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Abstract: Ventricular assist device (VAD)-specific infections, in particular, driveline infections, are a
concerning complication of VAD implantation that often results in significant morbidity and even
mortality. The presence of a percutaneous driveline at the skin exit-site and in the subcutaneous tunnel
allows biofilm formation and migration by many bacterial and fungal pathogens. Biofilm formation
is an important microbial strategy, providing a shield against antimicrobial treatment and human
immune responses; biofilm migration facilitates the extension of infection to deeper tissues such as
the pump pocket and the bloodstream. Despite the introduction of multiple preventative strategies,
driveline infections still occur with a high prevalence of ~10–20% per year and their treatment
outcomes are frequently unsatisfactory. Clinical diagnosis, prevention and management of driveline
infections are being targeted to specific microbial pathogens grown as biofilms at the driveline
exit-site or in the driveline tunnel. The purpose of this review is to improve the understanding
of VAD-specific infections, from basic “bench” knowledge to clinical “bedside” experience, with a
specific focus on the role of biofilms in driveline infections.

Keywords: ventricular assist device; driveline infections; exit-site; driveline tunnel; biofilms; epi-
demiology; prevention; treatment

1. Introduction

Heart failure is a growing public health issue affecting at least 26 million people
worldwide [1]. Ventricular assist device (VAD), an electrically powered implantable rotary
blood pump, has been used as an advanced treatment for heart failure, either as a “bridge
to transplantation” for patients waiting for a donor heart, or as “destination therapy” for
those who are ineligible for a heart transplant [2]. The driveline is a percutaneous tube
connecting the internal VAD pump and the extracorporeal controller unit and batteries
(Figure 1). A typical driveline consists of segments of smooth tubing made of polyurethane
or silicone, and a proximal segment of tubing to which velour made of layers of Dacron
polyester fibers is bonded. The percutaneous nature of the driveline and the presence of
a skin-driveline interface renders patients highly susceptible to microbial contamination
and infection. Driveline infections are known as the Achilles heel of VAD therapy since it
potentially jeopardizes the benefits of VAD support [3] (Figure 2). These infections often
start at the driveline exit-site causing local infection but may then extend along the driveline
tissue tunnel to the pump pocket, or spread to the bloodstream, and hematogenously to
distant sites [3–7] (Figure 1).
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Figure 1. Ventricular assist device (VAD)-specific and VAD-related infections. Microorganisms 
cause infections (text in red) at different anatomic sites where VAD components are placed (text in 
black) via three routes (text in blue). Microorganisms form biofilms on the driveline at the skin 
exit-site, causing superficial driveline infections. Microbial dispersal from established biofilms 
often results in bloodstream infections. Migration of biofilms along the driveline tissue tunnel 
leads to ascending tunnel infection or pump pocket infection (route 1). Intraoperative microbial 
contamination of VAD components (route 2), or hematogenous seeding from other infection sites 
(route 3) can also lead to pump pocket infection, pump/cannula infections, or other VAD-related 
infections. 

 
Figure 2. Driveline exit-site infection. (A) Uninfected control. The patient received a HeartMate II VAD system (Abbott, 
Plymouth, MN, USA). (B) A typical driveline exit-site infection that demonstrates tissue destruction and granulation tis-
sue. A HeartWare HVAD system (Medtronic, Minneapolis, MN, USA) was used in the patient. 

Biofilm formation is a major microbial strategy underpinning the pathogenesis and 
persistence of recalcitrant driveline infections [8,9]. This specific growth model of micro-
bial pathogens not only initiates infection at the driveline skin exit-site, but also endows 

Figure 1. Ventricular assist device (VAD)-specific and VAD-related infections. Microorganisms cause
infections (text in red) at different anatomic sites where VAD components are placed (text in black)
via three routes (text in blue). Microorganisms form biofilms on the driveline at the skin exit-site,
causing superficial driveline infections. Microbial dispersal from established biofilms often results in
bloodstream infections. Migration of biofilms along the driveline tissue tunnel leads to ascending
tunnel infection or pump pocket infection (route 1). Intraoperative microbial contamination of VAD
components (route 2), or hematogenous seeding from other infection sites (route 3) can also lead to
pump pocket infection, pump/cannula infections, or other VAD-related infections.
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Figure 2. Driveline exit-site infection. (A) Uninfected control. The patient received a HeartMate II
VAD system (Abbott, Plymouth, MN, USA). (B) A typical driveline exit-site infection that demon-
strates tissue destruction and granulation tissue. A HeartWare HVAD system (Medtronic, Minneapo-
lis, MN, USA) was used in the patient.

Biofilm formation is a major microbial strategy underpinning the pathogenesis and
persistence of recalcitrant driveline infections [8,9]. This specific growth model of microbial
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pathogens not only initiates infection at the driveline skin exit-site, but also endows the
infective process with an antimicrobial-resistant property and facilitates the extension of
infection to deeper tissues [8,9]. Despite the introduction of newer generations of VADs and
various medical and surgical infection prevention strategies, driveline infections still occur
at a substantial prevalence of 10–20% annually [10,11]. It has been well recognized that the
presence of a driveline infection does not necessarily disqualify such a patient proceeding to
a heart transplant and does not negatively impact post-transplant survival [5,12], provided
that the transplant is not performed in the setting of a sepsis syndrome [13]. However,
driveline infections do affect VAD patients in many other ways, including impairing
quality of life, contributing to other implant-related complications such as severe sepsis
and hemorrhagic or ischemic stroke, and contributing to post-transplant complications
such as wound infection and peri-operative bleeding [3,14–16]. The high economic burden
associated with prolonged hospitalization or frequent hospital re-admission is now one of
the main hurdles for the wide use of VADs for destination therapy.

