SCP and �-oscillation
amplitude fluctuations were estimated using the common
power spectral analysis. To estimate the power-law ex-
ponent � of the SCP, a fast Fourier transform was applied
to the MEG signal from each sensor in each trial (3 min
long) to compute its power spectrum. The power spec-
trum was plotted in double-logarithmic scale (Fig. 2A).
Because a power spectrum following P�f� � 1/f� can be
rewritten as log�P�f�� � �log�f�, the negative slope in the
log–log plot provides a convenient measure of the power-
law exponent �. In line with previous studies (He et al.,
2008, 2010), the SCP � was estimated in the range of
0.005–5 Hz (power spectra were calculated on each trial
lasting 180 s; thus the lowest frequency visible was
0.0056 Hz).

To estimate the power-law exponent � of �-oscillation
amplitude fluctuations, we first extracted � oscillations
from continuous MEG signal in each trial using a third-
order Butterworth filter between 6.7 and 13.3 Hz and
computed its instantaneous amplitude envelope by ap-
plying the Hilbert transform. A fast Fourier transform was
then applied to the �-oscillation amplitude fluctuation to
create a power spectrum for each sensor in each trial. The
�-oscillation amplitude � was estimated from the log-log
plot of power spectrum using the 0.1- to 1-Hz range (Fig.
2B).

Following previously established methodology, we ap-
plied detrended fluctuation analysis (DFA) on heartbeat
dynamics (Goldberger et al., 2002; Hardstone et al.,
2012). This computation was applied to the time variation
in interbeat interval, measured as the interval in seconds
between adjacent R peaks (Fig. 2C, left). DFA analysis
was conducted as follows. First, the interbeat interval time
series from each trial was integrated, and the mean was
subtracted. We then estimated the local trend in nonover-
lapping windows of equal length using a least-squares fit
and determined the fluctuation as variance on the local
trend for a given window. Five different window lengths
were used: 4, 8, 16, 32, and 64. The log-log plot of mean
fluctuation (F) against window length (l) constitutes the
DFA plot (Fig. 2C, right), and its slope estimates the DFA
exponent �, following the relation: F�l� � l�, or log�F�l�� �
�log�l�. Theoretically, the power-law exponent � is related
to the DFA exponent �, following � � 2� � 1 (Eke et al.,
2002).

Interrelations between scale-free neural and
heartbeat dynamics

To qualitatively assess the relationship between SCP �
and �-oscillation amplitude � across sensors, we first
generated grand-average scalp topography for SCP �
and �-amplitude � across subjects and trials (Fig. 2A,B,

Figure 2. Characterization of neural and physiological dynamics. A, Left, MEG signal power spectra from an example subject in each
task condition (averaged across all sensors and trials within a condition). Middle, example MEG signal power spectrum from a single
trial in one subject. The red lines indicate the frequency range for extracting SCP power-law exponent �: 0.005–5 Hz. Right,
grand-average topographic map of SCP � across the scalp. B, As in A, but for �-oscillation amplitude. � Oscillation was filtered in
the 6.7- to 13.3-Hz range, and its amplitude time series was extracted using the Hilbert transform. �-Amplitude � was extracted in
the 0.1- to 1-Hz range (red lines in the middle panel). C, For analysis on heartbeat dynamics, the interbeat interval was calculated as
the difference in time (s) between adjacent R-peaks in the ECG recording (left panel). The interbeat interval time series was subjected
to DFA to extract the DFA exponent �, which describes the power-law relationship between fluctuation magnitude and the length of
observation in scale-free dynamics (right panel).
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right). No formal statistical test was performed for the
relationship between SCP � and �-amplitude � across all
sensors due to the difficulty in accurately accounting for
the degrees of freedom associated with the sensors.
However, a scatterplot of SCP � and �-amplitude �
across sensors is included for descriptive purposes (Fig.
3A).

To investigate the relationship between SCP � and
�-amplitude � across subjects, we first defined two clus-
ters of sensors based on the topographic map of SCP �
(Fig. 3C) and then averaged SCP � and �-amplitude �,
respectively, across sensors within each cluster. Pear-
son’s correlation was calculated between SCP � and
�-amplitude � across subjects for each of the two clus-
ters.

