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Abstract: The endothelium plays a pivotal role in the regulation of
vascular tone by synthesizing and liberating endothelium-derived
relaxing factors inclusive of vasodilator prostaglandins (eg, prosta-
cyclin), nitric oxide (NO), and endothelium-dependent hyperpolar-
ization factors in a distinct blood vessel size–dependent manner.
Large conduit arteries are predominantly regulated by NO and small
resistance arteries by endothelium-dependent hyperpolarization fac-
tors. Accumulating evidence over the past few decades has demon-
strated that endothelial dysfunction and coronary vasomotion
abnormalities play crucial roles in the pathogenesis of various car-
diovascular diseases. Structural and functional alterations of the cor-
onary microvasculature have been coined as coronary microvascular
dysfunction (CMD), which is highly prevalent and associated with
adverse clinical outcomes in many clinical settings. The major mech-
anisms of coronary vasomotion abnormalities include enhanced cor-
onary vasoconstrictive reactivity at epicardial and microvascular
levels, impaired endothelium-dependent and endothelium-
independent coronary vasodilator capacities, and elevated coronary
microvascular resistance caused by structural factors. Recent exper-
imental and clinical research has highlighted CMD as the systemic
small artery disease beyond the heart, emerging modulators of vas-
cular functions, novel insights into the pathogenesis of cardiovascu-
lar diseases associated with CMD, and potential therapeutic
interventions to CMD with major clinical implications. In this article,
we will summarize the current knowledge on the endothelial modu-
lation of vascular tone and the pathogenesis of coronary macrovas-
cular and microvascular diseases from bench to bedside, with a
special emphasis placed on the mechanisms and clinical implications
of CMD.
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INTRODUCTION

A mountain of evidence has accumulated over the past
few decades demonstrating that endothelial dysfunction and
coronary vasomotion abnormalities play essential roles in the
pathogenesis of various cardiovascular diseases.1,2 The major
mechanisms of coronary vasomotion abnormalities include
enhanced coronary vasoconstrictive reactivity at epicardial
and microvascular levels, impaired endothelium-dependent
and endothelium-independent coronary vasodilator capacities,
and enhanced coronary microvascular resistance caused by
structural factors (Fig. 1).3,4 The role of endothelial dysfunction
has been well recognized in the development and progression
of coronary macrovascular and microvascular diseases,
although Rho-kinase–induced myosin light-chain phosphoryla-
tion with resultant hypercontraction of vascular smooth muscle
cells (VSMCs) rather than endothelial dysfunction1 is the cen-
tral mechanism of coronary artery spasm at epicardial5,6 and
microvascular levels.7 For better or for worse, previous studies
exclusively focused on structural and functional abnormalities
of “epicardial” coronary arteries (ie, coronary macrovascular
disease) in patients with coronary artery disease (CAD)
because they are immediately visible on coronary angiography
in the catheter laboratory and amenable to procedural
approaches represented by percutaneous coronary intervention
(PCI) and coronary artery bypass grafting (CABG). However,
a nationwide large-scale cohort study in the United States as-
sessing a total of 12,062,081 coronary revascularizations in
patients with CAD revealed that risk-adjusted mortality signif-
icantly decreased after CABG but not after PCI regardless of
clinical indications.8 Thus, structural and functional abnormal-
ities of the coronary microvasculature, which is referred to as
coronary microvascular dysfunction (CMD), have gained
growing attention as potential research and therapeutic targets
in many clinical settings, including ischemic heart disease,9–16

heart failure with preserved ejection fraction (HFpEF),17–26

aortic stenosis,27 and even noncardiac diseases, such as chronic
inflammatory disorders28–32 and liver diseases.33 The term
“ischemia and no obstructive CAD (INOCA)” has been coined
for patients who have chest pain regardless of the presence or
absence of coronary macrovascular disease (ie, epicardial
obstructive CAD).34 Many studies have consistently revealed
high prevalence and significant prognostic impact of CMD in
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patients with INOCA in both genders, especially in women.9–
16 Moreover, different subtypes of coronary vasomotion abnor-
malities often coexist in various combinations in a subclinical,
asymptomatic manner even in the absence of obstructive CAD,
causing myocardial ischemia due to CMD.13,35–37 Indeed, the
counterintuitive results of the 2 landmark clinical trials address-
ing the management of stable CAD, the Objective Randomised
Blinded Investigation with Optimal Medical Therapy of
Angioplasty in Stable Angina trial38 and the International
Study of Comparative Health Effectiveness with Medical and
Invasive Approaches (ISCHEMIA) trial,39 have questioned the
benefit of PCI or CABG and have suggested the importance of
the coronary microvascular physiology, which an intervention-
al strategy could not improve. Although these trials did not
directly focus on coronary microvascular function, an intrigu-
ing speculation is that CMD, which is highly prevalent in
patients with a wide spectrum of CAD, might have contributed
to residual cardiac ischemia even after the successful coronary
revascularization.

