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Abstract
Mucociliary epithelium lining the upper and lower respiratory tract constitutes
the first line of defense of the airway and lungs against inhaled pollutants and
pathogens. The concerted beating of multiciliated cells drives mucociliary clear-
ance. Abnormalities in both the structure and function of airway cilia have been
implicated in obstructive lung diseases. Emerging evidence reveals a close corre-
lation between lung diseases and environmental stimuli such as sulfur dioxide
and tobacco particles. However, the underlying mechanism remains to be
described. In this review, we emphasize the importance of airway cilia in
mucociliary clearance and discuss how environmental pollutants affect the struc-
ture and function of airway cilia, thus shedding light on the function of airway
cilia in preventing obstructive lung diseases and revealing the negative effects of
environmental pollutants on human health.

Introduction

The human airway is a dichotomous hollow tubular struc-
ture mainly lined by ciliated, brush, goblet, and basal cells.1

These cells form a continuous physical, secretory, and regu-
latory barrier of epithelium, which functions to protect the
airway and lungs from inhaled pathogens and environmen-
tal pollutants.2 Basal cells are stem/progenitor cells that dif-
ferentiate into ciliated cells and goblet cells in response to
injury and repair.3 Goblet cells secrete the mucus and
mucins that comprise the mucus gel layer, an important
component of the mucociliary escalator.3 Airway ciliated
cells dominate the epithelium and coordinate with the gob-
let cells to constitute the first line of defense.4 The concerted
in-plane beating of all ciliated cells propels the mucus layer
forward, thus driving mucociliary clearance (MCC).

Abnormalities in both the airway cilia structure and func-
tion lead to impaired mucociliary clearance.5 Cilia dysfunc-
tion has been implicated in a variety of lung diseases, such
as cystic fibrosis, immotile cilia syndrome, bronchial asthma,
and chronic obstructive pulmonary disease (COPD).6–10 For
example, Yaghi and Dolovich have discussed the importance
of airway epithelial cilia in the initiation or progression of
obstructive lung diseases11; Price and Sisson have
highlighted the redox modulation in airway ciliary function
and diseases.12 Here, we review the structure and function
of airway cilia, and focus on the influence of environmental
pollutants on ciliary beating and their outcomes. This review
will shed light on the function of airway cilia in preventing
obstructive lung diseases and reveal the negative effects of
environmental pollutants on human health.
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Structure and function of airway
cilia

Cilia are highly specialized hair-like structures that protrude
from the surface of epithelium. They are mainly composed
of microtubule-based axoneme, surrounded by a plasma
membrane.13–16 Cilia can be typically divided into primary
nonmotile cilia and motile cilia, depending on the axoneme
structure. The axoneme of primary cilia is arranged in a ring
of nine peripheral doublet microtubules (termed a 9 + 0
axoneme), and the axoneme of a motile cilium has two sin-
gle microtubules at the center of the nine peripheral doublet
ring (termed a 9 + 2 axoneme).15,17–22 In addition, the
peripheral doublets of motile cilia are attached by inner and
outer dynein arms, which allow ciliary movement by ATP-
dependent conformational alterations. Aberrance in ciliary
axoneme and dynein arm-associated structures can result in
impaired ciliary movement.
The airway cilia that line the pseudostratified epithelium

of respiratory tract are motile with a 9 + 2 axoneme pat-
tern, and each airway epithelial cell has more than 200 cilia
on its surface. These cilia beat almost synchronously, thus
driving continuously oral-directed transport of mucus, ter-
med mucociliary clearance (MCC). MCC is a complex and
orderly cycle program,23 a critical event for fluid secretion
and immune defense. The cilia start to move from the rest-
ing position by bending laterally and backward, which is
called the recovery swing. When a cilium returns to the
resting position, its tip points in the direction of propul-
sion; this stage ends and the resistance of mucus flow is
minimized. The ciliary oscillations are coordinated by a
heterogeneous wave pattern that couples the oscillating fre-
quency of each cilium with the oscillating frequency of the
adjacent cilia to promote the directional transport of the
mucus.24 The wave swing is spread by the antirelaxation
coordination but the mechanism of adjusting the synchro-
nous swing of multiple cilia is not clear. In addition, the
effectiveness of MCC is affected by a diversity of factors,
including cilia numbers and their structure, humidity, tem-
perature, age, pathogens, and environmental stimuli.25–29