To assess the relationship between any two of our three
scale-free parameters (SCP �, �-amplitude �, or ECG �)
over time, we calculated Pearson’s correlation between
them across all 36 trials within each subject. Pearson’s r
values were transformed into Fisher’s z-values, which
were subjected to a one-sample t-test across subjects.
Statistical significance was assessed by a cluster-based

nonparametric permutation test (Nichols and Holmes,
2002; Maris and Oostenveld, 2007). To this end, we shuf-
fled one variable across trials for 1,000 iterations. For
each iteration, Pearson’s correlation between the two
variables was recomputed, and the r-value was trans-
formed into Fisher’s z-value and submitted to a one-
sample t-test across subjects as with the original data.
Clusters were defined for both the original and shuffled
data as contiguous groups of sensors with p-values less
than 0.05 and t-values of the same sign. Summing the
t-values created a summary measure of each cluster. To
build the null distribution, the absolute value of the
summed t-statistic of the largest magnitude was ex-
tracted from each iteration. Finally, the absolute magni-
tude of the summed t-statistic in each cluster from the
original data was compared to the null distribution. A
cluster survived cluster-based correction if 2.5% or fewer
of observations in the null distribution surpassed the ab-
solute value of the cluster’s summed t-statistic (corre-
sponding to p � 0.05 in a two-tailed test). Correlation
between MEG signal power and � was tested similarly.

Figure 3. Interrelations between scale-free neural and physiological dynamics. A, Scatterplot of SCP � against �-amplitude � across
all MEG sensors (averaged across subjects and stimulus conditions). The inset shows the grand-average topographical plots of SCP
� and �-amplitude �, reproduced from Fig. 2. B, Top, nested-frequency analysis between SCP phase and � amplitude. Group-
average MI z-score topography plot is shown (middle), along with the phase-amplitude histogram for the two dominant clusters (see
insets). Bottom, scatterplot between empirically measured SCP � and simulated �-oscillation amplitude � across all sensors. C, Left,
scatterplot across subjects between SCP � and �-amplitude � in a posterior sensor cluster (see inset). Right, scatterplot across
subjects between SCP � and �-amplitude � in an anterior sensor cluster (see inset). D, Correlation between SCP � and SCP power
across trials within an individual. Pearson correlation values were Fisher’s z transformed and subjected to a group-level one-sample
t-test. t Values are plotted in the topography plot, with a single cluster encompassing all sensors surviving cluster-based correction.
The group-level mean and SEM of Fisher z values (averaged across all sensors) are shown in the bar graph to the right (p � 0.001,
one-sample t-test across subjects). E, Similar to D, but for within-subject, across-trial correlation between SCP � and ECG �. Two
clusters of sensors survived cluster-based correction. The group-level mean and SEM of Fisher z values (averaged across all
significant sensors) are shown in the bar graph to the right (p � 0.001, one-sample t-test across subjects).
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SCP: �-oscillation nested-frequency analysis and
simulation

Given previous EEG and electrocorticography findings
showing a nested-frequency relationship between SCP
phase and �-oscillation amplitude (Vanhatalo et al., 2004;
Monto et al., 2008; He et al., 2010; He, 2014), a natural
question is whether this nested-frequency relationship
produces any correlation between SCP � and �-amp-
litude �. To address this question, we performed simula-
tions to reveal what kind of relationship between SCP �
and �-amplitude � would be expected if it were driven
entirely by the nested-frequency relationship between
them.

First, we quantified the nested-frequency relationship
between SCP phase and �-oscillation amplitude using the
well-established modulation index (MI; Tort et al., 2008;
He et al., 2010). We extracted the SCP phase time series
by using a third-order Butterworth filter between 0.005
and 1 Hz (using a 0.005- to 5-Hz filter yielded nearly
identical results) and then applying the Hilbert transform.
The �-oscillation amplitude time series was derived as
described above. SCP � nested-frequency plots (for each
subject, sensor, and condition) were generated by binning
the SCP phase time series into 20 evenly spaced phase
bins and averaging the �-oscillation amplitude within each
phase bin. The MI was computed based on this nested-
frequency plot, which uses an inverted entropy measure
to quantify its deviation from a uniform distribution. For
statistical testing, the MI value was converted into an MI
z-score by comparison with a null distribution generated
by shuffling the phase time series using five equal-length
segments, following a previously described method (He
et al., 2010). A preliminary analysis suggested that stim-
ulus condition did not modulate MI z-score, and thus
different conditions were combined in the subsequent
simulation.

