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Abstract: We report an efficient and practical iron-catalyzed hydrogen atom transfer protocol for
assembling acetylenic motifs into functional alkenes. Diversities of internal alkynes could be obtained
from readily available alkenes and acetylenic sulfones with excellent Markovnikov selectivity. An
iron hydride hydrogen atom transfer catalytic cycle was described to clarify the mechanism of
this reaction.
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1. Introduction

Alkyne and its derivatives are important structural cores in diversities of bioactive
compounds from natural products to pharmaceuticals and functional materials [1–3], which
also serve as versatile synthetic building blocks in organic synthesis [4–9]. As a result,
remarkable attention has been paid to the synthesis of these prime frameworks from versa-
tile feedstocks. Straightforward nucleophilic or electrophilic alkynylation of nucleophilic
acetylides generated utilizing strong bases relying on their intrinsic acidity or electrophilic
acetylide variants prepared through complex routes were considered as traditional strate-
gies to assemble the alkyne moieties onto the organic skeletons for the construction of
C (sp3)–C (sp) bonds. Additionally, C (sp3)–C (sp) bond coupling reactions by the catalysis
of transition metals serve as powerful methods for the construction of alkynes, wherein
some appropriate ligands were employed to restrict the β-elimination of alkyl–metal com-
plexes [10–13]. Recently, radical-mediated SOMOphilic alkynylation has made remarkable
progress depending on the flourish development of radical chemistry, which also provides
reliable approaches for the formation of C (sp3)–C (sp) bond. Moreover, diversities of alkyne
reagents were designed and synthesized, providing alternative alkyne precursors to enable
alkynyl functionalization [14–26]. Among these, acetylenic sulfones [22,23] exhibited vigor-
ous synthetic abilities in organic transformations, especially forming C (sp3)–C (sp) bonds
via a radical-induced process. Generally, acetylenic sulfones are usually treated as efficient
radical acceptors, attached by the generated carbon radicals with excellent anti-Michael
selectivity to afford enyl radical intermediates, achieving alkynyl functionalization with
the realization of a sulfonyl radical via a sequential radical-mediated β-scission process
(Scheme 1a). These reactions were amply explored by the efforts of organic chemical
scientists (Scheme 1b). Chen [27] and König [28] developed photo-induced decarboxylative
alkynylations of redox-active esters using acetylenic sulfones as alkynyl sources under
reductive photochemical conditions, respectively. In 2016, Zhu and coworkers reported
that the ring opening alkynylation of strained cyclobutanols could be enabled by oxygen
radical-induced C–C bond cleavage by the catalysis of manganese salts [29]. In addition,
another visible light-promoted oxygen radical-induced ring opening alkynylation via C–C
bond cleavage was disclosed by the group of Wang [30]. Meanwhile, Fu and coworkers
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demonstrated that the alkynyl motifs from acetylenic sulfones could be introduced onto the
aliphatic alcohol-derived redox-active esters, affording alkynes bearing quaternary carbons
via a photo-induced C–O bond cleavage [31]. Additionally, aliphatic amine-derived Ka-
tritzky salts were employed by Gryko and coworkers to realize C–N bond alkynylation with
acetylenic sulfones under metal-free photoredox catalytic conditions [32]. In 2019, Studer
and coworkers utilized alkyl allyl sulfones as alkyl radical precursors to accomplish desul-
fonylative C (sp3)–C (sp) bond coupling initiated by 2, 2′-azobis (2-methylpropionitrile)
(AIBN) [33]. Moreover, some alkanes or functionalized alkanes could be directly converted
into internal alkynes with acetylenic sulfones via the diversity of the radical-mediated
C–H bond alkynylation process [34–39]. Although remarkable achievements have been
made in this research area, some of the reactions suffer from several limitations, such as
the utilization of expensive catalysts or peroxides and the narrow scope of substrates and
prolix procedures for the preparation of the radical precursors. It is highly desirable to
establish a practical and efficient platform to afford C (sp3)–C (sp) bond coupling products
from readily available substates in the presence of earth-abundant metal catalysts.
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Scheme 1. Strategies towards SOMOphilic alkynylation. (a) Radical-mediated alkynylation utilizing
acetylenic sulfones as alkynyl sources; (b) SOMOphilic alkynylation via varieties of radical-mediated
strategies; (c) anti-Markovnikov selective alkynalation of alkenes with acetylenic sulfones; (d) Iron-
catalysed Markovnikov selective alkynalation.