This review will outline our current understanding of VAD-specific infections, in
particular, their pathogenesis, epidemiology, diagnosis, prevention and treatment, and
provides guidance on the clinical management of this important complication of VAD
implantation.

2. Definition and Epidemiological Profile of VAD-Specific Infections
2.1. Classification of VAD-Associated Infections

The introduction of standardized definitions of infections in VAD patients by The
Infectious Diseases Council of the International Society of Heart and Lung Transplant
(ISHLT) allowed classification of infections related to VAD implantation. VAD-associated
infections can be divided into three categories, VAD-specific, VAD-related and non-VAD
infections [17,18]. VAD-specific infections refer to those directly related to a component of
the VAD system, including the driveline, driveline tunnel, pump pocket, pump and the
inflow or outflow cannula. VAD-specific infections may be introduced intra-operatively
at the time of implant, or acquired via the driveline exit-site post-implantation, or, less
frequently, from other infectious sources via hematogenous spread (Figure 1). VAD-specific
infections can be further divided into superficial or deep infections. A superficial infection
involves soft tissue outside the fascia and muscle layers, whereas deep infections span
beyond these structures [18]. Driveline infections are the most frequently encountered
VAD-specific infections, often involving soft tissues surrounding the driveline tubing
and presenting erythema, warmth, and purulent discharge at the skin exit-site (Figure 2).
VAD-related infections refer to infections that may be impacted by VAD implantation,
including infective endocarditis (IE), bloodstream infections (BSI), and mediastinitis. VAD-
related infections are not limited to VAD patients. The presence of a VAD, however,
complicates their clinical diagnosis and management, and may increase their incidence
in comparison with that in non-VAD patients. Pneumonia and urinary tract infections
occurring in VAD patients are categorized as non-VAD infections as they are unrelated
to the VAD [17,18]. Based on the time to the onset of infections, VAD-specific infections
can be further grouped into early-onset (<1 month after implantation) and late-onset
infections (>1 month after implantation) [3,19]. Early-onset infections are often due to
the intraoperative or perioperative contamination of operative sites, whereas late-onset
infections, especially those related to the driveline, are likely due to lack of proper care of
the driveline exit-site.

2.2. Prevalence of VAD-Specific Infections

Advances in VAD design and manufacturing, surgical implant techniques, and VAD
patient care program have significantly changed the epidemiological pattern of VAD-
specific infections [20]. Replacement of pulsatile-flow (PF) VAD systems with newer
continuous-flow (CF) VAD systems has led to significantly fewer pump and pocket in-
fections, possibly due to the intra-pericardial location of the CF-VAD pump that avoids
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the large pre-peritoneal pocket needed for PF-VADs [21,22]. Driveline infections, how-
ever, are still frequently encountered in many VAD patients and remain the commonest
VAD-specific infection.

Several large-scale, multicenter mechanical circulatory support (MCS) registries, in-
cluding the North American based Interagency Registry for Mechanically Assisted Circula-
tory Support (INTERMACS), the European Registry for Patients with Mechanical Circula-
tory Support (EUROMACS), the Trans-Atlantic Registry on VAD and Transplant (TRAVi-
ATA) and the ISHLT Registry for Mechanically Assisted Circulatory Support (IMACS)
have reported an incidence of 9–11.2% per patient-year for driveline infections [23–27].
Other large-scale non-registry studies also reported comparable prevalence of 10–20% for
driveline infections in a 12-month period post-VAD-implantation [28–30]. Unlike other
cardiovascular implantable electronic device (CIED) infections, the occurrence of driveline
infections continues for the duration of the implant, with Sharma et al., (2012) reporting
the odds of developing a driveline infection rising by 4% for every month of device sup-
port [31]. Stulak and associates also found time-related cumulative risks of 7%, 20%, 25%
at 1, 3 and 5 years, respectively, for driveline infections [26].

Although the median time to all VAD-associated infections was reported to be 68
days [32], many recent studies using CF-VADs have found that driveline infections mostly
present as late-onset infections, occurring between 2–6 months after implant [30–35]. Few
cases actually develop within 1-month post-implantation [28,36]. Studies examining the
readmission profile of patients with VADs have found that driveline infections often peak
at 6-months post-implantation, when patients are more mobile and independent after
hospital discharge [15,28,34].

2.3. Risk Factors of VAD-Specific Infections

Many risk factors for VAD-specific infections have been reported. Those that have been
widely accepted are duration of support, repetitive exit-site trauma caused by shearing
traction or torsion injury on the driveline, and large body mass index (BMI) and diabetes of
the patient [3,27,34,36]. Other inconclusive risk factors include region of residence, younger
age and related higher activity rates, older age and related patient morbidity, depression
status of patients, renal dysfunction/elevated serum creatinine level, severe heart failure,
malnutrition, T-cell dysfunction, blood product administration, hypogammaglobulinemia,
the presence of intravascular lines, delayed sternal closure, prolonged operation, longer
than usual intensive care and postoperative hospital stay, and location of driveline exit
site [3,27,32,37].

3. Medical Significance of VAD-Specific Infections
3.1. VAD-Specific Infection, Heart Transplant, and Pre-Transplant and Post-Transplant Mortality

In general, VAD-specific infections, including driveline infections and pocket infection,
have no direct impact on a successful heart transplant, and the survival before or after
transplantation [12,38–40]. Although previous studies suggested that VAD patients who
developed sepsis were less likely to be bridged to cardiac transplantation [39,41], it is now
well established that under the coverage of appropriate antibiotics, heart transplantation
can be successfully performed for VAD patients with VAD-specific infections [39,42]. In
fact, VAD removal at heart transplant can be curative for recalcitrant driveline infections or
VAD endocarditis.