We next used the empirically measured SCP phase
series in conjunction with the nested-frequency relation-
ship between SCP phase and �-oscillation amplitude at
each sensor to construct simulated �-oscillation ampli-
tude time series. To this end, the SCP-� nested-fre-
quency plot as described above was averaged across
subjects and conditions for each sensor. This distribution
was smoothed using a five-bin-wide moving average. For
each sample of the SCP phase time series, we used spline
interpolation of the nested-frequency distribution at that
sensor to determine what �-oscillation amplitude would
be predicted by the SCP phase. Finally, we computed the
� of the empirical SCP time series and the simulated
�-oscillation amplitude series, averaged these � values
over trials and subjects, and examined their Pearson cor-
relation across sensors. This result reveals the contribu-
tion of the nested-frequency relationship between SCP
and � oscillations to the correlation between SCP � and
�-oscillation amplitude �.

Stimulus modulation of scale-free neural and
heartbeat dynamics

We probed whether the strength of autocorrelation in
the auditory stimulus (as captured by its power-law ex-

ponent �) modulated scale-free neural and heartbeat dy-
namics. For each sensor in each subject, stimulus � was
correlated with SCP �, �-oscillation amplitude �, or ECG
� across the 30 task trials using Spearman’s rank corre-
lation. Spearman’s rho values were transformed into Fish-
er’s z-values (Fieller et al., 1957) and submitted to a
one-sample t-test across subjects at each sensor. Statis-
tical significance was established using a cluster-based
nonparametric permutation test as described earlier.

Behavioral performance assessment and correlation
with scale-free neural dynamics

To evaluate subjects’ behavioral performance in the
stimulus � discrimination task, we first visualized the con-
ditional probability of behavioral response � (i.e. the �
corresponding to the subject’s trend strength rating) at a
given stimulus � (Fig. 1D). The behavioral performance of
each subject was assessed by Spearman’s rank correla-
tion between stimulus � and response � across all task
trials. The Spearman’s 
, or behavioral 
, captures a
subject’s behavioral performance for the entire experi-
ment while allowing for some leniency in which subjects
could be close to the right answer but not exact. To test
whether scale-free neural dynamics predicted behavioral
performance on a subject-by-subject basis, we computed
Pearson’s correlation between behavioral 
 and either
SCP � or �-oscillation amplitude � at each sensor across
subjects.

Results
Behavioral performance

The across-trial Spearman’s correlation between stim-
ulus � and response � (“behavioral 
”) was significant for
every subject (n � 19, p ranged from p � 0.0001 to 0.048
[Table 1, line a]), indicating that all subjects could perform
the stimulus � discrimination task significantly above
chance level. Behavioral 
 ranged from 0.36 to 0.88, with
an average value of 0.66. Fig. 1D shows the group-
average conditional probability map of behavioral re-
sponse given stimulus �. The accuracy of subjects’
behavioral responses is reflected by the concentration
of the probability distribution along the diagonal, where
response � is equal to stimulus �. Note that incorrect
behavioral responses tended to be close to the correct
response (i.e. off-diagonal elements that are closer to
the diagonal have higher probability than those that are
farther away). The Spearman’s correlation coefficient
thus provides a more informative and natural measure
for quantifying overall behavioral performance than pro-
portion correct. In particular, Spearman’s correlation,
but not the proportion of correct responses, takes into
account the magnitude of response error. Interestingly,
subjects were better at discriminating between stimulus
� in the fBm (� � 1.5 or 2) than the fGn range (� � 0, 0.2
or 0.5; Fig. 1D). We note that stimuli in the fBm range
tended to sound more melodic than those in the fGn
range.
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Scale-free dynamics in neural activity and heart rate
variability

Consistent with earlier reports (Dehghani et al., 2010;
He, 2014), the power spectrum of MEG signals followed
power-law scaling, with peaks at discrete frequencies
corresponding to various brain oscillations (see Fig. 2A,
left, for example power spectra from a single subject). We
extracted power-law exponent � for SCP from the 0.005-
to 5-Hz frequency range (Fig. 2A, middle). The grand
average (across stimulus conditions and subjects) topo-
graphical distribution of SCP � across MEG sensors is
shown in Fig. 2A (right). SCP � ranged from 0.87 to 1.12
across sensors (mean 0.97), and exhibited an anterior-
posterior gradient with frontal sensors displaying higher �,
and hence longer temporal autocorrelation in the SCP.
This finding is consistent with previous MEG (Dehghani
et al., 2010) and fMRI (He, 2011) observations.