The endothelium plays a pivotal role in the regulation
of vascular tone by synthesizing and liberating endothelium-
derived relaxing factors (EDRFs), including vasodilator
prostaglandins (eg, prostacyclin), nitric oxide (NO), and
endothelium-dependent hyperpolarization (EDH) factors, as
well as endothelium-derived contracting factors (EDCFs).1,2

Endothelial dysfunction can be attributed to reduced produc-
tion or action of EDRFs or increased responses of EDCFs,
initiating the step toward atherosclerotic cardiovascular dis-
eases.2 In this review, we will summarize the current knowl-
edge on the role of the endothelium in the regulation and
modulation of vascular tone involved in the pathogenesis of
coronary macrovascular and microvascular diseases from
bench to bedside, with a special emphasis on the mechanisms
and clinical implications of CMD.

ENDOTHELIAL MODULATION OF VASCULAR
TONE: BLOOD VESSEL SIZE–DEPENDENT

CONTRIBUTION OF EDRFS
Figure 2 shows the key players of endothelium-

dependent vasodilatation. Shear stress and various agonists
stimulate endothelial cells to synthesize and release different
EDRFs to cause relaxation of the underlying VSMCs and
subsequent vasodilatation.1,2 To date, 3 kinds of EDRFs have
been identified, including vasodilator prostaglandins, NO, and
EDH factors.1,2 EDH-mediated relaxations are observed in
the presence of cyclooxygenase and NO synthase inhibitors
and are associated with hyperpolarization of the neighboring
VSMCs.40,41 The nature of EDH factors seems to be hetero-
geneous depending on species and vascular beds of interest,42

including epoxyeicosatrienoic acids (metabolites of the arach-
idonic P450 epoxygenase pathway),43,44 electrical communi-
cation through gap junctions,45 K+ ions,46 hydrogen sulfide
(H2S),47,48 carbon monoxide (CO),49 and, as we have identi-
fied, endothelium-derived hydrogen peroxide (H2O2).50

Among them, epoxyeicosatrienoic acids mainly take part
in EDH-mediated relaxations in human,51 canine,52 por-
cine,53 and bovine coronary arteries;54 K+ ions in porcine55

and bovine56 coronary arteries; CO in rat coronary
arteries;49 and endothelium-derived H2O2 at physiological
low concentrations in the coronary circulation of
humans57,58 and animals.59–63 Similar to other gaseous
mediators, H2S has pleiotropic cardiovascular effects, such
as shear stress–mediated vasomotor control in coronary
arteries,64 arterial blood pressure–lowering effects,65 and
anti-inflammatory and antioxidant properties.42 As illus-
trated in Figure 2, these EDRFs finely modulate vascular
tone in a distinct blood vessel size–dependent manner;
vasodilator prostaglandins play a small but invariable role.
NO predominantly modulates the tone of large conduit

FIGURE 1. Mechanisms of coronary
macrovascular and microvascular
dysfunctions.
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arteries (eg, epicardial coronary arteries) and the contri-
bution of NO decreases as the blood vessel size decreases,
whereas that of EDH increases as the blood vessel size
decreases and consequently EDH-mediated responses are
the major mechanism of vasodilatation in small resistance
arteries (eg, coronary microvessels).1,66–68 This blood
vessel size–dependent contribution of NO and EDH is well
conserved across species from rodents to humans to ach-
ieve a physiological balance between them. Accordingly,
EDH is especially important in microcirculations, where
blood pressure and organ perfusion are mostly determined.
It should be emphasized that epicardial coronary artery is
just like a tip of the iceberg because more than 95% of
coronary vascular resistance is predominantly determined
by the prearterioles (more than 100 mm in diameter) and
arterioles (less than 100 mm),69 where EDH-mediated
responses in the mechanism of vasodilatation become
more important than NO-mediated relaxations. Multiple
mechanisms are involved in the augmented EDH-mediated
responses in small resistance arteries, including negative
interactions between NO and several EDH factors.68,70–74

Keeping these concepts in mind, in the treatment of
patients with coronary macrovascular and microvascular
diseases, cardiologists should pay more attention to
microcirculations although they are invisible on routine
coronary angiography. The reason for this will be discussed
later.

