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Volumetric change in glioblastoma multiforme (GBM) over time is a critical factor in treatment decisions.
Typically, the tumor volume is computed on a slice-by-slice basis using MRI scans obtained at regular
intervals. (3D)Slicer – a free platform for biomedical research – provides an alternative to this manual
slice-by-slice segmentation process, which is significantly faster and requires less user interaction. In this
study, 4 physicians segmented GBMs in 10 patients, once using the competitive region-growing based
GrowCut segmentation module of Slicer, and once purely by drawing boundaries completely manually on a
slice-by-slice basis. Furthermore, we provide a variability analysis for three physicians for 12 GBMs. The
time required for GrowCut segmentation was on an average 61% of the time required for a pure manual
segmentation. A comparison of Slicer-based segmentation with manual slice-by-slice segmentation resulted
in a Dice Similarity Coefficient of 88.43 6 5.23% and a Hausdorff Distance of 2.32 6 5.23 mm.

G
liomas are the most common primary brain tumors, arising from the glial cells that support the cerebral
nerve cells. The World Health Organization (WHO) grading system for gliomas defines grades I–IV,
where grade I tumors are the least aggressive and IV are the most aggressive1. Of these, 70% are

considered malignant gliomas (anaplastic astrocytoma WHO grade III and glioblastoma multiforme WHO grade
IV). The glioblastoma multiforme, named for its histopathological appearance, is the most frequent malignant
primary brain tumor and is one of the most highly malignant human neoplasms. The approach to the treatment
of glioblastomas typically includes maximum safe resection, percutaneous radiation and chemotherapy. Despite
new radiation strategies and the development of oral alcylating substances (e.g. Temozolomide), the life expect-
ancy for GBM patients is still only about fifteen months2. Although in previous years the role of surgery was
controversial, recent literature favors a maximum safe surgical resection as a positive predictor for extended
patient survival3. Microsurgical resection can now be optimized with the technical development of neuronaviga-
tion based on data from diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), or positron-emission-computed-
tomography (PET). An early postoperative magnetic resonance imaging (MRI) with a contrast agent can be used
to determine how much of the tumor mass has been removed and frequent MRI scans can help to monitor any
new tumor growth.

For automatic glioma segmentation in general (World Health Organization grade I–IV), several algorithms
have already been proposed that rely on magnetic resonance imaging. Szwarc et al.4 have presented a segmenta-
tion approach that uses fuzzy clustering techniques. In their evaluation, the authors used six magnetic resonance
(MR) studies of three subjects and the reported Dice Similarity Coefficient (DSC)5,6 ranged from 67.21% to 75.63%.
Angelini et al.7 have presented an extensive overview of some deterministic and statistical approaches. Gibbs et al.8

have introduced a combination of region growing and morphological edge detection for segmenting enhancing
tumors in T1-weighted MRI data. The authors evaluated their method with one phantom data set and ten clinical
data sets. An interactive method for segmentation of full-enhancing, ring-enhancing and non-enhancing tumors
has been proposed by Letteboer et al.9 and was evaluated on twenty clinical cases. Depending on intensity-based
pixel probabilities for tumor tissue, Droske et al.10 have presented a deformable model method, using a level set
formulation, to divide the MRI data into regions of similar image properties for tumor segmentation. Clark et al.11

have introduced a knowledge-based automated segmentation on multispectral data in order to partition

SUBJECT AREAS:
CANCER

COMPUTATIONAL SCIENCE

SOFTWARE

COMPUTATIONAL BIOLOGY
AND BIOINFORMATICS

Received
31 May 2012

Accepted
15 February 2013

Published
4 March 2013

Correspondence and
requests for materials

should be addressed to
J.E. (egger@bwh.

harvard.edu)

SCIENTIFIC REPORTS | 3 : 1364 | DOI: 10.1038/srep01364 1



glioblastomas. Direct comparison with a hand labeled segmentation
89 of 120 slices had a percent matching rate of 90% or higher.
Segmentation based on outlier detection in T2-weighted MR data
has been proposed by Prastawa et al.12. For each case, the time
required for the automatic segmentation method was about ninety
minutes. Sieg et al.13 have introduced an approach to segment con-
trast-enhanced, intracranial tumors and anatomical structures of
registered, multispectral MR data. The approach has been tested
on twenty-two data sets, but no computation times were provided.
Egger et al.14,15 present a graph-based approach. After the graph has
been constructed, the minimal cost closed set on the graph is com-
puted via a polynomial time s-t cut16. The presented method has been
evaluated with fifty glioblastoma multiforme yielding an average
Dice Similarity Coefficient of 80.37 6 8.93%.