We extracted instantaneous amplitude fluctuations of �
oscillations (filtered in the 6.7- to 13.3-Hz range), and
computed its power spectrum (see Fig. 2B, left, for result
from an example subject). In line with previous reports
(Linkenkaer-Hansen et al., 2001), �-oscillation amplitude
fluctuations exhibit power-law scaling in the power spec-
trum. We extracted the power-law exponent � of � am-
plitude in the range of 0.1–1 Hz (Fig. 2B, middle).
�-Amplitude � ranged from 0.32 to 0.61 across sensors
(mean 0.51) and displayed an anterior-posterior gradient
opposite to that of SCP, such that posterior sensors had
higher �, and accordingly, stronger autocorrelation (Fig.
2B, right).

Finally, following established procedures for analyzing
heartbeat dynamics (Goldberger et al., 2002), we defined

R-peaks from ECG recordings and constructed an inter-
beat interval time series, which was subjected to DFA
analysis to extract the DFA exponent � (Fig. 2C). Theo-
retically, the DFA exponent � is directly related to the
power-law exponent � (see Materials and Methods), both
of which capture the strength of autocorrelation in a time
series, one using a time-domain approach (DFA exponent
�), the other a frequency-domain approach (power-law
exponent �). Across 17 subjects with simultaneous ECG-
MEG recordings, ECG � ranged from 0.57 to 1.2, with a
mean of 0.82 across subjects, consistent with previous
reports (Goldberger et al., 2002).

Anticorrelation between SCP and �-oscillation
amplitude power-law exponents

We next explored the relationship between scale-free
dynamics in SCP and �-oscillation amplitude fluctuations
across the scalp and subjects. Because stimulus condi-
tion minimally modulated power-law exponent of SCP or
�-oscillation amplitude (see below), for this analysis, we
pooled data across all conditions (including five stimulus
� levels and resting condition).

The scalp topography of SCP � and �-oscillation amplitude
� (Fig. 2A,B, right) display opposite anterior-posterior gradients,
indicating that as the strength of autocorrelation in SCP in-
creases, the strength of �-oscillation amplitude fluctuations
tends to decrease. To qualitatively assess this relationship, we
plotted the two measures, each averaged over 19 subjects,
against each other across all sensors (Fig. 3A). This revealed a
negative relationship between SCP � and �-oscillation ampli-
tude � across MEG sensors.

Table 1. Statistical analysis.

Line Data structure Type of test Power
a Nonparametric Spearman’s correlation Below for each subject�

b Normal Pearson’s correlation 0.55
c Normal Pearson’s correlation 0.29
d Normal Pearson’s correlation 1
e Normal Pearson’s correlation 0.55
f Normal Cluster-corrected permutation test�� Cluster p value � 0.023, 1000 permutations
g Normal Paired t test 0.83
h Normal Paired t test 0.43
i Normal Pearson’s correlation 0.83
j Normal Pearson’s correlation 0.86
k Normal Pearson’s correlation 0.09
l Normal Pearson’s correlation 0.26

��Based on one-sample t-tests at each sensor, where the permutation is conducted at the trial level for each subject.
�rho for each subject N Power
0.8293 30 1
0.565 36 1
0.4272 36 0.96
0.4497 33 0.75
0.6945 36 0.76
0.7323 36 1
0.747 36 1
0.6084 33 0.97
0.6997 36 1
0.6332 36 1
0.7014 35 1
0.8477 36 1
0.8754 36 1
0.3636 36 0.58
0.6813 36 1
0.6055 35 0.98
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We then assessed whether there might also be an
anticorrelation between SCP � and �-amplitude � across
subjects. To this end, we first defined two clusters of
sensors based on the scalp topography of SCP �, distrib-
uted over frontal and posterior regions, with relatively high
and low �, respectively. We then assessed across-subject
correlation between SCP � and �-oscillation amplitude �
for each cluster of sensors. In the posterior cluster, we
observed a significant negative correlation between SCP
� and �-amplitude � across subjects (Fig. 3C; r � –0.48,
p � 0.037 [Table 1, line b], n � 19). In the frontal cluster,
there was a negative trend that was not significant (Fig.
3C, inset; r � –0.34, p � 0.16 [Table 1, line c]). Could
the significant anticorrelation between SCP � and �-
oscillation amplitude � in the posterior cluster across
subjects be driven by a relation between their respective
power? Two pieces of evidence suggest that this is not
the case. First, SCP power and �-oscillation power were
found to correlate positively across subjects (r � 0.91, p
� 8.5 � 10–8 [Table 1, line d]; but note that this finding in
itself could be due to measurement variation across sub-
jects). Second, a partial correlation analysis revealed that
after controlling for the effects of SCP and �-oscillation
power, the anticorrelation between SCP � and �-ampli-
tude � across subjects in the posterior sensor cluster was
unchanged (r � –0.48, p � 0.05 [Table 1, line e]).