Recently, metal (Fe, Co, Mn)-catalyzed hydrofunctionalization of alkenes has been
established as an attractive and robust strategy for the construction of structural skeletons
via the metal hydride hydrogen atom transfer (MHAT) process [40,41]. The alkenes interact
with the metal hydride in situ generated from the metal catalyst with hydrogen sources to
form carbon radical species, which were involved in varieties of chemical bonds formation
such as C–H [42–44], C–C [45–53], C–O [54–58], C–S [59,60], C–N [61–65], and C–F [66,67]
bond coupling. However, hydrogen atom transfer-triggered the hydrofunctionalization
of alkenes, leading to internal alkynes using acetylenic sulfones as alkyne source was less
explored. In 2006, Renaud and coworkers disclosed a radical-mediated alkynylation of
alkenes to yield internal alkynes under the initiation of di-tert-butylhyponitrite, wherein
the in situ hydroboration of the alkenes contributed to the excellent anti-Markovnikov
selectivity (Scheme 1c) [68]. Herein, we developed an iron-catalyzed strategy to synthesize
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the internal alkynes with Markovnikov selectivity from readily available alkenes via a
MHAT process (Scheme 1d).

2. Results

To start our investigation, we probed the reaction employing alkene 1a (0.3 mmol) and
acetylenic sulfone 2a (0.2 mmol) as model substrates in the presence of Fe(acac)3 (30 mol%),
PhSiH3 (2.0 equiv) in a mixed solvent. As expected, the desired internal alkyne 3a bearing
a quaternary carbon center could be obtained with 81% yield (Table 1, Entry 1). Some other
acetylenic sulfones 2a′–2a′′′′′ were investigated, and worse results were obtained (Table 1,
Entries 2–Entries 6). Additionally, only 62% yield of 3a was generated if the reaction was
operated in EtOH without the addition of (CH2OH)2, which showed that (CH2OH)2 played
an irreplaceable role contributing to the high efficiency of the transformation (Table 1,
Entry 7), because it could suppress the formation of PhSi(OEt)3 [46]. Additionally, the
yield of desired product 3a was reduced to 60% with the amount of Fe(acac)3 decreasing to
20 mol% (Table 1, Entry 8). After screening of other catalysts including In(acac)3, Co(acac)3
and FeCl3, it was shown that In(acac)3 and Co(acac)3 were completely ineffective and FeCl3
was of modest efficiency, resulting in the alkyne product 3a with a 45% yield (Table 1,
Entries 9–Entries 11). Notably, an apparent decrease in the yield was observed when alkene
1a (0.2 mmol) and acetylenic sulfone 2a (0.3 mmol) participated in the reaction (Table 1,
Entry 12).

Table 1. Optimization of SOMOphilic alkynylation of alkenes a.
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Entry 1 none 85 (81) c

Entry 2 2a′ instead of 2a 80 (72) c

Entry 3 2a′′ instead of 2a 71
Entry 4 2a′′′ instead of 2a 49
Entry 5 2a′′′′ instead of 2a ND
Entry 6 2a′′′′′ instead of 2a ND
Entry 7 Only EtOH instead of EtOH and (CH2OH)2 62
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a Standard conditions: 1a (0.3 mmol, 1.5 equiv), 2a (0.2 mmol, 1.0 equiv), Fe(acac)3 (30 mol%), PhSiH3 (0.4 mmol,
2.0 equiv), in EtOH (0.8 mL) and (CH2OH)2 (0.2 mL) at 35 ◦C for 12 h. b Determined by GC-MS using dodecane
as the internal standard. c Isolated yield in parentheses.

With the optimal conditions in hand, we then examined the scope of iron-catalyzed
SOMOphilic alkynylation, keeping 2a and 2b as radical acceptors, which is presented in
Figure 1. These simple and mild conditions turned out to be compatible with a wide range
of alkenes with exquisite functional group tolerance. β-methyl alkenes were investigated
as suitable substrates to react with 2a, affording the substituted alkynes 3a–3d bearing
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quaternary carbons in modest to good yields. Moreover, alkenes bearing bulky groups
also worked well to provide the corresponding alkynes 3e–3f in satisfactory yields. Since
this reaction’s conditions were gentle, alkenes bearing a wide of functional groups such as
phenyl (1g), carbonyl (1h), ester (1i), amide (1j, 1k), amine (1l), hydroxyl (1m), carboxyl
(1n), silicon (1o) groups underwent the MHAT-promoted alkynylation in 55% to 84%
yields. Notably, although the reactions were operated in mixed alcohols, the alkenes
bearing halide atoms performed well, generating desired alkynes 3p–3q in good yields,
which could be applied for the further transformations. In addition, the reactions of internal
alkenes with alkyne reagent 2a were operated smoothly, leading to the formation of the
alkynylation products 3r–3u in 50% to 86% yields. The styrene derivatives could also be
treated as suitable candidates under the optimized conditions to provide the alkynes 3v–3x
in medium yields with excellent selectivity.
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Figure 1. Substrate scope of alkenes a. a Standard conditions: 1 (0.3 mmol, 1.5 equiv), 2a or 2b
(0.2 mmol, 1.0 equiv), Fe(acac)3 (30 mol%), PhSiH3 (0.4 mmol, 2.0 equiv), in EtOH (0.8 mL) and
(CH2OH)2 (0.2 mL) at 35 ◦C for 12 h, isolated yields.

