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ABSTRACT

Motivation: Pangenome arrays contain DNA oligomers targeting
several sequenced reference genomes from the same species.
In microbiology, these can be employed to investigate the often
high genetic variability within a species by comparative genome
hybridization (CGH). The biological interpretation of pangenome CGH
data depends on the ability to compare strains at a functional level,
particularly by comparing the presence or absence of orthologous
genes. Due to the high genetic variability, available genotype-calling
algorithms can not be applied to pangenome CGH data.
Results: We have developed the algorithm PanCGH that
incorporates orthology information about genes to predict the
presence or absence of orthologous genes in a query organism using
CGH arrays that target the genomes of sequenced representatives
of a group of microorganisms. PanCGH was tested and applied
in the analysis of genetic diversity among 39 Lactococcus lactis
strains from three different subspecies (lactis, cremoris, hordniae)
and isolated from two different niches (dairy and plant). Clustering of
these strains using the presence/absence data of gene orthologs
revealed a clear separation between different subspecies and
reflected the niche of the strains.
Contact: J.Bayjanov@cmbi.ru.nl
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Detection of genomic variation between related organisms can
elucidate relations between genotypic and phenotypic traits of
organisms, for example, those related to diseases with a genetic
origin (Inazawa et al., 2004; Kallioniemi et al., 1992) or to functional
traits of microorganisms (Pretzer et al., 2005). Comparative
Genomic Hybridization (CGH) microarrays allow the detection
of variation between a reference genome, whose sequences are
targeted by the probes, and query genomes. The type of genetic
variations that can be detected depends on the array design and
the sequence similarity of reference and query genomes. Using
short oligonucleotides, single nucleotide polymorphisms (SNPs)
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may be detected between highly similar genomes, like those of
different human individuals. However, bacterial strains belonging
to the same species often display extensive sequence variations
(Lan and Reeves, 2000; Medini et al., 2005). In these cases,
CGH microarrays generally only allow the detection of deletions,
insertions and amplifications of relatively large pieces of DNA, like
entire genes. Nevertheless, even this coarse-grained information can
be very helpful in understanding the genetic basis of functional
differences between strains of the same bacterial species. CGH
data were used to show that highly variant parts of genomes of 20
Lactobacillus plantarum strains encode proteins that have a major
role in the adaptation of these strains to different environments
(Molenaar et al., 2005). CGH arrays can also be used to provide
insight into evolutionary processes by analyzing the diversity among
strains of the same species (Earl et al., 2007; Rasmussen et al., 2008)
or different species (Fukiya et al., 2004).

Current microarray chips can contain several hundreds of
thousands of probes, and make it possible to design an array from
genomes of several reference strains of the same species at high
probe density. These microbial species-level ‘pangenome’ arrays
overcome the limited variability that is detectable with arrays based
on a single reference genome. Several genotype-calling algorithms
(Hua et al., 2007; Plagnol et al., 2007; Teo et al., 2007; Xiao
et al., 2007) have been proposed for the interpretation of these data.
However, these algorithms are mainly suited for detecting SNPs
or other genomic variations between closely related organisms.
The biological interpretation of pangenome microarrays in terms
of the presence and absence of genetic functionalities in strains
with unknown sequences poses a problem, because the probes
target different homologous genes with various degrees of sequence
similarity. To solve this problem, we have devised the genotype-
calling algorithm PanCGH that combines orthology (Fitch, 1970)
information about genes with species-level pangenome array data to
determine the presence or absence of orthologous genes in bacterial
strains. In this study, we test and apply PanCGH to CGH data of 39
Lactococcus lactis strains to investigate their genotypic variation.
To our knowledge, PanCGH is the first algorithm addressing the
problem of deducing gene content from data obtained with CGH
microarrays that target the pangenome of a group of relatively
diverse microorganisms.
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2 METHODS

2.1 DNA preparation
DNA was prepared from L. lactis strains (Supplementary Table 1) using the
QiaAmp DNA Mini Kit (Qiagen GmbH, Hilden, Germany) according to
the manufacturer’s protocol for the isolation of genomic DNA from Gram-
positive bacteria.