The above results reveal an intriguing negative relation-
ship between SCP � and �-amplitude � across the scalp
and subjects, such that stronger autocorrelation in the
SCP is accompanied by weaker autocorrelation in the
amplitude fluctuations of � oscillations. In light of previous
observations of a nested-frequency relationship between
SCP phase and �-oscillation amplitude (Vanhatalo et al.,
2004; He, 2014), these findings raise a natural question: is
the anticorrelation between SCP � and �-amplitude �
driven by the nested-frequency relationship between
them? To test this hypothesis, we quantified the nested-
frequency pattern between SCP phase and �-oscillation
amplitude in each MEG sensor (Fig. 3B, top) and simu-
lated �-oscillation amplitude time series for each sensor in
each subject, based on the sensor-specific nested-
frequency pattern and the empirically measured SCP
phase time series. We then computed the power-law
exponent � of the simulated �-oscillation amplitude time
series and plotted it against the measured SCP � across
all sensors (Fig. 3B, bottom). This simulation reveals a
positive relationship between SCP � and �-amplitude �,
suggesting that the negative relationship observed in the
empirical data cannot be explained by the nested-
frequency relationship between SCP and � oscillations.

Finally, we investigated whether the amount of power in
the SCP or � range was related to their respective �
across time within an individual (see Methods). We found
a robust positive correlation between SCP power and �:
after cluster-based correction for multiple comparisons,
all MEG sensors across the entire scalp demonstrated a
significant positive correlation (Fig. 3D). By contrast,
�-oscillation power had no significant correlation with its
amplitude � after cluster-based correction. This result is
consistent with previous findings showing that SCP �

changes by modulating the power in the lowest frequency
ranges, thereby causing a positive correlation between its
power and � (He et al., 2010).

Relationship between scale-free neural and
physiological dynamics

We further investigated whether the strength of auto-
correlation in scale-free neural and heartbeat dynamics
comodulated across time within an individual. To this end,
we computed correlations between SCP � and the DFA
exponent � of heartbeat dynamics measured by ECG.
This analysis revealed two significant clusters, one over
the left central cortex, and the other over the right central
cortex extending into frontal areas (Fig. 3E). No significant
correlation was found between �-amplitude � and ECG �
after correction for multiple comparisons.

Stimulus condition modulates scale-free dynamics in
�-oscillation amplitude

Does the strength of autocorrelation in the stimulus se-
quence (“stimulus �”) modulate the strength of autocorrela-
tion within scale-free neural or physiological dynamics? To
answer this question, we computed Spearman’s rank cor-
relation between stimulus � and the autocorrelation param-
eter from neural or heartbeat dynamics (respectively, SCP �,
�-oscillation amplitude �, and ECG �) across all trials during
the auditory task (30 trials in total) for each subject.

We found that as stimulus � increased, �-amplitude �
progressively decreased in a posterior sensor cluster
overlying visual cortex at a corrected p � 0.023 (Table 1,
line f; Fig. 4A, top). For the sensors within this cluster, the
mean �-amplitude � across subjects in each condition is
plotted in Fig. 4A (bottom). Interestingly, white noise input
(� � 0) enhanced �-amplitude � compared to the rest
(p � 0.0065 [Table 1, line g], paired t-test across sub-
jects), and there was a trend effect of stimuli with strong
autocorrelation (� � 2) reducing �-amplitude � compared
to the rest (p � 0.0774 [Table 1, line h]). A control analysis
indicated that stimulus � did not significantly influence
MEG signal power in the � range. No significant correla-
tion between stimulus � and SCP � was found, nor be-
tween stimulus � and ECG �, suggesting that the strength
of autocorrelation within SCP and heartbeat dynamics
was robust to the range of scale-free stimuli used in this
experiment.