Encouraged by the results of variable alkenes, we continued to investigate the scope
of alkyne sources utilizing alkene 1m as a radical precursor under the optimal conditions.
Diversities of acetylenic sulfones were prepared and participated in the reaction system.
As shown in Figure 2, the electron-donating groups, electron-withdrawing groups and
halide atoms on the phenyl rings were tolerated. As examples, acetylenic sulfones with
methyl, methoxyl, phenyl, fluoro, chloro, bromo and trifluoromethyl groups engage in the
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reactions, yielding the corresponding products 4a–4g in 71% to 85% yields. Importantly,
triisopropylsilacetylene-derived sulfone demonstrated an excellent performance, yielding
the product 4h with a 92% yield, which could be converted into the terminal alkyne under
desiliconization conditions.
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2 (0.2 mmol, 1.0 equiv), Fe(acac)3 (30 mol%), PhSiH3 (0.4 mmol, 2.0 equiv), in EtOH (0.8 mL) and
(CH2OH)2 (0.2 mL) at 35 ◦C for 12 h, isolated yields.

A tentative mechanism of this SOMOphilic alkynylation of alkenes is depicted in
Scheme 2 according to the reported iron-catalyzed hydrofunctionalizations of alkenes
via the MHAT process [40] and radical-mediated alkynylation [68]. Initially, FeIII(acac)3
was converted into the HFeIII(acac)2 species with the interaction of PhSiH3 in alcohol.
Then, MHAT occurred between HFeIII(acac)2 and non-activated alkenes 1, acting as a rate-
determining step [69], affording carbon-centered radical A with excellent Markovnikov
selectivity as well as FeII(acac)2. Subsequently, anti-Michael addition of A onto acetylenic
sulfone 2a generated enyl radical intermediates B, followed by the radical-mediated desul-
fonation to afford the desired alkyne products 3 with a release of sulfonyl radical, achieving
the alkynyl functionalization with the realization of sulfonyl radical C. Finally, the sulfonyl
radical C oxidized FeII(acac)2 to FeIII(acac)3 to fulfill the catalytic cycle, generating a sulfinic
acid E [70], which was detected in HRMS (Figure S1 in Supplementary Materials).
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3. Discussion

In conclusion, we developed an iron-catalyzed SOMOphilic alkynylation of non-
activated alkenes with acetylenic sulfone with Markovnikov selectivity. A wide range of
secondary and tertiary alkynes bearing variable functional and sensitive groups could be
obtained from readily available and easily prepared starting materials by this efficient and
mild MHAT strategy. Additional applications in the synthesis and modification of complex
molecules or bioactive compounds are under investigation in our laboratory.

4. Materials and Methods
4.1. General Information

Unless otherwise noted, all reactions were performed under an argon atmosphere
using flame-dried glassware. All new compounds were fully characterized. NMR-spectra
were recorded on Bruker ARX-400 MHz or ARX-600 Associated. 1H NMR spectra data
were reported as δ values in ppm relative to chloroform (δ 7.26) if collected in CDCl3.
13C NMR spectra data were reported as δ values in ppm relative to chloroform (δ 77.00).
1H NMR coupling constants were reported in Hz, and multiplicity was indicated as follows:
s (singlet); d (doublet); t (triplet); q (quartet); quint (quintet); m (multiplet); dd (doublet of
doublets); ddd (doublet of doublet of doublets); dddd (doublet of doublet of doublet of
doublets); dt (doublet of triplets); td (triplet of doublets); ddt (doublet of doublet of triplets);
dq (doublet of quartets); app (apparent); and br (broad). Mass spectra were obtained using
a Micromass Q-Tof instrument (ESI) and Agilent Technologies 5973N (EI). All reactions
were carried out in flame-dried 25 mL Schlenk tubes with Teflon screw caps under an argon
atmosphere. Unless otherwise noted, materials obtained from commercial suppliers were
used without further purification. Acetylenic sulfones 2 were prepared according to the
reported procedures [29,71].

4.2. General Procedures of Iron-Catalyzed SOMOphilic Alkynylation

Flame-dried 10 mL Schlenk tube filled with N2, acetylenic sulfones 2 (0.2 mmol,
1.0 equiv) and Fe(acac)3 (21.2 mg, 0.06 mmol, 30 mol%) were added under N2, evacuated
and purged with N2 three times. Afterwards, PhSiH3 (43.2 mg, 0.4 mmol, 2 equiv), non-
activted alkenes 1 (33.1 mg, 0.3 mmol, 1.5 equiv) and ethanol (0.8 mL) and ethylene glycol
(0.2 mL) were added via syringe. The formed mixture was stirred at 35 ◦C under N2 for 12 h,
as monitored by TLC. The solution was then cooled to room temperature, and the solution
was diluted with ethyl acetate and transferred to a round bottom flask. The concentrated
residue was purified by column chromatography using ethyl acetate/petroleum ether as
an eluent to afford the corresponding products and 3 and 4.