CORONARY MACROVASCULAR DISEASE

Inflammation and Coronary Vasospastic
Angina

Hypercontraction of VSMCs mediated by Rho-kinase–
induced myosin light-chain phosphorylation rather than endo-
thelial dysfunction is the predominant mechanism of coronary
artery spasm.1 Building on this mechanism, recent studies
have revealed close relationships among inflammation, peri-
vascular adipose tissue (PVAT), and vasa vasorum in the
pathogenesis of coronary artery spasm. In brief, a major
inflammatory cytokine interleukin-1b caused intimal thicken-
ing and coronary vasospastic responses to intracoronary sero-
tonin or histamine through outside-to-inside signaling in pigs
in vivo.75 Multimodality imaging techniques, such as micro-
computed tomography and optical frequency domain imag-
ing, enabled us to visualize enhanced adventitial vasa
vasorum formation associated with coronary hyperconstric-
tion by Rho-kinase activation in patients with vasospastic
angina (VSA).76,77 Vasa vasorum serves as a pipeline for
inflammatory mediators derived from the surrounding in-
flamed adipose tissue to the local coronary atherosclerotic
lesions in the vascular wall. Indeed, coronary vasoconstriction
in response to intracoronary acetylcholine in patients with
nonobstructive CAD was more prominent in coronary artery
segments that had macrophage infiltration and vasa vasorum
proliferation in an additive fashion than in those without

FIGURE 2. Blood vessel–size depen-
dent endothelial modulation of vas-
cular tone and Rho-kinase–mediated
hypercontraction of vascular smooth
muscles.
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both.78 Inflamed PVAT plays important roles in the underly-
ing mechanisms behind coronary vasomotion abnormalities.
We have recently demonstrated that drug-eluting stent (DES)
induced marked inflammation of coronary PVAT in associa-
tion with coronary hyperconstricting responses in pigs
in vivo79 and that the extent of coronary perivascular inflam-
mation in patients with VSA was markedly decreased in the
spastic coronary artery in a reversible manner after a median
treatment period of 23 months with calcium channel blockers
(CCBs),80 the drug of choice for the treatment and prevention
of coronary artery spasm.81 Refer to concise reviews and our
recent study for more information on the novel roles of PVAT
and adventitial vasa vasorum in the modulation of vascular
functions.82–85

Drug-eluting Stent–induced Coronary
Inflammation and Spasm

Although DES is currently the mainstay of PCI to
significant coronary lesions, unresolved issues after coronary
stenting include neoatherosclerosis, coronary hyperconstrict-
ing and inflammatory responses at the site of stent placement,
and persistent or recurrent angina in the absence of residual
epicardial stenosis.86–89 Coronary PVAT inflammation after
DES implantation79,80 and cardiac lymphatic dysfunction90

have been shown to be involved in enhanced coronary vaso-
constrictive reactivity, suggesting that inflamed PVAT and
cardiac lymphatic dysfunction may be novel therapeutic tar-
gets to reduce coronary hyperconstricting responses caused
by DES.

CORONARY MICROVASCULAR DISEASE

Mechanisms, Prevalence, and Clinical
Significance of CMD

A growing body of experimental and clinical evi-
dence has highlighted the crucial role of CMD in the
pathophysiology of cardiac ischemia in patients with
various cardiovascular diseases with major clinical impli-
cations.4 The underlying mechanisms of CMD seem to be
multifarious, including several structural and functional
alterations, enhanced coronary vasoconstrictive reactivity
(eg, coronary spasm) at epicardial and microvascular lev-
els, impaired endothelium-dependent and endothelium-
independent coronary vasodilator capacities, and enhanced
coronary microvascular resistance caused by structural fac-
tors (eg, luminal narrowing, vascular remodeling, vascular
rarefaction, and extramural compression), all of which can
cause myocardial ischemia and often overlap and coexist in
various combinations even without the presence of obstruc-
tive CAD (Fig. 3).3,4,35,37,91 Coronary microvascular spasm
is defined as reproduction of angina symptoms, ischemic
electrocardiogram changes, but no epicardial spasm in
response to intracoronary acetylcholine provocation test-
ing.92 The major mechanisms of coronary microvascular
spasm include Rho-kinase–mediated myosin light-chain
phosphorylation;7 increased production of vasoconstrictive
mediators, such as serotonin,93 endothelin-1,94,95 and neu-
ropeptide Y;96 and inflammatory conditions in the coronary