Scale-free neural dynamics predicted behavioral
performance

Finally, we investigated whether scale-free neural or
physiological dynamics predicted a subject’s behavioral
performance in the auditory task. Behavioral performance
was assessed by Spearman’s correlation between stim-
ulus � and response � as described above (behavioral 
).
We found that behavioral performance correlated nega-
tively with SCP � (averaged across all conditions) in a
group of sensors distributed over frontocentral areas (Fig.
4B; r � –0.62, p � 0.0044 [Table 1, line i]), and positively
with �-amplitude � in a group of sensors over left fronto-
temporal cortices (Fig. 4C; r � 0.64, p � 0.0030 [Table 1,
line j]). These results suggest that higher autocorrelation
within �-oscillation amplitude fluctuations, and lower au-
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tocorrelation within the SCP, predict better discrimination
performance on scale-free auditory stimuli. Importantly,
neither SCP power nor �-oscillation power correlated with
behavioral performance, suggesting that signal power
was not a mediating factor between scale-free neural
dynamics and behavioral performance. A control analysis
further suggested that the above effects are regionally
specific: �-amplitude � in the frontocentral area (Fig. 4B,
left) did not significantly correlate with behavioral perfor-
mance (r � 0.15, p � 0.55 [Table 1, line k]), nor did SCP
� in the left frontotemporal area (Fig. 4C, left; r � –0.32, p
� 0.19 [Table 1, line l]).

Discussion
In this study, we investigated the interrelations among

scale-free dynamics in the SCP, �-oscillation amplitude
fluctuations, and heartbeat dynamics across MEG sen-
sors and subjects and over time within an individual. We
further explored their modulation by scale-free dynamic
stimuli and tested whether an individual’s scale-free neu-
ral dynamics predicted the ability to tell scale-free stimuli
apart based on autocorrelation property. Below, we sum-
marize our findings in turn and discuss their implications.

Interrelations among scale-free neural and
physiological dynamics

Across the scalp, a qualitative pattern emerged such
that sensors exhibiting stronger autocorrelation (hence,
larger power-law exponent �) in the SCP tended to have
weaker autocorrelation in the �-oscillation amplitude fluc-
tuations. In addition, SCP � and �-amplitude � were
anticorrelated across subjects within a large posterior
sensor cluster. This anticorrelation could not be explained

by the nested-frequency coupling between SCP and �
oscillations, as a control analysis based on simulation
suggested that the phase-amplitude coupling between
SCP and � oscillations contributes to a positive correla-
tion between their power-law exponents instead. To-
gether, these results suggest that not only do scale-free
dynamics exist within both arrhythmic brain activity and
amplitude fluctuations of brain oscillations, but these dif-
ferent scale-free neural dynamics are related and follow a
systematic antagonistic pattern. Functionally, this anticor-
relation may be important for preventing excessive long-
range temporal correlation in the brain, such that strong
autocorrelation in one type of neural signals impedes the
generation of strong autocorrelation in another. Because
proper brain functioning requires a balance of sufficient
order and flexibility, such anticorrelation may be evi-
dence of a negative feedback mechanism whereby self-
organized brain activity is regulated across levels to avoid
excessive regularity or overly random fluctuation. The
current study does not address the mechanism giving rise
to the anticorrelation between SCP � and �-amplitude �
across subjects. In particular, it remains unknown whether
these two measures have a common mechanism or dif-
ferent mechanisms under common influence, or alterna-
tively, whether one measure influences the other directly
or indirectly. Nonetheless, developmental and genetic
contributions that have been shown to influence �-
amplitude � (Linkenkaer-Hansen et al., 2007; Smit et al.,
2011) indicate possible starting points for future investi-
gations to probe.