4.3. Characterization Data for Products

tert-Butyl((3,3-dimethyl-5-phenylpent-4-yn-1-yl)oxy)dimethylsilane (3a). Colorless oil
(48.9 mg, 81%): 1H NMR (500 MHz, CDCl3) δ 7.39–7.36 (m, 2H), 7.29–7.25 (m, 3H),
3.90 (t, J = 7.4 Hz, 2H), 1.77 (t, J = 7.4 Hz, 2H), 1.31 (s, 6H), 0.91 (s, 9H), 0.09 (s, 6H);
13C NMR (126 MHz, CDCl3) δ 131.5, 128.1, 127.4, 123.9, 96.6, 80.6, 61.0, 45.6, 30.3, 29.8, 26.0,
18.3, −5.2; HRMS m/z (ESI) calcd for C19H30NaOSi (M + Na)+ 325.1958, found 325.1960.

(3, 3-Dimethylhex-1-yn-1-yl)benzene (3b). Colorless oil (24.2 mg, 65%): 1H NMR
(400 MHz, CDCl3) δ 7.39–7.36 (m, 2H), 7.27–7.24 (m, 3H), 1.55–1.42 (m, 2H), 1.47–1.42
(m, 2H), 1.27 (s, 6H), 0.95 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 131.5, 128.1,
127.3, 124.2, 97.6, 80.2, 45.9, 31.7, 29.3, 18.7, 14.6; HRMS m/z (ESI) calcd for C14H18Na
(M + Na)+ 209.1301, found 209.1305.

(3,3-Diethylpent-1-yn-1-yl)benzene (3c). Colorless oil (22.4 mg, 56%): 1H NMR (400 MHz,
CDCl3) δ 7.41–7.38 (m, 2H), 7.29–7.26 (m, 3H), 1.53 (q, J = 7.5 Hz, 6H), 0.97 (t, J = 7.5 Hz, 9H);
13C NMR (101 MHz, CDCl3) δ 131.6, 128.1, 127.2, 124.4, 96.0, 82.23, 39.9, 29.8, 8.8; HRMS
m/z (ESI) calcd for C15H21 (M + H)+ 201.1638, found 201.1639.

(1S,5R)-2,6,6-Trimethyl-2-(phenylethynyl)bicyclo[3.1.1]heptane (3d). Colorless oil (17.1 mg,
36%): 1H NMR (400 MHz, CDCl3) δ 7.39–7.36 (m, 2H), 7.26–7.23 (m, 3H), 5.41 (d, J = 4.5 Hz, 1H),
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2.17 (d, J = 18.8 Hz, 1H), 2.03–1.96 (m, 4H), 1.66 (d, J = 1.9 Hz, 3H), 1.48–1.42 (m, 2H),
1.30 (s, 3H), 1.26 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 131.6, 128.1, 127.3, 120.8, 96.6, 81.0,
43.9, 34.7, 31.0, 29.7, 27.5, 27.3, 27.0, 24.8, 23.3; HRMS m/z (ESI) calcd for C18H23 (M + H)+

239.1794, found 239.1795.
(3,4,4-Trimethylpent-1-yn-1-yl)benzene (3e). Colorless oil (18.5 mg, 50%): 1H NMR

(400 MHz, CDCl3) δ 7.41–7.38 (m, 2H), 7.28–7.26 (s, 3H), 2.45 (q, J = 7.1 Hz, 1H),
1.20 (d, J = 7.1 Hz, 3H), 1.02 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 131.5, 128.1, 127.3,
124.3, 93.9, 91.8, 37.8, 33.6, 27.3, 15.9; HRMS m/z (ESI) calcd for C14H18 Na (M + Na)+

209.1301, found 209.1303.
(3-Cyclohexylbut-1-yn-1-yl)benzene (3f). Colorless oil (27.7 mg, 65%): 1H NMR (400 MHz,

CDCl3) δ 7.41–7.39 (m, 2H), 7.29–7.26 (m, 3H), 2.53–2.50 (m, 1H), 1.95–1.90 (m, 1H),
1.81–1.74 (m, 3H), 1.69–1.65 (m, 1H), 1.36–1.13 (m, 9H); 13C NMR (101 MHz, CDCl3) δ
131.5, 128.1, 127.3, 124.2, 93.9, 81.5, 42.9, 32.5, 31.1, 29.5, 26.48, 26.45, 26.4, 18.3; HRMS m/z
(ESI) calcd for C16H21 (M + H)+ 213.1638, found 213.1643.

(3-Methylpent-1-yne-1,5-diyl)dibenzene (3g). Colorless oil (35.3 mg, 75%): 1H NMR
(400 MHz, CDCl3) δ 7.46– 7.43 (m, 2H), 7.32– 7.29 (m, 5H), 7.26–7.18 (m, 3H), 2.94–2.87
(m, 1H), 2.84–2.76 (m, 1H), 2.71–2.63 (m, 1H), 1.90–1.79 (m, 2H), 1.30 (d, J = 6.9 Hz, 3H);
13C NMR (101 MHz, CDCl3) δ 142.1, 131.6, 128.5, 128.3, 128.2, 127.5, 125.8, 124.0, 94.2, 81.3,
38.7, 33.7, 26.0, 21.1; HRMS m/z (ESI) calcd for C18H19 (M + H)+ 235.1481, found 235.1482.