2.2 Microarray design and hybridization data
acquisition

All genomic, plasmid and single gene or operon DNA sequences (1988
sequences in July 2005, constituting 10.7 Mb) of L. lactis were collected from
the NCBI CoreNucleotide database and were deposited in a local database.
This included complete genome sequences of L. lactis strain IL1403
(2.35 Mb, accession number AE005176) and fragments of the genome of
strain SK11 (2.43 Mb, Genbank record GI:62464763). Additionally, draft
genome sequences consisting of 547 contigs (2.3 Mb) of L. lactis ssp. lactis
strain KF147 (NIZOB2230) and 961 contigs (2.6 Mb) of L. lactis ssp. lactis
KF282 (NIZOB2244W) were added to this database. Redundant stretches
of DNA were removed from the database, where a stretch of DNA was
defined as redundant if it differed from another piece of DNA by at most 2 nt
over a window of 100 nt. For the remaining non-redundant 7 Mb of DNA,
a 32-mer tiling design was defined by starting an oligomer approximately
every 19 nt, resulting in a total of 386 298 probes. We also designed 3181
random probes with their sequence absent in the non-redundant 7 Mb of DNA
and they were randomly located on the array. Description of the platform
with probe information has been deposited in the Gene Expression Omnibus
(www.ncbi.nlm.nih.gov/geo) with an accession number GPL7231.

Array production and DNA hybridization, using fragmented DNA, were
performed by NimbleGen Systems Inc. (Madison, WI, USA). The raw
hybridization data, as well as annotations of the sequences, were stored in a
custom relational database. Additionally, raw and normalized hybridization
data of 39 L. lactis strains have been deposited in the GEO database with an
accession number GSE12638. The annotations (gene definitions and putative
protein function descriptions) were, in case of publicly available sequences,
extracted from the GenBank files. For the draft sequences of L. lactis strains
KF147 and KF282, GLIMMER (Salzberg et al., 1998) was used to define the
genes and InterProScan (Zdobnov and Apweiler, 2001) was used to generate
protein function descriptions.

2.3 Normalization of CGH microarray data
Many of the available normalization techniques do not take positional
information of probes into account, yet spatial artifacts do contaminate

array data. Such artifacts can be minimized by incorporating positional
information of probes into normalization (Khojasteh et al., 2005; Neuvial
et al., 2006; Yuan and Irizarry, 2006). Since a multiplicative noise model
works better to minimize spatial artifacts than the additive noise model
(Sasik et al., 2002), the normalization process is carried out on a logarithmic
scale. We tested both the loess (Cleveland et al., 1992) and the fields
(Fields Development Team, 2006) algorithms to normalize array data in
two dimensions (R Development Core Team, 2007). Both methods fit a
smooth 3D surface to the data. The height of this surface at a specific
position represents the local average signal. For each individual spot, the
height of the surface at the position of that spot is then subtracted from its
raw signal intensity value. In order to avoid negative values the overall mean
of the smooth fit is added to all signal intensities. We compared normalized
data of both methods and concluded that the fields algorithm was faster and
yielded better results. Therefore, we used the fields algorithm with its default
Nadaraya–Watson kernel for spatial normalization of the array data.

Although this normalization minimizes within-array spatial biases, there
is still a difference in overall signal intensity between arrays, which makes
it difficult to compare them. Therefore, after spatial normalization, signal
intensities in each array were divided by the median of their distribution.