We further observed that SCP power positively corre-
lated with SCP � across time within an individual, indicat-

Figure 4. Stimulus modulation of scale-free neural dynamics and prediction of behavioral performance. A, Spearman rank correlation
was calculated between stimulus � and �-amplitude � across the 30 task trials for each subject, and the group average is plotted for
all sensors (top left panel). A posterior sensor cluster survived cluster-based correction at p � 0.05 (top right panel). For this significant
sensor cluster, �-amplitude � averaged across sensors was plotted for each stimulus � level and rest condition (bottom panel), which
shows the mean and SEM across subjects. B, Left, Pearson’s correlation value between behavioral performance (measured as
behavioral 
) and SCP � (averaged across all conditions) across subjects, thresholded at a p � 0.05 level. Nonsignificant sensors are
shown as a uniform green background. Right, SCP � averaged across significant sensors is plotted against behavioral 
 for all
subjects. C, Same as B, but for the correlation between �-amplitude � and behavioral performance.
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ing that higher � in the SCP is a result of higher power in
the lowest frequencies. This resonates with a previous
finding on the pattern of power spectral changes in this
frequency range during task performance (He et al, 2010).

Our results reveal a novel relationship between scale-
free neural and physiological dynamics, with the strengths
of autocorrelation in the SCP and heartbeat dynamics
(captured by SCP � and ECG �, respectively) positively
comodulating across trials within an individual. Because
neither measure was influenced by stimulus condition,
this relationship is due to their intrinsic fluctuations over
time. By contrast, we did not observe a significant rela-
tionship between �-amplitude � and ECG �; such a rela-
tionship was reported in Palva et al. (2013) but failed to be
reproduced in a later study from the same group (Zhigalov
et al., 2015), who reported a correlation between the
scaling exponents of �-oscillation amplitude and heart-
beat dynamics; however, they tested many frequency
bands and brain systems without correcting for multiple
comparisons. In addition, neither of these two previous
studies directly recorded ECG, but rather used indepen-
dent component analysis–extracted component from the
MEG recording to substitute for heartbeat signal. Our
result with direct ECG recording suggests that fluctua-
tions in slow, arrhythmic neural activity coordinate with
heart signals, although the directionality of this influence
remains unknown at present. We speculate that a tight
correlation between SCP � and ECG � may be because
the time scales at which SCP and heartbeat dynamics fluc-
tuate are comparable, both taking place on the order of
many seconds (SCP, 0.2–200 s; heartbeat, 4–64 s; com-
pared with � amplitude, 1–10 s). Together, the anticorrela-
tion between SCP � and �-amplitude � and the positive
correlation between SCP � and ECG � may suggest the
SCP as a central link that connects scale-free neural and
physiological dynamics across scales and systems. None-
theless, neuroanatomical interpretation for the spatial distri-
bution of sensors whose SCP � correlate with ECG � (Fig.
3E) would be better informed by future investigations using
invasive recordings and/or source reconstruction.

More broadly, it has been shown that the brain exerts
strong autonomic influence on and receives feedback
from the heart (Craig, 2002; Gray et al., 2007). Previous
studies suggest that scale-free heartbeat dynamics may
be adaptive, with its long-range temporal correlation serv-
ing as a self-organizing mechanism for highly intricate
processes that generate fluctuations across wide time-
scales (Ivanov et al., 1996). Indeed, highly periodic or rigid
behaviors may narrow functional responsiveness, as
shown by the observation that the breakdown of scale-
free heart dynamics and appearance of excessive regu-
larity often accompany pathologies such as severe
congestive heart failure (Goldberger et al., 2002).

Stimulus modulation of scale-free neural dynamics
We observed a systematic modulation of �-oscillation

amplitude dynamics by scale-free auditory stimuli, such
that �-amplitude � decreased with increasing stimulus �
in a posterior sensor cluster overlying occipital cortex. Our
stimuli captured a range of stationary and nonstationary

patterns, from fractional Gaussian noise to fractional
Brownian motion. This result suggests that listening to
stimuli that exhibit strong autocorrelation reduces auto-
correlation in � amplitude fluctuations in visual regions. A
control analysis further suggested that stimulus � had no
effect on MEG signal power in the � range. Why should an
auditory task affect scale-free neural dynamics in visual
regions? Although the underlying mechanisms of this
phenomenon require future investigation, a speculative
possibility is that higher stimulus � translates into lower
�-amplitude � in visual regions owing to cross-modality
interaction carried by an inhibitory pathway from auditory
cortex to visual cortex (Iurilli et al., 2012).

In contrast, we did not observe a significant correlation
between stimulus � and SCP � after cluster-based cor-
rection. This negative finding could have several reasons.
It is possible that SCP reflects a backbone of brain net-
work structure that remains unperturbed by changes in
arousal state (He et al., 2008) or the range of scale-free
stimuli used herein. Yet at present, we cannot rule out the
possibility that the sample size in the current study was
insufficient for detecting an effect in the SCP.