5-Methyl-7-phenylhept-6-yn-2-one (3h). Colorless oil (33.0 mg, 83%): 1H NMR (400 MHz,
CDCl3) δ 7.41–7.36 (m, 2H), 7.30–7.27 (m, 3H), 2.74–2.60 (m, 3H), 2.18 (s, 3H), 1.87–1.83 (m, 1H),
1.75–1.68 (m, 1H), 1.27 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 208.7, 131.5, 128.2,
127.7, 123.7, 93.4, 81.5, 41.5, 30.6, 30.1, 26.0, 21.1; HRMS m/z (ESI) calcd for C14H17O
(M + H)+ 201.1274, found 201.1275.

2-Methyl-4-phenylbut-3-yn-1-yl benzoate (3i). Colorless oil (28.9 mg, 55%): 1H NMR
(400 MHz, CDCl3) δ 8.11–8.09 (m, 2H), 7.59–7.56 (m, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.42–7.39
(m, 2H), 7.28 (q, J = 3.2, 2.7 Hz, 3H), 4.46–4.43 (m, 1H), 4.35–4.32 (m, 1H), 3.17 (q, J = 6.8 Hz,
1H), 1.39 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 166.4, 133.0, 131.6, 130.1, 129.6,
128.3, 128.2, 127.9, 123.3, 90.3, 81.9, 67.9, 26.7, 17.7; HRMS m/z (ESI) calcd for C18H17O2
(M + H)+ 265.1223, found 265.1225.

1-(4-Phenylbut-3-yn-2-yl)pyrrolidin-2-one (3j). Yellow oil (30.2 mg, 71%): 1H NMR
(400 MHz, CDCl3) δ 7.42–7.39 (m, 2H), 7.31–7.29 (m, 3H), 5.30 (q, J = 7.1 Hz, 1H), 3.66–3.60
(m, 1H),3.49–3.43 (m, 1H), 2.44–2.40 (m,2H), 2.08–2.04 (m, 2H), 1.44 (d, J = 7.0 Hz, 3H);
13C NMR (101 MHz, CDCl3) δ 173.9, 131.7, 128.3, 128.2, 122.6, 87.3, 83.5, 42.8, 39.3, 31.2,
19.8, 17.7; HRMS m/z (ESI) calcd for C14H16NO (M + H)+ 214.1226, found 214.1230.

(4-((4-Methoxyphenyl)ethynyl)-4-methylpiperidin-1-yl)(phenyl)methanone (3k). Colorless
oil (56.1 mg, 84%): 1H NMR (400 MHz, CDCl3) δ 7.41–7.38 (m, 5H), 7.36–7.32 (m, 2H),
6.84–6.81 (m, 2H), 4.65 (d, J = 13.4 Hz, 1H), 3.80 (s, 1H), 3.67–3.65 (m, 1H), 3.45 (t, J = 13.1
Hz,1H), 3.24 (d, J = 13.3 Hz, 1H), 1.89 (d, J = 13.2 Hz,1H), 1.70–1.69 (m, 1H), 1.55 (s, 1H),
1.43–1.39 (m, 1H), 1.35 (s,3H); 13C NMR (101 MHz, CDCl3) δ 170.3, 159.3, 136.3, 132.9, 129.5,
128.4, 126.9, 115.4, 113.9, 92.0, 83.2, 55.3, 45.5, 39.8, 39.3, 38.4, 32.3, 29.6; HRMS m/z (ESI)
calcd for C22H24NO2 (M + H)+ 334.1802, found 334.1803.

N-(2-methyl-4-phenylbut-3-yn-1-yl)aniline (3l). Colorless oil (28.7 mg, 61%): 1H NMR
(400 MHz, CDCl3) δ 7.44–7.29 (m, 5H), 7.23–7.18 (m, 2H), 6.74–6.67 (m, 3H), 4.05 (br s, 1H),
3.32–3.22 (m, 2H), 3.05–3.00 (m, 1H), 1.34 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ
147.9, 131.6, 129.3, 128.2, 127.8, 123.4, 117.6, 113.1, 92.0, 82.2, 49.5, 26.8, 18.7; HRMS m/z
(ESI) calcd for C17H18N (M + H)+ 236.1434, found 236.1435.

5-Methyl-7-phenylhept-6-yn-1-ol (3m). Colorless oil (32.9 mg, 81%): 1H NMR (400 MHz,
CDCl3) δ 7.40–7.38 (m, 2H), 7.29–7.26 (m, 3H), 3.69–3.66 (m, 2H), 2.68–2.63 (m, 1H),
1.63–1.61 (m, 2H), 1.59–1.50 (m, 4H), 1.26 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ
131.5, 128.1, 127.5, 124.0, 94.5, 80.8, 62.9, 36.7, 32.6, 26.5, 23.62, 21.1; HRMS m/z (ESI) calcd
for C14H19O (M + H)+ 203.1430, found 203.1433.