2.4 The genotype-calling algorithm—PanCGH
The purpose of this genotype-calling algorithm is to facilitate the biological
interpretation of pangenome CGH data by inferring the presence of a gene
in a query strain using signal intensities of probes matching an orthologous
gene of a reference strain. Since in a pangenome array several orthologs
from different reference strains are represented on the array, the question is
generalized to whether the query strain contains a member from a group of
orthologous genes. Therefore, our algorithm also requires ortholog groups as
input. Each ortholog group gi contains the gene identifiers of a single gene or
of several orthologous genes from the reference strains (reference orthologs).
The set of all ortholog groups is represented as G = {g1, g2, … , gk}. To predict
the presence or absence of a member gene from ortholog group gi in the
query strain, one cannot generally simply use the average signal from the
set Pi of all probes targeting all genes from gi as an indicator. Since short
32-mers are used, only probes that almost perfectly match the query gene
will display a high fluorescence. Generally, these are a subset of Pi targeting
the most similar reference ortholog. Therefore, the PanCGH algorithm uses
these subsets of probes, and calculates the presence score from that subset of
which the largest majority of probes has a high fluorescence (see Fig. 1 for
an illustration of this principle). The output of the algorithm is a prediction
of the presence or absence in the query strain of a member gene for each of
the ortholog groups from the set G. In addition, if it predicts a gene to be

Fig. 1. Schematic representation of the PanCGH algorithm for a CGH experiment. The left panel shows the fluorescence of a query strain to a set of probes
(p1 to pn) targeting different reference orthologs (homologous genes from reference strains A, B and C) of an ortholog group gi. Some probes target several
reference orthologs, as shown by the overlap between the probe sets targeting the reference orthologs from strains A and B. In the right panel, a schematic
representation of the calculation of the presence score is shown. For each reference ortholog, the mode (indicated with a star) is calculated from the distribution
of (log) signals of the corresponding probes. The presence score is the highest of these mode values. In this case, the presence score is above the threshold
and equals the mode of the signals targeting the reference ortholog from strain B.

310



PanCGH: a genotype-calling algorithm

present it also predicts which of the reference orthologs is most similar to
the gene in the query strain.

The algorithm proceeds as follows.
For each group of orthologs gi in the set G perform Steps 1 to 4.

Step 1: For the set of reference strains {A, … , X}, get the sets of probes
PA, … , PX that match a sequence of a gene in the ortholog group gi. Construct
the union set �i= PA∪ PB∪ … ∪ PX .
Step 2: Construct the set S of ordered pairs (pk , sk), where pk ∈ �i and sk is
the normalized fluorescence intensity value of probe pk from the CGH array
of the query strain.
Step 3: Calculate the ‘presence score’ Si and the reference strain strainY with
the closest homolog for a group gi in the query genome as follows.

• For each reference strain Y in {A, … , X} compute the mode value mY

over signals sk in the sets {(pk , sk)| pk ∈ PY } (see below how the mode
is calculated).

• Define Si as the maximum of the modes, Si = max (mA, … , mX ), or if
all modes are undefined then Si = NA.

• If there is only one strain Y which has a mode mY = Si, then this is the
strain with the closest homolog.

• Else, if there is more than one strain and only one of them has a mode
Si then mY = Si and the strain with the closest homolog is strainY =
{Y | my = Si}.

• Else, if there is more than one strain and more than one of them
has a mode Si then mY = Si and the strain with the closest homolog
is strainY = {Y | mY = Si, nY = max (nA, … , nX )}, where nY = |PY | is
number of probes in a set PY .

Step 4: Assign presence or absence of an ortholog in a query strain for the
gene with closest similarity to that of strainY in group gi using the following
criteria.

• If Si = NA (undefined) then the presence or absence of a member of gi

in the query strain cannot be decided from the data, hence presence =
NA.

• Else, if Si > threshold, the query strain has a gene in an ortholog group
gi, hence presence = 1. The most similar reference ortholog is found
in strainY . (See the results section for a determination of the optimal
threshold presence score.)

• Else, if Si < threshold, the query strain possesses no gene in ortholog
group gi, hence presence = 0.