Diminished survival to transplantation in VAD patients was found to be only related
to the occurrence of VAD-related infections such as bloodstream infections and associated
sepsis [6,28,32,34,39,43]. A recent large non-registry cohort study including 455 patients
with CF-VADs found that patients with VAD-related infections, mostly BSI, had a shorter
median survival than patients with VAD-specific infections [29]. Among VAD-related BSI,
those caused by fungi have the highest hazard ratio, followed by that of Gram-negative
and Gram-positive bacteria [44].
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VAD-specific infections, in particular, driveline infections, however, may indirectly
affect the pre-transplant and post-transplant outcomes of VAD patients because of an
increased risk of developing into VAD-related BSI or cannula infections [32,45]. A VAD-
related BSI was defined as one where the same pathogen was cultured from the device and
the blood with no other obvious source [44]. It has been found that driveline infections often
share a similar microbiological profile to VAD-related BSI [44]. Biofilms that have grown
on drivelines in the tissue tunnel may serve as a nidus of infection for microorganisms
circulating in the bloodstream [28]. In large-cohort studies, 30–50% of VAD-related BSI
were found to be associated with driveline infections [32,44], with a trend showing higher
cumulative incidence of BSI linked to deeper driveline infections [6]. An earlier study that
analyzed isolates obtained from the bloodstream and infected drivelines using pulsed field
gel electrophoresis (PFGE) also suggested that the driveline was a major portal of entry for
nosocomial bloodstream infections in patients on VAD support [46].

Stroke is probably the most devastating neurological complication following VAD
implantation, responsible for significant mortality and impairment of quality of life [5,13,47].
Multivariable analyses have recently identified an evident association between VAD-
associated infections and both ischemic and hemorrhagic strokes [47,48]; hemorrhagic
strokes occur more frequently than ischemic strokes in VAD patients with VAD-associated
infections [49]. Interestingly, patients with VAD-related or non-VAD infections, but not
VAD-specific infections have an increased risk of a stroke [36,43,49]. This is consistent with
findings from a recent study that suggested less likelihood of stroke-related pathological
changes such as cerebral microbleeds in patients with superficial driveline infections
compared with patients with other infections [50].

3.2. Pre-Transplant Infective Status Often Predicts Post-Transplant Infections

Pre-transplant infection status is considered a risk factor that predicts persistent
post-transplant infections in VAD patients after cardiac transplantation [39,51,52]. Post-
transplant infections often occur in former driveline or pocket sites [39,51]; these infections
do not appear to directly affect post-transplant survival [39]. There is no correlation
between the causative pathogens in pre- and post-transplant infections, implying that
the former infected driveline tunnel or pocket may create an environment favorable for
microorganisms to seed and proliferate [51].

4. Microbiological Profile of VAD-Specific Infections

Despite the recent replacement of PF-VAD systems with the more advanced CF-VAD
systems, and increased use of VADs for destination therapy, the microbiological profile of
VAD-specific infections remains unchanged [30,32,33,44,53].

4.1. Bacterial, Fungal or Polymicrobial Origins

The most common pathogens isolated from VAD patients with confirmed driveline
infections or pocket infection are Gram-positive bacteria that colonize skin and the nasal
cavity, particularly Staphylococcus aureus and Staphylococcus epidermidis [54,55]. These two
species cause at least half of all driveline infections [33,37,55]. Other Gram-positive bac-
teria frequently implicated in driveline infections include Enterococcus species, Corynebac-
terium spp., Streptococcus pneumoniae and non-epidermidis coagulase-negative staphylo-
cocci [31–33,37]. Pseudomonas aeruginosa is the leading Gram-negative bacterium account-
ing for approximately a quarter of all driveline infections [33,55]. Other Gram-negative
pathogens often causing driveline infections include Klebsiella pneumoniae, Acinetobacter
baumannii, Enterobacter spp. and Serratia spp. [30–33]. Etiological agents differ between
VAD-specific infections of different onset time. S. aureus, S. epidermidis, and some other
Gram-positive bacteria can be readily acquired at the implant hospitalization and are
often involved in early-onset infections. Late-onset infections are more likely to involve
P. aeruginosa and other Gram-negative bacteria, probably reflecting frequent contact of
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recovering patients after hospital discharge with highly humid home environments such
as a shower without protecting the driveline exit-site [37,56].

The previously mentioned finding that the presence of a VAD specific infection does
not necessarily compromise pre-transplant or post-transplant survival cannot be extended
to fungal infections. Fungi are not common causes of driveline infections; these microorgan-
isms are more frequently isolated from infections of deeper tissues such as the VAD pocket
or the bloodstream [33] and are usually associated with an extremely poor outcome [57–60].
Candida albicans is the most common fungal pathogen causing VAD-specific infections,
followed by Candida glabrata, Candida kruseii and Candida parapsilosis [55]. Aspergillus species
have also been identified as a rare cause, with most information reported post-mortem [59].
When a VAD patient presents with clinical manifestations of sepsis, and a Candida species
is isolated from the driveline site or the pump pocket but not the bloodstream, urgent
transplantation has been recommended as the most appropriate management [60].

About 10–20% of VAD-specific infections are polymicrobial involving multiple mi-
croorganisms from the same or different kingdoms (bacterial polymicrobial infections or
fungal-bacterial polymicrobial infections) [30,32]. Polymicrobial growth and interactions in
a device-related infection can result in a more complex pathological process and a greater
challenge for treatment [61].