Since fully automated segmentation often fails to match human
judgments of tumor boundaries, a number interactive segmentation
algorithms have been proposed. Vezhnevets and Konouchine17 give
an overview of methods for generic image editing and methods for
editing medical images. An interactive segmentation technique
called Magic Wand17 is a common selection tool in image editing
software applications. The tool gathers color statistics from the user
specified image point (or region) and segments (connected) image
regions with pixels whose color properties fall within some given
tolerance of the gathered statistics. Reese18 has presented a region-
based interactive segmentation technique called Intelligent Paint,
based on hierarchical image segmentation by tobogganing, with a
connect-and-collect strategy to define an object’s region. Mortensen
and Barrett19 have introduced a boundary-based method to compute
a minimum-cost path between user-specified boundary points. The
intelligent scissors method20 treats each pixel as a graph node and
uses shortest-path graph algorithms for boundary calculation and a
faster variant of region-based intelligent scissors uses tobogganing
for image over-segmentation and then treats homogenous regions as
graph nodes. GraphCut is a combinatorial optimization technique
applied to the task of image segmentation by Boykov and Jolly21. An
extension of the GraphCut named GrabCut developed by Rother
et al.22, is an iterative segmentation scheme that uses a graph-cut
for intermediate steps. A marker-based watershed transformation
algorithm for medical image segmentation, developed by Moga
and Gabbouj23, uses user-specified markers for segmenting gray level
images. The Random Walker algorithm of Grady and Funka-Lea24 is
a probabilistic approach using a small number of user-labeled pixels.

Heimann et al.25 have presented an interactive region growing
method that is a descendant of one of the classic image segmentation
techniques. A manual refinement system for graph-based
approaches has recently been presented by Egger et al.26,27. The
approach takes advantage of the basic design of graph-based image
segmentation algorithms and restricts a graph-cut by using addi-
tional user-defined seed points to set up fixed nodes in the graph.
Another resent publication by Zukić et al.28 presents semi-automatic
GBM segmentation with a balloon inflation approach29. The balloon
inflation method has been evaluated with twenty-seven magnetic
resonance imaging data sets with a reported average DSC of
80.46%. The GrowCut method, developed by Vezhnevets and
Konouchine17, is a cellular automaton-based algorithm for interact-
ive multilabel segmentation of N-dimensional images. The GrowCut
algorithm is freely available as a module30 for the medical image
computing platform 3D Slicer31 and has been used in a recent study
to segment Pituitary Adenomas32.

In this paper, we present a detailed study of the volumetric analysis
of glioblastoma multiforme using the GrowCut tool 3D Slicer. Our
objective is to evaluate the utility of 3D Slicer in simplifying the
time-consuming manual slice-by-slice segmentation while achieving
a comparable accuracy. Thus, 4 physicians segmented GBMs in 10
patients, once using the competitive region-growing based GrowCut

Table 1 | This table presents a comparison of a) the time it took for physicians to segment GBMs manually vs. using 3D Slicer, b) the
agreement between the two segmentations. The MT column shows the time (in minutes) it took a physician to segment each of ten GBMs
on slice-by-slice basis. The SlicerT column shows the time (in minutes) it took a physician to segment it using 3D Slicer. The Slices column
shows the number of slices that the tumor spans in each case, as a rough approximation of the complexity of the segmentation task. Note
that 9 out of 10 cases, Slicer , MT, and on an average, the time it took to segment with 3D Slicer was 61% of the time it took to segment
manually on a slice-by-slice basis. The columns DSC and HD show the agreement between the two segmentations using a Dice Similarity
Coefficient and Hausdorff Distance, respectively

Case No. MT (min) SlicerT (min) Slices SlicerT/MT DSC HD (mm) Manual Volume (mm3) Slicer Vol (mm3) Slicer/Manual Vol