The mode over the signals sk of a set of ordered pairs {(pk , sk)| pk ∈ PY } is
calculated as follows.

(1) Define nY as the number of probes in the set PY .

(2) If nY < 10 then the mode is undefined: mode = NA.

(3) Else, bin the signals log(sk) into B = round (log2 (nY +1)) equal sized
intervals on the logarithmic scale. Calculate the frequencies {fj |j ∈
{1, … , B}} as the number of signals log(sk) in each bin and define
mode as the mean of lower and upper limits of the bin with the highest
associated frequency.

In the case study of L. lactis CGH arrays, the majority of genes in the false-
positive group had <10 matching probes. Therefore, a minimum of 10 probes
was required. This is not a strict requirement, and it might differ, depending
on the probe size and the size of genes. The binning procedure in Step 3 of
the calculation of the mode is recommended by Sturges (1926).

2.5 Defining orthologous groups of L. lactis genes
In order to predict orthology among genes, the genome sequence of three
fully sequenced public L. lactis strains (ssp. lactis IL1403, ssp. cremoris
SK11 and ssp. cremoris MG1363, accession numbers AE005176, CP000425
and AM406671, respectively) and incomplete genome sequences of two
L. lactis strains (ssp. lactis KF147, ssp. lactis KF282) isolated from plants

were used (Siezen et al., 2008). The orthology prediction program InParanoid
(Remm et al., 2001) was run with default settings to find orthologous
genes among the three completely sequenced genomes. All possible pairwise
comparisons between the three genomes were performed. In cases where
inconsistencies regarding bidirectionality of the ortholog relation were found
between the pairwise InParanoid predictions, genes were regarded as not
being orthologous and each treated as single genes in an orthologous group
of size 1. As incomplete genomes are not suited for bidirectional best-
BLAST analyses like InParanoid, the genes of the two incomplete genomes
were added by performing a pairwise BLAST analysis of the genes from
the incomplete genomes against the three complete genomes. If a gene in the
incomplete genome had a best-BLAST hit with a member of one of the
ortholog groups derived from the completely sequenced genomes, this gene
was added to that ortholog group. In cases where best-BLAST hits referred
to different ortholog groups, the gene was assigned to a new ortholog group,
unless the difference in E-value of the BLAST searches was larger than
10−10. In those cases, the gene was added to the ortholog group of the gene
with the hit having the lowest E-value. We found a total of 4571 ortholog
groups of which 1389 groups had a gene in all five L. lactis reference strains.

3 RESULTS

3.1 Microarray design and data normalization
Species-level pangenome CGH arrays containing oligonucleotides
that target, among others, sequences of four reference strains L. lactis
ssp. lactis IL1403, L. lactis ssp. cremoris SK11, L. lactis ssp. lactis
KF147 and L. lactis ssp. lactis KF282 were designed. During the
course of our work, the complete sequences of L. lactis ssp. cremoris
strains SK11 and MG1363 were published (Makarova et al., 2006;
Wegmann et al., 2007), and we remapped the probe targets of the
existing design on these genomes. The availability of the complete
MG1363 genome sequence also allowed us to use this strain as a
test case (query strain) for the PanCGH algorithm. We analyzed
genomic DNA isolated from 39 different L. lactis strains, including
the reference strains.

The raw data from the hybridization experiments was biased. In
particular, spatial artifacts on the microarrays were apparent. Hence,
we applied a spatial normalization method to improve the data set.
Visual inspection of the corrected data indicated that the spatial
bias was minimized. To confirm the correctness of this procedure,
a hierarchical clustering of strains using either raw or normalized
signal intensities of all probes was carried out. Using the normalized
signals, all except one ssp. cremoris strain clustered together and
all ssp. lactis strains made another cluster, whereas strains from
different subspecies clustered together when raw signals were
used for clustering. This shows that, normalized microarray data
correspond better with independent experimental criteria, namely
those used for subspecies determination.