4.2. Microbial Pathogenesis: The Important Role of Biofilm Formation in VAD-Specific Infections

The key pathogenic mechanism of VAD-specific infections involves the interaction
between the implanted VAD/driveline, the invading pathogens and host responses, which
lead to the formation of microbial biofilms at the device-human tissue interface [8,9,54,62].
Biofilms are a self-protecting growth mode of microorganisms with densely-grown cells
often embedded in extracellular polymeric substances (EPS); they display heterogeneity
in growth rates and tolerance to external environmental stressors [63,64]. Once a micro-
bial biofilm is established on the surface of biomaterials, the embedded microorganisms
may become extremely difficult to eradicate by antimicrobials and the human immune
system [65]. Early biofilm studies of VAD systems mostly focused on drivelines at the skin
exit-site [54,66]. Opportunistic pathogens such as skin colonizers of the exit site, including
S. aureus and S. epidermidis, or those often encountered in a humid domestic environment,
such as P. aeruginosa, can readily form biofilms at the driveline exit site. Micro-trauma of
the exit-site predisposes to bacterial invasion of the driveline and subcutaneous tunnel.
The importance of drivelines in this process was highlighted in our recent in vitro study,
which showed the predilection of different pathogens to different parts of the driveline
and the importance of the subcutaneous tunnel as a key driver of recalcitrant driveline
infections [9] (See Figure 3A,B,D). For example, we found that the scaffold provided by
the three-dimensional structure of the driveline velour (Figure 3C,D) facilitated pathogens
such as P. aeruginosa and C. albicans to form more robust biofilms [9]. The important role
of biofilms in driveline infections was confirmed when our group characterized in vivo
biofilms in VAD patients with clinically diagnosed driveline infections (Figure 4) [9]. Such
biofilms have unique morphological characteristics, presenting as densely grown microbial
clusters using either the driveline or human tissue as a supporting base. These small
clusters exhibit similar traits as in vitro biofilms, including high resistance to conventional
antimicrobial agents [8].



J. Clin. Med. 2021, 10, 453 7 of 20
J. Clin. Med. 2021, 10, x FOR PEER REVIEW 7 of 21 
 

 
Figure 3. In vitro biofilm formation on different components of a VAD driveline [9]. (A) Biofilms 
formed by S. aureus ATCC 25923 on the smooth section of the driveline; (B) Biofilm formation of P. 
aeruginosa PAO1 on the smooth section of the driveline; (C) Three-dimensional structure of the 
driveline velour; (D) Biofilm formation of P. aeruginosa PAO1 on the velour section. Drip flow bio-
film reactor assay was used to mimic the clinical environment where an implanted driveline and 
invading microorganisms might encounter. Reprinted from Reference [9], Copyright (2020), with 
permission from Elsevier. 

 
Figure 4. Clinical biofilms observed on an infected VAD driveline [8]. A driveline was explanted 
from a VAD patient with clinically diagnosed S. aureus driveline infection. The driveline was sec-
tioned into small pieces, washed to remove planktonic cells, structurally fixed with glutaralde-
hyde, and imaged with scanning electron microscopy. (A) S. aureus monolayer biofilms formed on 
the smooth section of the driveline around the exit-site; (B) Microcolony-alike biofilms formed at 
the tissue-driveline interface (upper panels) or on the velour fibers (lower panels). Reprinted from 
Reference [8], Copyright (2020), with permission from Elsevier. 

Figure 3. In vitro biofilm formation on different components of a VAD driveline [9]. (A) Biofilms formed
by S. aureus ATCC 25923 on the smooth section of the driveline; (B) Biofilm formation of P. aeruginosa
PAO1 on the smooth section of the driveline; (C) Three-dimensional structure of the driveline velour;
(D) Biofilm formation of P. aeruginosa PAO1 on the velour section. Drip flow biofilm reactor assay was
used to mimic the clinical environment where an implanted driveline and invading microorganisms
might encounter. Reprinted from Reference [9], Copyright (2020), with permission from Elsevier.
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Figure 4. Clinical biofilms observed on an infected VAD driveline [8]. A driveline was explanted from
a VAD patient with clinically diagnosed S. aureus driveline infection. The driveline was sectioned
into small pieces, washed to remove planktonic cells, structurally fixed with glutaraldehyde, and
imaged with scanning electron microscopy. (A) S. aureus monolayer biofilms formed on the smooth
section of the driveline around the exit-site; (B) Microcolony-alike biofilms formed at the tissue-
driveline interface (upper panels) or on the velour fibers (lower panels). Reprinted from Reference [8],
Copyright (2020), with permission from Elsevier.



J. Clin. Med. 2021, 10, 453 8 of 20

4.3. Microbial Route for VAD-Specific and VAD-Related Infections: The Important Role of Biofilm
Migration

There are three main routes by which VAD components become colonized by mi-
croorganisms: contamination of VAD components or relevant surgical sites at the time of
surgery; hematogenous seeding via bacteremia from other infection sites; alternatively,
most commonly by direct deposition of microorganisms at the driveline exit-site and
migration towards other VAD components (Figure 1).

Migration of microbial biofilms in VAD-specific infections can facilitate the extension
of superficial driveline exit-site infections to deeper tissues and cause more severe tunnel,
pocket, pump, or bloodstream infections. Retrospective studies by others found that most
driveline infections started superficially, and their depth progressed to involve the blood-
stream, deep sections of drivelines, or even the pump pocket over months on VAD support,
suggesting biofilm migration might play a critical role in the infection spread [6,38]. Release
of planktonic cells from a mature biofilm formed on the driveline can result in seeding of
neighboring tissues with pathogenic microorganisms and more importantly, hematogenous
dissemination of microorganisms to remote tissues where the other components of VAD are
placed [62]. In addition to the “indirect” bloodstream pathway, direct migration of biofilms
along the driveline tunnel may also enable pathogens to access deep-tissues, resulting in
severe infections [9,54,67]. Toba et al., used an in vivo mouse model and demonstrated that
biofilm expansion enabled bacteria to “migrate” along the driveline [54]. We also found
that clinical biofilms often extended from the exit-site to deeper tissue tunnels [8]. Different
microbial species differed in their ability to migrate along the driveline and this might
explain the change in the dominant microorganisms causing VAD-specific infections of
different depths [54]. Clinically, host tissue integration of the driveline velour has been
used to stabilize the driveline in the subcutaneous tissue tunnel and to prevent late-onset
infection [10]. We have observed numerous microgaps in the velour section of implanted
drivelines, suggesting that insufficient tissue integration has been achieved (Figure 5).
These microgaps may serve as a “conduit” that facilitate the migration of microbial biofilms
to deeper tissues [8].
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microgaps [9]; (C) SEM of the explanted driveline (cross-section view) also shows numerous microgaps within the velour,
suggesting insufficient tissue integration [9]. Reprinted from Reference [9], Copyright (2020), with permission from Elsevier.