Abnormal ciliary function and lung
diseases

Given the importance of MCC in clearance of the inhaled
particles and pathogens, inadequate MCC and the resulting
decline of the host’s lung defense functions can lead to the
pathogenesis of various pulmonary diseases such as cystic
fibrosis, COPD, and chronic bronchitis.30,31 There are many
factors that can lead to inadequate MCC, which include
impaired fluid secretion, abnormal ciliary function, lack
of cough, or the damage of epithelial cells lining the

respiratory tract. Of these, abnormal ciliary function
accounts for the majority.
Mounting evidence has revealed that airway cilia that are

affected by environmental contaminants exhibit acquired
structural or functional abnormalities accompanied by
abnormalities in mucociliary clearance.3 For example, sulfur
dioxide, sulfuric acid, nitrogen dioxide, and ozone all affect
mucus cilia and respiratory function.32–36 In physiological
conditions, inhaled particles and pathogens can be
entrapped and then removed through MCC. However,
excessive exposure to environmental pollutants can contrib-
ute to abnormal cilia structure and function, thus resulting
in inadequate MCC and consequently leading to various
lung diseases (Fig 1).

Environmental pollutants

Environmental pollutants are foreign products that change
the normal composition and properties of the environment
and are directly or indirectly harmful to humans and other
organisms.37 They mainly consist of irritating gases and
harmful particles, including sulfur dioxide, nitrogen diox-
ide, ozone, indoor air pollutants, and tobacco particles.38

Environmental pollutants can be divided into three classes:
atmospheric pollutants, water pollutants, and industrial
pollutants. These can be further divided according to the
form of pollutant: gaseous pollutants, liquid pollutants, and
solid pollutants; and according to the nature of the pollut-
ant: chemical contaminants, physical pollutants, and bio-
logical contaminants.39 The harm of environmental
pollutants to the human body is mainly reflected in respi-
ratory mucosa damage and obstructive pulmonary disease
because the respiratory tract is the first thing affected by
environmental exposure.40 Several studies have shown that
in environments with air pollution, the cilia in the human
respiratory tract become shorter or are missing, which
affects their ability to clear the respiratory tract. For exam-
ple, when experimental animals were exposed to higher
concentrations of ozone (4 ppm), it was observed that the
vesicles of the ciliated membrane and the structure of the
tracheal cilia were damaged.41 In addition, mucosal cilia
clearance may be inhibited due to factors such as quantity
of contaminant concentration and duration of exposure.

Sulfur dioxide

Sulfur dioxide is one of the major air pollutants in indus-
trialized countries. The main outdoor source of sulfur
dioxide is the combustion of sulfur-containing minerals,
mainly coal and petroleum, in the commercial industry.42

Sulfur dioxide is water soluble and easily inhaled into the
respiratory tract where it forms sulfurous acid and sulfuric
acid.43 These acids are strong irritants and have burning
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effects on the human respiratory tract. This leads to lung
diseases such as bronchitis and asthma, accompanied by
lung pain, cough, phlegm, and other adverse reactions.44

Van et al. reported that the ultrastructure of the airway
epidermis of guinea pigs changed after 30 minutes of sulfur
dioxide treatment.45 Abraham et al. noted that in healthy
non-smokers, MCC significantly accelerated after 2.5 hours
of exposure to sulfur dioxide, which was caused by an
increase in ciliary beat frequency. However, excessive sulfur
dioxide caused a decrease in MCC.46 Like phytohormones,
the effect of sulfur dioxide on cilia is dependent on the
concentration; low concentration causes promotion and
high concentration causes inhibition.