3.2 Determination of a presence score threshold for the
genotype-calling algorithm

The pangenome microarray for L. lactis used in this work contains
probes for several representatives of orthologous genes in different
reference strains (reference orthologs). To predict whether a
representative gene from a group of orthologous genes is present in a
query strain with unknown sequence, a presence score for that group
is calculated from the normalized fluorescence signals of probes that
target the different reference orthologs (Fig. 1). A target sequence
is predicted to be present when the presence score lies above a
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threshold value. To define this threshold value, we used CGH data
from the reference strains SK11 and IL1403 and calculated presence
scores for sets of ortholog groups known to be either present or
absent in SK11. An ideal threshold score value should separate
all present from all absent genes. Supplementary Figure 1 shows
that there is a clear separation between present and absent genes,
although there is some overlap of the distributions. The PanCGH
algorithm was also applied to strain MG1363. This is an ideal test
strain for the procedure, because its gene content is known from the
genome sequence, but just like any of the other query strains, its
genome was not used for the design of the array. The distribution of
presence scores was also bimodal for this strain, clearly separating
present and absent genes. To determine the best threshold value,

Table 1. True-positive rate (sensitivity) and true-negative rate (specificity)
of the PanCGH genotype-calling algorithm for three L. lactis strains

Strain True-positive rate (%) True-negative rate (%)

SK11 97.6 90.5
IL1403 97.9 86.2
MG1363 95.4 96.4

we tested all possible threshold values between the minimum and
maximum presence score. As the best possible threshold, we defined
the value at which the total error rate (false-positive + false-negative)
was minimal. Supplementary Figure 2 shows that the position of the
best possible threshold is 5.5 in an ROC curve (Hanley and McNeil,
1982) for SK11, IL1403 and MG1363. We estimated the accuracy
(Table 1) of the algorithm using the gene annotation of the genome
of strain MG1363 at the same threshold. Ortholog groups predicted
as absent in MG1363 separated clearly from the groups predicted to
be present.

3.3 Applying the PanCGH algorithm
The PanCGH algorithm was applied to hybridization data from
39 L. lactis strains to assign corresponding genotypes to each
strain. Strains were hierarchically clustered based on the presence
or absence of genes of ortholog groups in these strains (Fig. 2). The
observed clustering is in agreement with a number of independent
genotypic and phenotypic observations on the strains (Rademaker
et al., 2007; see Supplementary Table 1) supporting the robustness of
the method developed in this article. Most strains group in either of
the two large subclusters representing the two different subspecies:
L. lactis ssp. lactis genotype (bottom subcluster) and L. lactis
ssp. cremoris genotype (top subcluster). In the dendrogram, strains
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Fig. 2. Hierarchical clustering of L. lactis strains based on presence/absence predictions of representatives of 4571 ortholog groups of L. lactis. The pairwise
binary distance was used as a distance metric and clustering was performed using the average linkage agglomeration method (Hastie et al., 2001). The cluster
of strains at the top represents the subspecies cremoris genotype, while the large cluster at the bottom, excluding strains P7266 and P7304, contains strains of
subspecies lactis genotype and one strain (LMG8520) of subspecies hordniae phenotype. In these two clusters 1341 groups from the total of 4571 ortholog
groups are present in all strains. Though strains P7266 and P7304 have subspecies lactis phenotype, they are far apart from other subspecies lactis strains
(see explanation in text). Branches with a solid rectangle are dairy isolates and other strains are isolated from plants.
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P7266 and P7304 formed two distinct branches. Although these two
strains have a L. lactis ssp. lactis phenotype, they have been shown
to be highly different in genotype compared to the L. lactis ssp. lactis
and the L. lactis ssp. cremoris genotypes (Rademaker et al., 2007).
Further divisions within these two subclusters also reflect functional
differences among strains. For instance, the top subcluster (cremoris
genotype) is divided into three branches with 1, 4 and 5 strains; the
latter branch contains five strains with both cremoris genotype and
phenotype, whereas the other two branches contain strains having a
cremoris genotype but displaying a lactis phenotype (Supplementary
Table 1). The large subcluster at the bottom (lactis genotype) is
divided into different branches, of which the largest contains 17
strains isolated from plants, while the next largest branch contains
mostly strains of dairy origin.