5. Diagnosis of VAD-Specific Infections

VAD-specific infections are often clinically diagnosed as “proven, probable or possible”
infections. The “probable” or “possible” diagnoses are made based on clinical assessment,
while the diagnosis for a “proven infection” requires a matrix with additional microbiologic
and/or radiographic evidence.

5.1. Clinical Evidence

Typical clinical signs of driveline infections include purulent drainage from the exit-
site, discoloration/induration and excessive erythema of the surrounding tissue, pain of
local tissues including exit-site and driveline tunnel, and abscess formation [34]. Based on
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clinical presentation and disease severity, the Sharp Memorial group categorized driveline
infections into 5 stages, including local healing disorder (stage 1), local infection (stage
2), systemic infection (stage 3), systemic infection with high severity (stage 4), and pro-
gressing systemic infection with deep driveline infection or ascending infection (stage
5) [68]. Recently, the Driveline Expert STagINg and carE DESTINE study group refined
this classification by adding asymptomatic stage 0, and subdividing stage 0, 1 and 2 into
two sub-stages respectively to facilitate early recognition of driveline infections [69].

5.2. Microbiological Evidence

In the context of a clinical exit site infection, a microbiological swab can be readily
obtained and a positive culture may identify the pathogen(s) causing the exit-site infection.
Isolation and identification of pathogens from beyond the driveline exit-site remains a
clinical challenge. Gordon et al., (2013) reported that driveline infections often involved
both the exit-site and deeper tissues such as the tunnel, the pocket and even the pump [32].
Invasive exploration by intraoperative sampling or needle aspiration under the guidance
of ultrasound or computed tomography (CT) is possible but undesirable [70] owing to
the risk of damaging VAD components and introducing new microorganisms [71]. Our
recent study examining clinical drivelines explanted from VAD patients with confirmed
driveline infections caused by S. aureus, P. aeruginosa, S. epidermidis, Corynebacterium jeikeim,
Sphingomonas parapaucimobilis or mixed microorganisms respectively found that driveline
tunnel infection often co-existed with exit-site infection [8]. Both HeartMate 3 (Abbott,
Plymouth, MN, USA) and HeartWare HAVD systems were used in our patients. Microor-
ganisms cultured from the tunnel matched that isolated from the exit-site, suggesting that
a swab of the exit-site, if showing a positive culture, can be useful for the prediction of
microorganisms causing deeper tunnel infections [8]. It should be borne in mind that
clinical specimens from the exit-site may be contaminated with skin flora and definitions
of true infection always need to have clinical evidence of inflammation/infection.

5.3. Radiographic Investigations

Radiographic investigations can be carried out when infections of the driveline tunnel
or the pump pocket is suspected. Although an ISHLT consensus document has recom-
mended CT or ultrasound imaging to confirm or exclude deep driveline or other VAD-
specific infections, by detecting fluid collections around VAD components [72], these
conventional radiographic technologies have shown suboptimal sensitivities and specifici-
ties [29]. Nuclear radiologic modalities such as 18F-fluorodeoxyglucose positron emission
tomographic imaging combined with CT (18F-FDG PET/CT) and 67gallium (67Ga) and
111indium (11In)-labelled leukocyte single-photon emission computed tomography-CT
(SPECT/CT), have demonstrated great potential for quantifying the extent of deep VAD-
specific infections [71,73–75]. Among nuclear radiologic modalities, 18F-FDG PET/CT
appeared to be superior to leucocyte scintigraphy-based technologies in the context of
general sensitivity and specificity, due to its high spatial resolution [75,76]. Two recent
systematic reviews and meta-analyses assessed the performance of 18F-FDG PET/CT in
diagnosing VAD-related infections, and both reported high accuracy of this dual-modality
imaging system, supported by pooled sensitivities of 92% and 95%, and specificities of
83% and 91%, respectively [77,78]. Caution, however, should still be taken when using
18F-FDG PET/CT to detect biofilm-related driveline infections. The presence of EPS may
allow biofilm-grown microorganisms to escape local immune and inflammatory responses
and thus the detection by the PET/CT scan [73,79]. Post-operative inflammation and patho-
logical accumulation of FDG on the velour may also confound the specificity of 18F-FDG
PET/CT in detecting early-onset infections [80]; leucocyte scintigraphy has been recom-
mended as a better option [75]. Other general limitations of nuclear radiologic modalities
that need to be further addressed include insufficient clinical experience and lack of criteria
for interpretation [30,80].
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6. Prevention of VAD-Specific Infections

The trend in using VADs for long-term bridge to transplant therapy or destination
therapy emphasizes the importance of prevention of VAD-specific infections [5].

6.1. Advances in VAD Design and Manufacturing

Advances in VAD systems have seen a significant decline in complications including
VAD-associated infections [2]. The transition from the paracorporeal PF-VAD to the im-
plantable CF-VAD has led to a significant decrease in driveline infections [33,81]. This might
be due to less intrathoracic dissection required for CF-VAD implantation compared to that
for PF-VADs, and the smaller diameter and higher flexibility of CF-VAD drivelines [3].