12-(4-Methoxyphenyl)-10-methyldodec-11-ynoic acid (3n). Colorless oil (52.4 mg, 84%):
1H NMR (400 MHz, CDCl3) δ 7.34–7.30 (m, 2H), 6.82–6.79 (m, 2H), 3.79 (s, 3H), 2.65–2.57
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(m, 1H), 2.34 (t, J = 7.5 Hz, 2H), 1.65–1.59 (m, 2H), 1.53–1.41 (m, 4H), 1.32 (s, 8H), 1.23
(d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 179.6, 158.9, 132.8, 116.3, 113.7, 93.2,
80.3, 55.2, 37.1, 34.0, 29.4, 29.3, 29.2, 29.0, 27.4, 26.5, 24.7, 21.2; HRMS m/z (ESI) calcd for
C20H29O3 (M + H)+ 317.2111, found 317.2115.

(4-(4-Methoxyphenyl)but-3-yn-2-yl)dimethyl(phenyl)silane (3o). Colorless oil (40.1 mg, 68%):
1H NMR (400 MHz, CDCl3) δ 7.63–7.60 (m, 2H), 7.40–7.36 (m, 3H), 7.30–7.27 (m, 2H), 6.81
(d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 2.10 (q, J = 7.2 Hz, 1H), 1.22 (d, J = 7.3 Hz, 3H), 0.43 (s, 6H);
13C NMR (101 MHz, CDCl3) δ 158.7, 136.8, 134.1, 132.7, 129.3, 127.7, 116.9, 113.7, 91.9, 80.3,
55.2, 15.0, 13.5, -4.7, -5.4; HRMS m/z (ESI) calcd for C19H22NaOSi (M + Na)+ 317.1332,
found 317.1332.

(7-Chloro-3-methylhept-1-yn-1-yl)benzene (3p). Colorless oil (35.1 mg, 80%): 1H NMR
(400 MHz, CDCl3) δ 7.40–7.38 (m, 2H), 7.28–7.26 (m, 3H), 3.57 (t, J = 6.7 Hz, 2H), 2.7–2.62
(m, 1H), 1.86– 1.79 (m, 2H), 1.72–1.59 (m, 2H), 1.56–1.51 (m, 2H), 1.26 (d, J = 6.9 Hz, 3H);
13C NMR (101 MHz, CDCl3) δ 131.6, 128.2, 127.5, 123.9, 94.2, 81.0, 45.0, 36.2, 32.4, 26.4, 24.8,
21.1; HRMS m/z (ESI) calcd for C14H18Cl (M + H)+ 221.1092, found 221.1093.

(9-Bromo-3-methylnon-1-yn-1-yl)benzene (3q). Colorless oil (42.5 mg, 73%): 1H NMR
(400 MHz, CDCl3) δ 7.41–7.39 (m, 2H), 7.29–7.27 (m, 3H), 3.42 (t, J = 6.8 Hz, 2H), 2.69–2.60
(m, 1H), 2.91–2.84 (m, 2H), 1.54–1.44 (m, 6H), 1.42–1.34 (m, 2H), 1.26 (d, J = 6.9 Hz, 3H);
13C NMR (101 MHz, CDCl3) δ 131.5, 128.1, 127.4, 124.0, 94.6, 80.8, 36.8, 34.0, 32.8, 28.6, 28.1,
27.2, 26.5, 21.1; HRMS m/z (ESI) calcd for C16H22Br (M + H)+ 293.0899, found 293.0902.

(1S,4R)-2-(Phenylethynyl)bicyclo[2.2.1]heptane (3r). Colorless oil (19.4 mg, 50%): 1H
NMR (400 MHz, CDCl3) δ 7.42–7.35 (m, 2H), 7.29–7.23 (m, 3H), 2.47–2.45 (m, 1H), 2.41
(d, J = 3.7 Hz, 1H), 2.31 (d, J = 4.3 Hz, 1H), 1.72–1.65 (m, 2H), 1.56–1.47 (m, 2H), 1.27–1.16
(m, 4H); 13C NMR (101 MHz, CDCl3) δ 131.5, 128.1, 127.3, 124.2, 95.7, 80.1, 43.7, 39.4, 36.7,
36.2, 33.6, 28.81, 28.79; HRMS m/z (ESI) calcd for C15H17 (M + H)+ 197.1325, found 197.1328.

(Phenylethynyl)cycloheptane (3s). Colorless oil (26.7 mg, 67%): 1H NMR (400 MHz,
CDCl3) δ 7.41–1.38 (m, 2H), 7.30–7.24 (m, 3H), 2.84–2.78 (m, 1H), 1.95–1.87 (m, 2H), 1.81–1.72
(m, 4H), 1.64–1.48 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 131.5, 128.1, 127.3, 124.2, 95.2,
80.8, 34.7, 31.7, 27.9, 25.6; HRMS m/z (ESI) calcd for C15H18Na (M + Na)+ 221.1301,
found 221.1302.