microvasculature97 with resultant enhanced coronary vaso-
constrictive reactivity. MicroRNAs are small noncoding
RNAs regulating gene expressions through degradation or
translational repression of mRNA and play various regula-
tory roles in the cardiovascular system.98 For instance,
microRNAs-125a/b-5p are highly expressed in vascular
endothelial cells and inhibit the expression of endothelin-
1.99 A previous study showed decreased levels of
microRNA 125a-5p in parallel with increased levels of
plasma endothelin-1 in patients with takotsubo cardiomy-
opathy, giving support to the coronary microvascular
spasm hypothesis of the disease.100 Readers are encour-
aged to refer to the comprehensive review article on the
contemporary experimental animal models of CMD with a
keen insight into anatomical, metabolic, and mechanistic
considerations of different models.101

The prevalence of CMD in patients with CAD has
been shown to be unexpectedly high. Indeed, more than
half of patients undergoing invasive coronary angiography
for the evaluation of suspected coronary macrovascular
disease have no significant coronary artery stenosis.102 A
large cohort study (n = 1439) from Mayo Clinic showed
that about two-thirds of patients with chest pain who had
angiographically normal coronary arteries or nonobstruc-
tive CAD had either endothelium-dependent or
endothelium-independent CMD, which was evaluated by
invasive coronary reactivity testing.13 This clinical entity
has been referred to as INOCA in which the role of CMD
has been recognized as an alternative etiology of symptoms
and signs of myocardial ischemia.34 Moreover, recent stud-
ies comprehensively assessing coronary physiology by
multimodality protocols revealed that a substantial propor-
tion of patients with INOCA differ in the underlying cor-
onary microvascular disease.13,35,36,85 Furthermore, we
have recently demonstrated, in patients with VSA, a sig-
nificant 5% increased risk of major adverse cardiovascular
events (MACEs) for each 1-point increase in index of
microcirculatory resistance (IMR), a catheter-derived mea-
sure of CMD.37 If complicated with CMD, patients with
INOCA are associated with increased future adverse car-
diac events, including myocardial infarction, percutaneous
or surgical revascularization, cardiac death, and hospitali-
zation for unstable angina.103–106 As extensively reviewed
elsewhere107,108 and summarized in Table 1, several meth-
ods are available for appraising coronary microvascular
function, with variable differences in costs, invasiveness,
accessibility, evaluable measures, and diagnostic accuracy.
Although the diagnostic accuracy of contemporary nonin-
vasive stress tests is limited for detecting CMD,13,91 com-
prehensive invasive assessment of coronary vasomotor
reactivity using intracoronary acetylcholine, adenosine,
and other vasoactive agents is feasible, safe, and of diag-
nostic value to extract patients with CMD.13,35,109–113 Such
structured approach to endotype patients with CMD based
on the underlying mechanism of coronary vasomotion
abnormalities may be important to tailor the most appro-
priate treatment and may provide physicians with useful
information to assist decision making and risk stratification
beyond conventional risk factors.

Godo et al J Cardiovasc Pharmacol� � Volume 78, Number 6 Supplement, December 2021

S22 | www.jcvp.org Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.



CMD as Systemic Vascular Disease Beyond
the Heart

Recent studies have revealed that coronary vasomotion
abnormalities are often concomitant with peripheral endothe-
lial dysfunction, where CMD is a cardiac manifestation of the
systemic small artery disease.114–118 We simultaneously
examined endothelial functions of peripheral conduit and
resistance arteries in patients with VSA and microvascular
angina,118 which were diagnosed by coronary spasm provo-
cation testing using intracoronary acetylcholine.92,119 The
major finding was that bradykinin-induced endothelium-
dependent vasodilatations in fingertip arterioles were almost
absent in patients with microvascular angina.118