The incidence of driveline infection also differs among patients with different CF-
VADs. The recent randomized controlled trial of MOMENTUM 3 found no difference in ma-
jor infectious complications including driveline infections between the newer centrifugal-
flow HeartMate 3 VAD and the older axial-flow HeartMate II (HMII) VAD, suggesting that
the pump type is not a determinant factor of VAD-specific infections [82]. Controversial
results have been reported when VADs from different manufacturers, such as HeartWare
HVAD (Medtronic, MA, USA) and HeartMate VADs (St. Jude, Pleasanton, CA, USA) were
compared. Two very recent retrospective studies found that patients with HeartMate 3
VAD were less likely to develop driveline infections or VAD-specific infections than those
with HeartWare HVAD [83,84]. HeartMate II VAD and HeartWare HVAD were parallel in
developing driveline infections in the studies by Haglund et al., (2015) and Stulak et al.,
(2016) [15,26]; other studies reported a lower incidence of driveline infections in patients
with a HeartWare HVAD relative to that with a HeartMate II VAD [36,85,86]. The difference
in the incidence of driveline infections between VADs from different manufacturers is
possibly due to their differences in driveline flexibility, cable diameters and other driveline
characteristics such as biomaterials used for driveline manufacturing [36,87]. Smaller
outer diameter and lower stiffness of drivelines have been associated with less driveline
infections [87]. Though there is a lack of information in the literature comparing different
materials of the drivelines as predictors of driveline infections, studies on other implantable
medical devices such as central venous catheters found that the nature of the biomaterials
was one of the key determinants of device-related infections [88–90]. In general, microor-
ganisms have a preference for adhering to silicone-based polymeric materials (HeartMate II
or HeartMate III) or polyvinyl chloride (PVC), compared to that of Teflon or polyurethane
(HeartWare HVAD) [9,88,89]. In addition to choosing a specific biomaterial, prevention of
driveline infections may be achieved by engineering the driveline surface using a broad
range of strategies, such as bonding the smooth tube with layers of velour to enhance tissue
integration, or pre-treating the driveline surface with anti-infective coatings; the former has
been adopted by many VAD manufacturers and the latter is still at the experimental stage.

6.2. Driveline Care and Patient Education

One important preventative strategy is to avoid micro-trauma of the driveline exit site,
the fragile port of microbial entry and to minimize the risk of microbial contamination at the
post-implantation stage. In general, hand and skin disinfection, exit-site preparation, using
maximal sterile barrier precautions, and limiting the number of driveline manipulations
are all critical in the prevention of driveline infections [91,92]. At the Alfred Hospital,
Melbourne and many other VAD centres in the world, driveline care protocols usually
involve daily or 2nd daily cleaning with 4% chlorhexidine followed by coverage of the
exit-site by a self-adhesive dressing. Various dressings have been investigated, aiming for
inhibition of microbial growth around the exit-site or promotion of tissue regrowth of the
exit-site [24,93]. No compelling evidence from large-scale randomized studies has been
provided to support the efficacy of using antimicrobial dressings. Instead, caution has been
raised regarding using antimicrobial dressings due to concerns of induction of antimicrobial
resistance [94]. A more convincing intervention with solid supporting evidence is to use
anchoring devices to immobilize drivelines at the exit-site [6]. This strategy has been
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found to significantly minimize the risk of repeated micro-trauma at the exit-site and
subsequent driveline infections [24,95,96]. Until very recently, the Central Europe-based
Driveline Expert STagINg and carE (DESTINE) study group proposed the first standard
of a care protocol [69]. This expert consensus provided a detailed standard operating
procedure (SOP) for appropriate driveline exit-site care, with emphasis on essentials such
as sterile dressing change, driveline immobilization, and an advanced wound staging
approach for early recognition of driveline infections [69]. Worldwide, driveline care is still
institution-specific due to different local realities involved in caring for these patients.

Patient and caregiver education by VAD coordinators and strict compliance to the
standard care procedures are also key factors determining the occurrence of driveline
infections after discharge from the hospital [91,92]. Patient education mainly focuses on
driveline trauma prevention, sterile technique for home dressing of driveline exit-site, and
other daily activities related to exit-site care such as showering and driving [97]. Less careful
handling of drivelines by patients, or increased stress on the driveline as recovering VAD
patients become more active can both result in a higher incidence of driveline infections [98].
Most VAD programs allow showering one month after VAD implant, provided that the
exit-site is covered by a waterproof dressing [10]; some programs even allow patients to
shower without a dressing, if antibacterial soap can be used and a sterile dressing can
be immediately applied after shower [99]. There is some evidence that the incidence of
Pseudomonas driveline infection can be lowered by preventing the exit-site from contacting
humid or moist environments [100].

6.3. Antimicrobial Prophylaxis

Using antimicrobial prophylaxis to prevent VAD-associated infections, systemically
and/or topically, remains a routine practice in many VAD centres [17,101]. The regimen
for antimicrobial prophylaxis varies among different institutions and mostly relies on the
centre’s experience and preference [17,37,102]. In the era of PF-VADs, many centres used
two to four drug regimens, often including vancomycin, a cephalosporin, a quinolone,
rifampicin, and fluconazole, intending to cover Gram-positive bacteria, Gram-negative
bacteria, and fungi [17,101,102]. Most centres used intravenous administration of antimi-
crobials for 24 or 48 h post implantation [102,103]. Longer antimicrobial prophylaxis did
not demonstrate superior effectiveness [104], while risking the development of antibiotic
resistance and antibiotic-related clostridial infections.