(Phenylethynyl)cyclooctane (3t). Colorless oil (24.5 mg, 58%): 1H NMR (400 MHz, CDCl3)
δ 7.40–7.37 (m, 2H), 7.27–7.26 (m, 3H), 2.82–2.76 (m, 1H), 1.98–1.91 (m, 2H), 1.81– 1.72
(m, 4H), 1.56–1.53 (m, 8H); 13C NMR (101 MHz, CDCl3) δ 131.5, 128.1, 127.3, 124.2, 31.6, 30.7,
29.7, 27.4, 25.4, 24.5; HRMS m/z (ESI) calcd for C16H21 (M + H)+ 213.1638, found 213.1641.

2-(Phenylethynyl)butane-1,4-diol (3u). Colorless oil (32.7 mg, 86%): 1H NMR (400 MHz,
CDCl3) δ 7.42–7.40 (m, 2H), 7.30–7.28 (m, 3H), 3.95–3.90 (m, 1H), 3.87–3.84 (m, 1H), 3.77–3.72
(m, 2H), 3.03–3.00 (m, 1H), 2.47 (br s, 2H), 1.94–1.84 (m, 2H); 13C NMR (101 MHz, CDCl3) δ
131.7, 128.3, 128.1, 123.0, 89.1, 83.8, 65.4, 60.6, 34.5, 33.2; HRMS m/z (ESI) calcd for C12H15O2
(M + H)+ 191.1067, found 191.1068.

But-1-yne-1,3-diyldibenzene (3v). Colorless oil (18.5 mg, 45%): 1H NMR (400 MHz,
CDCl3) δ 7.47–7.44 (m, 5H), 7.36–7.33 (m, 2H), 7.30–7.28 (m, 3H), 3.99 (q, J = 7.2 Hz, 1H),
1.59 (d, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 131.6, 130.2, 128.5, 128.2, 127.7, 126.9,
126.6, 123.7, 92.6, 32.5, 24.5; HRMS m/z (ESI) calcd for C16H15 (M + H)+ 207.1168, found
207.1171.

1-Methoxy-4-(4-phenylbut-3-yn-2-yl)benzene (3w). Colorless oil (19.8 mg, 42%): 1H NMR
(400 MHz, CDCl3) δ 7.47–7.43 (m, 2H), 7.38–7.36 (m, 2H), 7.32–7.28 (m, 3H), 6.91–6.87
(m, 2H), 3.95 (q, J = 7.1 Hz, 1H), 3.81 (s, 3H), 1.56 (d, J = 7.1 Hz, 3H); 13C NMR (101 MHz,
CDCl3) δ 158.3, 135.5, 131.6, 128.2, 127.9, 127.7, 123.8, 113.9, 92.9, 82.2, 55.3, 31.6, 24.6; HRMS
m/z (ESI) calcd for C17H17O (M + H)+ 237.1274, found 237.1276.

1-(4-Phenylbut-3-yn-2-yl)-4-(trifluoromethyl)benzene (3x). Colorless oil (25.3 mg, 46%):
1H NMR (400 MHz, CDCl3) δ 7.62–7.56 (m, 4H), 7.46–7.43 (m, 2H), 7.33–7.29 (m, 2H), 4.04
(q, J = 7.1 Hz, 1H), 1.60 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 147.3, 131.6, 128.3,
128.0, 127.3, 125.5 (q, J = 3.9 Hz), 123.3, 91.4, 83.1, 32.4, 24.3; 19F NMR (376 MHz, Chloroform-d)
δ -62.4; HRMS m/z (ESI) calcd for C17H14F3 (M + H)+ 275.1042, found 275.1045.
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5-Methyl-7-(p-tolyl)hept-6-yn-1-ol (4a). Colorless oil (34.6 mg, 80%): 1H NMR (400 MHz,
CDCl3) δ 7.29–7.27 (m, 2H), 7.10–7.07 (m, 2H), 3.69–3.65 (m, 2H), 2.69–2.60 (m, 1H), 2.33
(s, 3H), 1.66–1.52 (m, 6H), 1.25 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 137.4,
131.4, 128.9, 120.9, 93.6, 80.9, 62.9, 36.78, 32.6, 26.5, 23.6, 21.4, 21.1; HRMS m/z (ESI) calcd
for C15H21O (M + H)+ 217.1587, found 217.1589.

7-(4-Methoxyphenyl)-5-methylhept-6-yn-1-ol (4b). Colorless oil (38.2 mg, 82%): 1H NMR
(400 MHz, CDCl3) δ 7.33–7.31 (m, 2H), 6.82–6.79 (m, 2H), 3.79 (s, 3H), 3.69–3.65 (m, 2H),
2.68–2.59 (m, 1H), 1.63–1.51 (m, 6H), 1.24 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ
159.0, 132.9, 116.1, 113.8, 92.8, 80.5, 62.9, 55.2, 36.8, 32.6, 26.5, 23.6, 21.2; HRMS m/z (ESI)
calcd for C15H20NaO2 (M + Na)+ 255.1356, found 255.1359.