Prediction of behavioral performance
We found intriguing evidence suggesting that baseline

characteristics of scale-free dynamics in the SCP and
�-amplitude fluctuations predicted an individual’s perfor-
mance in discriminating between scale-free auditory stim-
uli exhibiting different levels of autocorrelation. Better
performance correlated with higher �-amplitude � and
lower SCP �. Moreover, neither SCP nor �-oscillation
power correlated with behavioral performance, suggest-
ing specific behavioral relevance of scale-free parame-
ters. Previous studies have shown that �-amplitude �
correlates with long-range temporal correlation in behav-
ioral fluctuations across normal subjects (Palva et al.,
2013; Smit et al., 2013). Yet, it is unclear whether longer or
shorter autocorrelation in behavioral fluctuations is adap-
tive. On the other hand, discriminating natural stimuli
based on their time-aggregate statistics should confer
behavioral advantage in an ecologically natural environ-
ment. To our knowledge, this is the first study demon-
strating that properties of scale-free neural dynamics
predict behavioral performance across normal individuals.

Why should lower SCP � and, conversely, higher
�-amplitude � predict better behavioral performance?
One possibility is that SCP fluctuations include frequen-
cies an order of magnitude lower than �-amplitude fluc-
tuations (0.005–5 vs. 0.1–1 Hz). Thus, this pattern of result
is consistent with the idea that there may be an optimal
range of autocorrelation that is most conducive to per-
forming this task: relatively weak autocorrelation in the
very long time scales encompassed by the SCP, and
relatively high autocorrelation in the comparatively shorter
time scales spanned by �-amplitude fluctuations. Higher
�-amplitude � might also suggest a state closer to criti-
cality with higher information-processing capacity (Shew
et al., 2011; Poil et al., 2012). Tantalizing clues supporting
the existence of an optimal range of scale-free neural
dynamics exist from studies of clinical populations. For
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example, breakdown of long-range temporal correlation
in 
- and �-oscillation amplitude fluctuations has been
observed in depression (Linkenkaer-Hansen et al., 2005),
Alzheimer’s disease (Montez et al., 2009), and schizo-
phrenia (Nikulin et al., 2012). On the other hand, abnor-
mally high long-range temporal correlation in �-band
amplitude fluctuations is found in seizure-onset areas
(Monto et al., 2007).

Finally, in our experiment, the auditory stimuli were
constructed such that the scale-free statistic, embodied
in the power-law exponent �, is the only difference be-
tween categories of auditory tone sequences. All other
statistics, including tone duration, pitch range, sequence
length, and higher-order statistics (which are random),
were identical across stimulus categories (� � [0, 0.2, 0.5,
1.5, 2]). Moreover, behavioral discrimination was carried
out on power-law exponent �, not the specific sequence
presented; this was ensured by presenting six unique
sequences at each � level and asking subjects to make
discrimination about � only. Hence, in our task, subjects’
ability to discriminate different auditory tone sequences
was specifically related to their ability to process the
scale-free statistic of the stimuli, and our findings estab-
lish the role of scale-free brain activity in processing
scale-free statistics of naturalistic stimuli. On the other hand,
our results do not imply that the function of scale-free brain
activity is specific to the processing of scale-free or natural
stimuli. It is possible that similar correlations may be ob-
served for tasks that do not explicitly require the evaluation
of scale-free stimulus statistics. Future studies investigating
performance in such tasks will delineate the functional spec-
ificity (or generality) of scale-free neural activity.

In summary, we observed novel relationships among
scale-free dynamics in distinct components of neural
and physiological activity, including the SCP, �-os-
cillation amplitude fluctuations, and heartbeat dynam-
ics. We further demonstrate that scale-free neural
dynamics can be systematically perturbed by scale-
free dynamical stimuli that capture second-order sta-
tistics (i.e. autocorrelation or power spectrum) of the
natural environment. Moreover, the baseline character-
istics of scale-free neural dynamics in an individual
predict their ability to discriminate scale-free dynamical
stimuli based on their autocorrelation property. These
results shed light on the complex interrelations among
scale-free neural and physiological dynamics at differ-
ent levels and how they may contribute to adaptive
behavior in the natural environment.
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