Mechanistically, both NO-mediated and EDH-mediated digi-
tal vasodilatations were markedly impaired in patients with
microvascular angina, suggesting that CMD is a manifesta-
tion of systemic vascular dysfunction beyond the heart.118

PRIMARY CORONARY MICROCIRCULATORY
DYSFUNCTION AND VULNERABLE PATIENTS

Endothelium-dependent CMD and Advanced
Coronary Atherosclerosis

We examined whether endothelium-dependent CMD is
associated with coronary atherosclerosis in patients with
INOCA.120 Endothelium-dependent coronary vascular reactivity
was evaluated with graded doses of intracoronary acetylcholine,

and endothelium-dependent CMD was defined as a percent
increase in coronary blood flow of less than 50% in response
to acetylcholine.103,121–123 Patients with VSA, which was
defined as transient total or subtotal coronary artery occlusion
(more than 90% constriction) with chest pain and ischemic ECG
changes in response to acetylcholine, were excluded because of
a limitation of acetylcholine for testing endothelium-dependent
CMD; acetylcholine is not a pure endothelium-dependent ago-
nist but rather evokes VSMC-dependent vasoconstriction in
patients with VSA who have enhanced coronary vasoconstric-
tive reactivity.1,111 The major finding was that patients with
endothelium-dependent CMD showed larger plaque burden
and plaque volume in association with more vulnerable plaque
characteristics as evaluated by virtual histology intravascular
ultrasound.120 These patients showed larger necrotic core vol-
ume and higher frequency of thin-capped fibroatheroma, which
is characteristic of rupture-prone vulnerable plaques.120 These
results are consistent with previous studies showing the associ-
ation between endothelium-independent CMD and vulnerable
plaque characteristics.124–126

Endothelium-dependent CMD and Local Low
Shear Stress

Shear stress is one of the important physiological
stimuli that make endothelial cells synthesize and liberate
EDRFs to maintain vascular homeostasis, whereas altered
oscillatory or low shear stress with a disturbed flow pattern on
coronary artery wall contributes to the local progression of

FIGURE 3. Overlap and coexistence
of coronary macrovascular and
microvascular dysfunctions. Each
number corresponds to the reference.
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atherosclerotic coronary plaque through endothelial and
VSMC proliferation, inflammation, lipoprotein uptake, and
leukocyte adhesion.127,128 Indeed, previous studies have
shown that altered shear stress on the coronary artery wall
is associated with the local progression of atherosclerotic cor-
onary plaque129 and that coronary endothelial shear stress
decreases as changes in coronary blood flow in response to
acetylcholine decrease.123 Taken together, endothelium-
dependent CMD is involved in coronary atherosclerosis pro-
gression, possibly through low endothelial shear stress.130

Vulnerable Microcirculation Concept
The aforementioned lines of evidence support the

concepts of “primary coronary microcirculatory dysfunc-
tion”131 and “vulnerable patients.” 132 Patients with chest pain
but without angiographical abnormalities are often underdiag-
nosed and are offered no therapeutic intervention or follow-up
under the umbrella of “normal” coronary arteries. On the
contrary, patients with CMD may be predisposed to the devel-
opment of more vulnerable coronary atherosclerosis and
therefore may be prone to future coronary events.85

CLINICAL AND
THERAPEUTIC CONSIDERATIONS

Smoking and Vaping: A Modifiable Risk
Factor for Coronary Macrovascular and
Microvascular Diseases

Among traditional risk factors for coronary atherosclerotic
disease, cigarette smoking is well recognized as a major risk and
prognostic factor for VSA,133,134 and undoubtedly, smoking
cessation is the mainstay of symptomatic and prognostic

improvement in patients with VSA.133 Mechanistically, super-
oxide anions derived from cigarette smoke extract can accelerate
the oxidative degradation of NO, directly damage endothelial
cells, and promote vascular inflammatory responses, leading to
coronary hypercontraction.135,136 Recently, the evolving use of
vaping products has been implicated in the pathogenesis of
macrovascular and microvascular diseases.137–140 For example,
mentholated cigarette smoking can reduce coronary flow reserve
to the same extent as regular cigarettes.137 Flavoring additives in
electronic cigarettes can cause endothelial dysfunction by
increasing vascular inflammatory responses as well as oxidative
stress and thus by decreasing NO bioavailability.138,139