7-([1,1′-Biphenyl]-4-yl)-5-methylhept-6-yn-1-ol (4c). Colorless oil (47.0 mg, 84%): 1H
NMR (400 MHz, CDCl3) δ 7.60–7.57 (m, 2H), 7.54–7.51 (m, 2H), 7.48–7.42 (m, 2H), 7.37–7.34
(m, 1H), 3.71–3.67 (m, 2H), 2.73–2.65 (m, 1H), 1.66–1.56 (m, 6H), 1.28 (d, J = 6.9 Hz, 3H);
13C NMR (101 MHz, CDCl3) δ 140.5, 140.2, 131.9, 128.8, 127.4, 126.9, 126.8, 122.9, 95.2,
80.7, 62.9, 36.7, 32.6, 26.6, 23.7, 21.1; HRMS m/z (ESI) calcd for C20H23 (M + H)+ 279.1743,
found 279.1745.

7-(4-Fluorophenyl)-5-methylhept-6-yn-1-ol (4d). Colorless oil (31.5 mg, 71%): 1H NMR
(400 MHz, CDCl3) δ 7.37–7.34 (m, 2H), 6.98–6.95 (m, 2H), 3.67 (t, J = 6.0 Hz, 2H), 2.66–2.61
(m, 1H), 1.65–1.48 (m, 6H), 1.25 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 162.0
(d, J = 248.1 Hz), 133.3 (d, J = 8.1 Hz), 115.3 (d, J = 22.4 Hz), 94.1, 79.8, 62.9, 36.7, 32.5,
26.5, 23.6, 21.0; 19F NMR (376 MHz, CDCl3) δ -112.6; HRMS m/z (ESI) calcd for C14H18FO
(M + H)+ 221.1336, found 221.1339.

7-(4-Chlorophenyl)-5-methylhept-6-yn-1-ol (4e). Colorless oil (39.9 mg, 84%): 1H NMR
(400 MHz, CDCl3) δ 7.32–7.29 (m, 2H), 7.26–7.23 (m, 2H), 3.68–3.65 (m, 2H), 2.62–2.67
(m, 1H), 1.63–1.50 (m, 6H), 1.25 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 133.4,
132.8, 128.4, 122.5, 95.5, 79.8, 62.9, 36.6, 32.5, 26.5, 23.6, 21.0; HRMS m/z (ESI) calcd for
C14H18ClO (M + H)+ 237.1041, found 237.1045.

7-(4-Bromophenyl)-5-methylhept-6-yn-1-ol (4f). Colorless oil (47.8 mg, 85%): 1H NMR
(400 MHz, CDCl3) δ 7.41–7.39 (m, 2H), 7.26–7.23 (m, 2H), 3.68–3.65 (m, 2H), 2.68–2.59
(m, 1H), 1.65–1.52 (m, 6H), 1.24 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 133.0,
131.3, 122.9, 121.5, 95.7, 79.9, 62.9, 36.6, 32.5, 26.6, 23.6, 20.9; HRMS m/z (ESI) calcd for
C14H18BrO (M + H)+ 281.0536, found 281.0538.

Methyl-7-(4-(trifluoromethyl)phenyl)hept-6-yn-1-ol (4g). Colorless oil (45.4 mg, 84%): 1H
NMR (400 MHz, CDCl3) δ 7.29–7.27 (m, 2H), 7.10–7.07 (m, 2H), 3.69–3.65 (m, 2H), 2.69–2.60
(m, 1H), 2.33 (s, 3H), 1.66–1.52 (m,6H), 1.25 (d, J = 6.9 Hz, 3H); 13C NMR (101 MHz, CDCl3)
δ 139.4, 131.8, 129.2 (q, J = 32.6 Hz), 125.1 (q, J = 3.7 Hz), 124.0 (q, J = 273.5 Hz), 97.3, 79.8,
62.9, 36.5, 32.5, 26.6, 23.6, 20.9; 19F NMR (376 MHz, CDCl3) δ -62.7; HRMS m/z (ESI) calcd
for C15H17F3NaO (M + Na)+ 293.1124, found 293.1125.

5-Methyl-7-(triisopropylsilyl)hept-6-yn-1-ol (4h). Colorless oil (51.9 mg, 92%): 1H NMR
(400 MHz, CDCl3) δ 3.64 (t, J = 6.3 Hz, 2H), 2.51–2.43 (m, 1H), 1.65–1.42 (m, 6H), 1.17
(d, J = 6.9 Hz, 3H), 1.09–1.00 (m, 21H); 13C NMR (101 MHz, CDCl3) δ 113.7, 79.8, 63.0, 36.7,
32.5, 26.9, 23.5, 21.3, 18.6, 11.3; HRMS m/z (ESI) calcd for C17H35OSi (M + H)+ 283.2452,
found 283.2455.

Supplementary Materials: The following are available online. Figure S1: HRMS spectra of sulfinic
acid E; 1H NMR, 13C NMR and 19F NMR spectra of starting materials and products.
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