Systemic prophylactic antimicrobial strategies have been significantly simplified since
the arrival of CF-VADs. Many centres follow general cardiac surgery prophylaxis guidelines
that recommend a cephalosporin (cefazolin or cefuroxime) for 24–48 h, which can provide
sufficient coverage for both Gram-positive and Gram-negative bacteria [72,103,105–108].
The effectiveness of this practice has been supported by clinical evidence from large-
scale retrospective studies [103,109]. First or second generation cephalosporins have been
recommended; the second generation was preferred as it has a broader coverage of Gram-
negative bacteria and a lower risk in inducing Clostridium difficile colitis [106,109]. It has
also been recommended that systemic prophylactic antimicrobial strategies should be
tailored to institution-specific pathogen prevalence and local susceptibility profiles [72,105].
For example, vancomycin can be given to VAD patients hospitalized in centres where
methicillin-resistant S. aureus (MRSA) has been frequently isolated, often in combination
with an aminoglycoside [106]. Routine antifungal prophylaxis is not recommended [59].
Regarding the timing of antibiotic initiation, administration of drugs within 60 min of the
skin incision has been recommended, with additional dosing during surgery every 3 to 4 h
if the short-half-life cefazolin is used [106]. It should be noted that effectiveness of systemic
antibiotics in preventing percutaneous driveline infections has been questioned [104].

Topical or local antimicrobial prophylaxis has also been employed to prevent VAD-
associated infections. A recent prospective study using whole genome sequencing found
concordant genomes between S. aureus at baseline and that causing late driveline infec-
tions, supporting a link between S. aureus colonization and the occurrence of S. aureus
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infections [110]. This has also rationalized the use of mupirocin or chlorhexidine washes in
many centres to reduce nasal or skin colonization prior to VAD implantation [56,101,102].
In many Australian hospitals, Medihoney Antibacterial Wound Gel is routinely used at the
skin exit-site of VAD drivelines to prevent infections. Our recent in vitro study however,
found suboptimal effectiveness of Medihoney Antibacterial Wound Gel as a prophylactic
agent against driveline infections due to biofilm formation at the driveline exit-site [111].
Large scale, prospective and randomized studies are needed to examine the effectiveness
of topical or local antimicrobial prophylaxis against VAD-specific infections.

6.4. Surgical Prevention Strategies

Surgical strategies have been introduced to reduce the incidence of driveline infections.
Strict aseptic technique is essential for the preparation and testing of VADs in the operative
field. Another widely accepted surgical practice that may lower the risk of infections is
to anchor the driveline to the skin at the exit-site by a suture that is left for two weeks
upon completing the implantation. This is to avoid a driveline traction injury that may
disrupt the tissue integration within the driveline tunnel. A purse-string suture is also
placed in the subdermal layer immediately at the exit-site to encourage sealing of the skin
to prevent access of external microorganisms into the driveline tunnel. Driveline infections
have also been reduced by not allowing any of the velour section to project externally
beyond the exit-site [112–114]. To do that, the velour—smooth tube interface should be
placed 2 to 3 cm from the exit-site within the subcutaneous layer [95,113]. The exact anti-
infective mechanisms of this surgical strategy remain unknown but is likely associated with
reduction of the risk of trauma-related injuries at the exit site, less dermal inflammation
and faster skin integration [112,114]. A longer subcutaneous smooth section should be
avoided as it might become an infectious nidus and facilitate the extension of infection
to deep tissues [115]. Other surgical strategies that might combat VAD-specific infections
include using a rectus-sparing technique to prevent ascending driveline infections [116],
using a more horizontal as opposed to vertical pathway for tunneling to improve stability
of drivelines and reduce traction injury [117,118], or using a double-tunnel technique
(driveline tunneled into the fascia of the rectus abdominis muscle in the umbilical direction
followed by a subcutaneous pathway) with a left-sided exit-site for better resistance against
ascending infections [19,119,120]. Solid clinical data is still needed to support the anti-
infective efficacy of the above-mentioned strategies [19,116,117].

7. Treatment of VAD-Specific Infections

An ISHLT consensus document that highlights information essential for the formula-
tion of a treatment strategy for VAD-associated infections has been developed based on
expert opinions and case-based data [72]. The information includes (1) identification of the
causative pathogens; (2) clarification of infection location (pump/cannula, pocket, or drive-
lines), (3) the infection type (infective endocarditis, bloodstream infection, or mediastinitis),
and (4) the transplant candidacy status (bridge to transplantation or destination therapy).

The current review focuses on VAD-specific infections, in particular, driveline infec-
tions. Treatment of driveline infections follows the principles recommended by ISHLT
and follows an escalation scheme according to its severity: local redness can be treated
by regular wound dressings and mechanical lavage, as well as oral antibiotics based on
drug susceptibility testing results; if oral therapy is not successful, the patient should be
hospitalized and intravenous antibiotics will be administered; surgical excision of the
infected area, in combination with negative-pressure vacuum therapy is recommended
for those who don’t respond to intravenous antibiotics; if this option fails, the patient
should be placed on the high urgency list for transplantation; prompt device replacement
or transplant is only considered if ascending driveline infections are confirmed.
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7.1. Treatment of Uncomplicated Superficial Driveline Infections

Early intervention of superficial driveline infections potentially lowers the risk of
progression to deeper infections. Although some low-grade infections of the driveline
or the tunnel have been treated with local wound care [31,44], antimicrobial therapy is
still an essential part of successful management. Superficial driveline infections without
evidence of systemic illness or bloodstream infections may be treated with either empiric or
microorganism-specific antibiotics [45]; ISHLT consensus recommends oral or intravenous
antibiotics for a minimum of 2 weeks [72]. Topical antimicrobial strategies, such as using
crystal violet solbase and cold atmospheric plasma topical treatment, and negative pressure
wound therapy have also been investigated for superficial driveline infections and some
success has been achieved [121,122]. Clinical efficacy of these strategies, however, was
based on studies of very small sample sizes and will need further validation by large-scale
clinical trials [121,122].