Moreover, electronic cigarette smoking can elicit an acute vaso-
constrictive response in the microvasculature, although an index
of microvascular endothelial function, reactive hyperemia index
(RHI) paradoxically increases immediately after electronic cig-
arette use.140 The Sapienza University of Rome-Vascular
Assessment of Proatherosclerotic Effects of Smoking 3 trial is
designed to examine the acute effects of electronic vaping cig-
arettes and heat-not-burn cigarettes on coronary vasomotor func-
tion assessed by invasive coronary reactivity testing, including
coronary flow reserve, fractional flow reserve, and instantaneous
wave-free ratio.141,142 The results of this trial will bring more
detailed information on the effects of novel smoking products on
the coronary macrocirculation and microcirculation.141,142

Supplemental NO: Too Much of a Good
Thing?

Since the discovery of the acute antianginal effect of
nitroglycerin over 140 years ago by Murrell,143 the use of nitrates
as a NO donor has served as the most common treatment in the
acute phase of ischemic heart disease and heart failure. As dis-
cussed above, the emerging role of CMD has been implicated in

TABLE 1. Invasive and Noninvasive Methods for Appraising Coronary Microvascular Function

Methods Measures Features

Invasive

CAG review TIMI frame count Easily obtainable but
semiquantitative

Coronary reactivity testing Enables endotyping of CMD

ACh/EM Coronary spasm Established as provocative spasm
testing

CS sampling during ACh/EM Lactate production rate Enables the accurate diagnosis of
MVS

Doppler flow/temperature wire ACh-induced CBF Endothelium-dependent responses

ATP-induced CFR Endothelium-independent responses

Pressure-thermodilution wire IMR Reflects pure microvascular function

Noninvasive During endothelium-independent
maximum hyperemia

Doppler echo CFR Readily available but operator
dependent

CMR CFR The most reliable noninvasive
method

PET CFR The most reliable noninvasive
method

ACh, acetylcholine; ATP, adenosine triphosphate; CAG, coronary angiography; CBF, coronary blood flow; CFR, coronary flow reserve; CMD, coronary microvascular
dysfunction; CMR, cardiac magnetic resonance; echo, echocardiography; CS, coronary sinus; EM, ergometrine (ergonovine); IMR, index of microvascular resistance; MVS,
microvascular spasm; PET, positron emission tomography.
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patients with various cardiovascular diseases, including obstruc-
tive CAD who underwent successful revascularization,38

INOCA,34 VSA,37 and HFpEF.17–19 Contrary to the premise that
enhancing NO-mediated vasodilatation by means of supplemental
NO could exert beneficial effects on these patients, the results of
systemic and long-term administrations of nitrates were unexpect-
edly neutral or even harmful in patients with residual microvas-
cular ischemia despite successful PCI,144 myocardial
infarction,145 VSA,146 and HFpEF.147,148 These lines of evidence
suggest the potential harms of NO therapy and the need to turn
our attention to avoid excessive NO supplementation. A possible
explanation for such a “paradox” of NO-targeted therapy may be
nitrosative stress caused by an excessive amount of supplemental
NO.149,150 Moreover, in light of the facts that there are significant
negative interactions between NO and several EDH factors68,70–73

and that coronary vascular resistance is predominantly determined
by the coronary microcirculation,69 where the effect of EDH-
mediated responses on vascular tone overwhelms that of NO-
mediated relaxations, it is important to consider the blood vessel
size–dependent contribution of NO and EDH factors in the
treatment of CMD. Actually, intracoronary administration of
nitroglycerin does not increase coronary blood flow.120 Taken
together, based on the underlying mechanism of coronary vaso-
motion abnormalities, identifying the specific indications and
contraindications of chronic NO supplementation may be
important to tailor the most appropriate treatment; a good example
of this approach is available elsewhere.110,151,152

Clinical Trials Targeting Endothelial Function
and Coronary Microvascular Function

The assessment of endothelial function in the clinical
settings has been accepted as an excellent surrogate marker of
cardiovascular risk.153 For instance, impaired flow-mediated
dilatation (FMD) of the brachial artery and digital RHI in
peripheral arterial tonometry are both associated with future
adverse cardiovascular events in patients with CAD,154–156

and one standard deviation reduction in FMD or RHI is asso-
ciated with doubling of adverse cardiovascular event risk.157

FMD and RHI reflect peripheral macrovascular and micro-
vascular endothelial function, respectively; however, both
indices are often impaired in patients with CMD,158,159 again
suggesting the systemic nature of the disorder.