Nitrogen dioxide

Nitrogen dioxide is one of the most common air pollutants.
It is mainly produced by various combustion processes,
especially in industrial and urban areas.47 Nitrogen dioxide

is very harmful to the human body. Human lung function is
damaged with even a little exposure to nitrogen dioxide. If
exposed to nitrogen dioxide for a long time, the chance of
respiratory infections increases, as well as the risk of perma-
nent organic lesions in the lungs.48 Helleday et al. studied a
significant decrease in ciliary beat frequency in healthy peo-
ple exposed to nitrogen dioxide and found that it may be
important for MCC function.49 Blomberg et al. found that
nitrogen dioxide had no significant effect on the MCC of
the upper respiratory tract, from the tip of the nose to the
midpoint of the trachea, but that it did reduce the MCC of
the lower respiratory tract, including the lower half of the
trachea and the lungs.50 Like sulfur dioxide, nitrogen dioxide
affects the respiratory tract by affecting MCC.

Indoor air pollutants

Formaldehyde, acrolein, phenols, and ammonia, which are
usually present in indoor air pollutants, have an effect on

Figure 1 Secretory cells and ciliated epithelial cells constitute the first line of lung defense. Secretory cells produce gel-forming mucins to entrap
inhaled particles and ciliated epithelial cells transport them out of the lung through cilia beating. Reversely, some environmental pollutants, including
particles, NO, NO2, SO2, and O3, can lead to impaired structure and function of airway cilia, thus resulting in inadequate MCC and consequently
leading to various lung diseases.
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ciliary oscillations and structure, as well as mucous flow,
which may be a cause of respiratory disease.51–53 Formalde-
hyde has the strongest effect, followed by acrolein.54,55 After
exposure to acrolein, the tip of the cilia is swollen, making
the cilia function abnormally; formaldehyde and ammonia
reduce the flow of the sputum, which causes functional
damage to the MCC.56

Smoking

Smoking is a main cause of human disease. Tobacco parti-
cles, nicotine, and other chemicals in cigarettes cause seri-
ous damage to peoples’ heart and lung function and lead
to coronary heart disease, COPD, cerebrovascular disease,
and cancer.57 Smoking also reduces the number of cilia in
the respiratory tract, affects the frequency of ciliary oscilla-
tions, and thus affects the airway epithelial MCC.58 For
example, compared with healthy non-smokers, smokers
are deficient in cilia with abnormal structures and func-
tions of ciliated cells. Long-term smoking can lead to an
increase in the number of abnormal cilia in the bronchi
and may damage the tracheobronchial function.59 Exami-
nation of the nasal mucosa of children exposed to smoke
showed a loss of cilia. Electron microscopic analysis of the
ultrastructure of cilia showed that smokers had more cili-
ary abnormalities than non-smokers, including composite
cilia and giant cilia, as well as other abnormalities in the
microtubules, axon 9 + 2 tissue, and the cilia localiza-
tions.60 Smoking is also one of the main causes of COPD.

Concluding remarks

Environmental pollutants have been implicated in several
lung diseases, such as obstructive pulmonary diseases and
bronchitis. Airway cilia are essential for MCC and protect
the lungs from diseases caused by environmental pollut-
ants. Emerging evidence reveals that environmental pollut-
ants impair the physiological roles of airway cilia.
However, the molecular mechanisms of how environmen-
tal pollutants affect the structure and function of airway
cilia remain largely unknown. Recent studies reveal that
some redox regulatory proteins, including protein phos-
phatase 2A, protein kinase A, protein kinase C, soluble
guanylyl cyclase, and dynein ATPases, are enriched in cilia
and play critical roles in regulating airway cilia.12 It is pos-
tulated that oxidants in environmental contaminants lead
to redox imbalance and impair airway cilia. More research
regarding redox signaling in cilia regulation will likely
uncover the molecular mechanism underlying lung diseases
induced by environmental pollutants.
In addition, with a more in-depth understanding of air-

way ciliogenesis and the development of genome editing, it
is feasible to cure lung diseases caused by cilia deficiency.

In addition, future studies will explore the details of envi-
ronmental pollutants, including the type of pollutants,
maximum exposure dose, and time that can lead to airway
cilia defects and dysfunctions of MCC. These studies may
help to increase awareness of the damage environmental
pollutants cause to airway cilia and provide a basis for esta-
blishing environmental protection laws.
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