7.2. Treatment of Deep VAD-Specific Infections

Treatment of deep VAD-specific infections is more challenging and often requires an
aggressive treatment algorithm [3]. The Sharp Memorial Group suggests that patients
with driveline infections may need to be hospitalized for intravenous antibiotic therapy if
systemic symptoms appear [68]. ISHLT consensus also suggested 6–8 weeks of intravenous
antibiotics for deep driveline or pocket infections, or driveline infections of uncertain
depth, followed by long-term oral antibiotic suppression therapy targeting the causative
pathogen/s [72]. Ekkelenkamp et al., recently analyzed treatment outcomes of VAD pa-
tients infected by S. aureus and found infections often relapsed after long-term intravenous
or oral antibiotics were discontinued [45]. These relapses are most likely due to failure
of antibiotics to eradicate biofilm-grown microorganisms causing deep driveline infec-
tions. Biofilm-active antimicrobial agents might be a better option for deep VAD-specific
infections [123]. Rifampicin is a typical biofilm-active agent and has been found to be
effective in treating deep driveline infections caused by S. aureus and S. epidermidis [123].
Caution should be taken when using rifampicin systemically due to its interaction with
warfarin anticoagulation therapy, which is essential for VAD patients, potentially leading
to life-threatening pump thrombosis or stroke [72].

Surgical intervention is another important measure for the management of deep VAD-
specific infections [30,44,72,115,124]. Driveline infections of stage 4 and 5, as classified by
The Sharp Memorial Group, when the infection is tracking down the driveline tunnel, often
requires more aggressive surgical treatment, such as opening and draining the tunnel, de-
bridement, re-tunneling of the infected driveline, and vacuum-assisted closure to facilitate
tunnel healing [31,68,125]. Omentum may also be useful for wrapping and salvaging an
infected driveline or a pump [126]. Local antibiotics have emerged as a promising comple-
mentary therapy for surgical treatment of recalcitrant and ascending driveline infections.
Antibiotic-impregnated beads may be placed along an infected driveline tunnel or in the
pump pocket [95,127,128], and allow slow elution of antibiotics into the surrounding tissue
to eradicate microbial biofilms [128,129]. However, concerns have been raised regarding
the in vivo efficacy, toxicity and hypersensitivity of locally using antibiotic beads. In addi-
tion, antibiotic beads are a vehicle to deliver high concentrations of antibiotics to infected
tissue; the choice of antibiotics should be rationalized based on microorganisms isolated
from the infection site, their antimicrobial sensitivity pattern, and the growth mode of the
invading pathogens. Gentamicin, vancomycin, and tobramycin have been frequently used
in antibiotic bead therapy; gentamicin and vancomycin were found to be ineffective against
mature biofilms formed by S. aureus and S. epidermidis [129,130].

For VAD patients with more severe infectious complications such as relapsing pump
bacterial infections, or fungal driveline infections, removing the pump and cardiac trans-
plantation for bridge to transplant patients or exchanging the pump for destination therapy
patients might be necessary. Before a suitable donor can be found for VAD recipients who
have developed a fungal driveline or pocket infection, targeted antifungal therapy should
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be given [60]. Unlike other medical device-related infections, exchange of VADs for source
control is generally avoided due to the complexity of surgical procedures and concerns
regarding the risk of reinfections of newly implanted devices [10]; removal of VADs for
a heart transplant is a preferred clinical strategy for dealing with severe VAD-associated
infections, in particular those associated with complications. Moazami et al., (2013) in their
multicenter study reported that only 0.6% of patients with a HeartMate II VAD underwent
pump exchange due to device-related infections [131]. Yost and colleagues (2020), however,
recently suggested reserving VAD exchange as a critical clinical strategy, as this procedure
could still be carried out safely and effectively for patients with ongoing VAD-related or
VAD-specific infections, with long-term outcomes comparable to primary VAD implanta-
tion [132]. It should be noted that over half of the patients in the study by Yost et al., (2020)
experienced recurrence of infections in a 12-month period after device exchange [132].

8. Conclusions and Prospective: Rethinking of Prevention and Treatment of Driveline
Infections Based on the Biofilm-Growth Mode of Invading Microorganisms

Introduction of transcutaneous energy transfer systems (TETS) will eliminate the need
for a driveline and therefore driveline infections [133]. Until the TETS system becomes
reliable for clinical use, driveline infections will continue to be a challenge for long-term
VAD success. Biofilm formation and migration remain a significant factor that not only
contributes to the establishment of VAD-specific infections, but influence their prevention
and treatment.

Multiple strategies have been proposed to reduce the incidence of VAD-specific in-
fections, including those commercialized by VAD manufacturers, those introduced peri-
operatively, intraoperatively and post-operatively by medical practitioners (exit-site care,
patient education, antimicrobial prophylaxis, and optimized surgical techniques), and
those still at an experimental stage such as designing drivelines with improved skin/tissue
integration and equipping device surfaces with antimicrobial coatings [134]. Driveline
infections still occur at a substantial rate and continue to be an important source of morbid-
ity for VAD patients. Developing more effective prevention strategies for VAD driveline
infections, based on a comprehensive understanding of the role of pathogenic biofilms
in driveline infections, is urgently needed. Our findings of microgaps in the driveline
tissue tunnel suggested that further enhancing tissue integration of the implanted driveline
might be a solution for late-onset driveline infections, by hindering biofilm formation and
migration [28]. Similarly, treatment of recalcitrant driveline infections should be tailored
more specifically to target biofilms grown at the interface of the driveline and tissue tunnel
or within the velour structure. Such biofilms are difficult to eradicate by either systemic
antibiotics or surgical interventions. Local use of biofilm-active antibiotics at high concen-
tration for an extended period may provide hope in curing deep VAD-specific infections,
but further research into optimized biofilm acting antimicrobials is desperately needed [64].
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