The current European Society of Cardiology guidelines
recommend the use of statins in all patients with chronic coronary
syndromes including CMD.160 The guidelines also suggest treat-
ment with b-blockers, angiotensin-converting enzyme (ACE)
inhibitors, and statins for patients with reduced coronary flow
reserve or increased IMR and a negative acetylcholine provoca-
tion test, which are suggestive of impaired coronary vasodilator
capacities, while CCBs and long-acting nitrates for patients with
coronary microvascular spasm.160 Previous animal studies dem-
onstrated that ACE inhibitors are capable of potentiating
endothelium-dependent relaxations mediated by both NO and
EDH factors in the coronary circulation.161,162

Based on the premise that a tailored therapeutic strat-
egy,110 such as a stratified medical treatment driven by the
results of coronary reactivity testing and endothelial function–
guided management, may be beneficial in patients with CMD,
several clinical trials have been launched. For example, a
multicenter, prospective, randomized, blinded clinical trial, the
Women’s Ischemia Trial to Reduce Events in Non-Obstructive
CAD (WARRIOR) trial (NCT03417388) (n = 4422), is ongo-
ing to test the hypothesis that intensive medical treatment con-
sisting of high-intensity statins, maximally tolerated doses of
ACE inhibitors/angiotensin receptor blockers, and aspirin
would reduce the risk of MACEs in female patients with symp-
toms and/or signs of myocardial ischemia but no obstructive
CAD.163 Another large-scale randomized clinical trial, the
Endothelial Function-Guided Management in Patients with
Nonobstructive Coronary Artery Disease (ENDOFIND) trial,
is currently ongoing to address whether an peripheral endothe-
lial function–guided early aggressive management, which
consists of lifestyle management, optimal blood pressure, and
glycemic control, and the intensive use of statins and CCBs,
could reduce the risk of MACEs in patients with nonobstructive
CAD, in whom CMD is highly prevalent.164 Both trials will be
completed by the end of 2022 and are expected to provide
informative evidence on the management of patients with
CMD. In addition, the Ticagrelor and Preconditioning in
Patients with Coronary Artery disease trial aims to assess the
pleiotropic effects of a reversibly binding, direct-acting, oral,
P2Y12 antagonist ticagrelor on ischemic preconditioning and
coronary microvascular function in patients with stable multi-
vessel CAD undergoing staged, fractional flow reserve-guided
PCI.165 This trial has been completed by November 2020, and
the results are awaited with interest.

TABLE 2. Summary and Perspective

Highlights

Endothelial dysfunction and coronary macrovascular and microvascular dysfunctions play crucial roles in the pathogenesis of various cardiovascular diseases.

The endothelium modulates vascular tone in a vessel size–dependent manner:

Large conduit arteries are predominantly regulated by NO.

Small resistance arteries by EDH factors.

The major mechanisms of coronary vasomotion abnormalities are 3-fold:

Enhanced coronary vasoconstrictive reactivity at epicardial and microvascular levels.

Impaired endothelium-dependent and endothelium-independent coronary vasodilator capacities.

Elevated coronary microvascular resistance caused by structural factors.

Given the high prevalence and adverse clinical impact of CMD, consideration of and novel therapies for CMD seem to be important for vulnerable patients.
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SUMMARY
This review highlights the evolving landscape of coro-

nary vasomotion abnormalities in general and endothelium-
related CMD in particular (Table 2). Patients with coronary
vasomotion abnormalities are often complicated with inflamma-
tory responses and peripheral endothelial dysfunction in which
CMD manifests as systemic vascular dysfunction beyond the
heart. Novel therapies to improve CMD may attenuate the pro-
gression of coronary atherosclerosis and early aggressive med-
ical management on detection of CMD may benefit the
vulnerable patients. In an attempt to optimize the treatment,
consideration of CMD should not be lost even in the presence
of normal coronary angiogram. Rather, given the high preva-
lence and adverse clinical impact of CMD, consideration of
coronary microvascular function should be implemented in both
basic research and clinical practice for the purpose of improving
health care and outcomes of patients with the disease.

In conclusion, further characterization and better
understanding of the roles of the endothelium in the
pathophysiology and clinical outcomes of coronary macro-
vascular and microvascular diseases can be an important
gateway to this end.
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