4 DISCUSSION
The predictions of the PanCGH algorithm on L. lactis strains
show a high true-positive rate (sensitivity) and low to moderate
false-positive rate, as shown by tests of the algorithm with CGH
data from sequenced strains (Table 1). Two types of sources
that increase total error rate (false-positive + false-negative) can be
distinguished: those that are inherent to the CGH method, like noise
and limitations of the array platform, and those that are due to
external factors. To the first type belong, for example, errors due
to low sequence similarity (leading to poor hybridization) or due
to the small size of some genes, as it is difficult to determine the
presence or absence of small genes with low numbers of targeting
probes. Errors due to low sequence similarity can be avoided
by basing the array design on reference genomes from strains in
different branches of the phylogenetic tree of a species. Errors
due to external factors mainly originate from inconsistencies in
the ORF calling and annotation of the reference strains or the
InParanoid orthology prediction. A large part of the false-positive
and false-negative predictions are due to the latter type of errors.
For example, analysis of the genomes and genome annotations
of strains MG1363 and SK11 showed that ORF-calling criteria
differ between the two annotations. Many of the small ORFs
defined only in strain SK11 were found by us to be also present
in MG1363, but they were not identified as such in the original
annotation. This caused positive gene calls by PanCGH in strain
MG1363 for those ORFs that are not identified in the original
annotation, but whose sequences are nonetheless present in this
strain. These appear as false calls in the test of PanCGH, but
are in fact correct. Imperfections in the orthology prediction also
caused errors. In particular, for genes with many paralogs, it is
difficult to correctly assign orthology relations using automated
prediction methods that rely only on gene sequence information
(Koonin, 2005; Notebaart et al., 2005). For example, in strain
MG1363, we found that almost half of the apparent false-positive
calls concerned hypothetical proteins. The remaining false-positive
calls concerned mainly transporters and transposases, which often
have many paralogs (Table 2).

Despite these sources of errors, the PanCGH algorithm has a high
accuracy, which shows the robustness of the method. In order to
avoid the errors originating from inconsistencies in ORF-calling and
annotation, the same ORF-calling algorithm and definitions should
be applied to all reference genomes. The orthology grouping can
also be improved by including additional sources of information

Table 2. Functional categories in ortholog groups with frequent false calls
in test strain L. lactis MG1363

Functional category False-positivea (%) False-negativea (%)

Hypothetical genes 49.9 60
Transposases 29.2 0
Related to transporters 5.3 7.2

aAs a percentage of the total number of false cells.

from e.g. phylogenetic trees and 3D structures (Francke et al., 2008;
Golding and Dean, 1998).

In summary, we have developed a novel genotype-calling
algorithm—PanCGH—for the biological interpretation of species-
level pangenome CGH arrays. In contrast to conventional CGH
arrays, these pangenome arrays allow the comparison of strains that
are relatively diverse in terms of genome sequence. Information
obtained from sequenced reference strains was incorporated to
compare strains not only by signal intensities of individual probes,
but also at the level of the inferred genotype, or more specifically, the
presence and absence of members of ortholog groups. The results
show that our genotype-calling algorithm predicts a genotype with
high accuracy from a species-level pangenome CGH array data,
which enables the extraction of relevant biological information for
unsequenced strains. Since the threshold is determined from training
data, the PanCGH algorithm can be applied to arrays that target
the pangenome of any microorganism. Currently we are working
on biological interpretation of the PanCGH analysis of L. lactis
diversity (G.Felis et al., unpublished data).
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