1 9 4 36 0.44 0.85 2.80 33522 44694 1.33
2 19 7.5 51 0.39 0.91 3.68 28373 32383 1.14
3 6 4.5 42 0.75 0.92 1.71 42056 47752 1.14
4 16 6.5 60 0.41 0.91 3.00 69448 78776 1.13
5 3 2.5 10 0.83 0.81 2.00 1480 2016 1.36
6 14 6.25 43 0.45 0.94 2.00 39097 38905 1.00
7 13 8.5 36 0.65 0.87 2.23 22468 25331 1.13
8 7 9.25 42 1.32 0.92 2.12 27368 30648 1.12
9 5 3 11 0.60 0.79 2.39 2703 3908 1.45
10 11 2.5 16 0.23 0.92 0.31 10318 11720 1.14
Averages 10.30 5.45 34.70 0.61 0.88 2.32 27683 31613 1.19

Time Agreement

Table 2 | Manual intra- and inter-physician segmentation results
(min, max, mean m and standard deviation s) for three neurosur-
geons – X, Y and Z – for twelve glioblastoma multiforme (GBM)
data sets. The first column represents the intra-physician seg-
mentation result: within a time distance of two weeks Physician
X segmented the twelve GBMs slice-by-slice twice. The second
and third columns present the inter-physician segmentation
results, whereby the manual slice-by-slice segmentations form
Physician Y and Physician Z have been compared with the first
manual segmentation of Physician X

DSC for intra- and inter-physician segmentations

Physician X Physician Y Physician Z

Min 84.01% 78.68% 76.03%
Max 96.30% 94.86% 94.83%
m 6 s 90.29 6 4.48% 88 6 6.08% 86.63 6 6.87%
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segmentation module of 3D Slicer, and once by drawing boundaries
manually on a slice-by-slice basis. The time required for GrowCut vs.
manual segmentation were recorded. A comparison was performed
of 3D Slicer based segmentation with manual slice-by-slice seg-
mentation using the Dice Similarity Coefficient (DSC) and the
Hausdorff Distance (HD)33–35.

Methods that use all slices to calculate the tumor boundaries have
more information available to make accurate predictions of tumor
volume. Simpler methods such as geometric models provide only a
rough estimate of the tumor volume and may not be indicated for
accurate determination of tumor burden. Geometric approximations
use one or several user-defined diameters to estimate the tumor
volume36–38. The Macdonald criteria39 for measuring brain tumors

adopts uniform, rigorous response criteria similar to those in general
oncology where response is defined as a $50% reduction in tumor
size and the usual measure of "size" is the largest cross-sectional area
(the largest cross-sectional diameter multiplied by the largest dia-
meter perpendicular to it). Accurate and repeatable methods to cal-
culate tumor volume are therefore an important aspect of clinical
care.

The rest of this article is organized as follows: Section 2 presents the
results of our experiments. Section 3 discusses the performance of the
proposed approach, concludes the contribution and outlines areas
for future work. Finally, Section 4 presents the material and the
methods.

Results
The goal of this study was to evaluate the utility of 3D Slicer for
segmentation of GBMs compared to manual slice-by-slice segmenta-
tion. We used two metrics for this evaluation: a) the time it took for
physicians to segment GBMs manually vs. using 3D Slicer, b) the
agreement between the two segmentations. In using these metrics to
evaluate our results, our assumption is that if 3D Slicer can be used to
produce GBM segmentations that are statistically equivalent to what
the physicians achieve manually, and in substantially less time, then
the tool is useful for volumetric follow-ups of GBM patients. Overall,
four physicians participated in our study: three physicians provided
the manual slice-by-slice segmentations and one physician has been
trained in a Slicer-based segmentation as described in the methods
section. The results of our study are detailed in Table 1, the primary
conclusion of which is that 3D Slicer based GBM segmentation can be
performed in about 60% of the time, and with acceptable agreement
(DSC: 88.43 6 5.23%, HD: 2.32 6 5.23 mm) to manual segmenta-
tion by a qualified physician. In Table 1, The MT column shows the
time (in minutes) it took a physician to segment each of ten GBMs on
slice-by-slice basis. The SlicerT column shows the time (in minutes)
it took a physician to segment it using 3D Slicer. The Slices column
shows the number of slices that the tumor spans in each case, as a
rough approximation of the complexity of the segmentation task.
Note that 9 out of 10 cases, Slicer , MT, and on an average, the time
it took to segment with 3D Slicer was 61% of the time it took to
segment manually on a slice-by-slice basis. The columns DSC and
HD show the agreement between the two segmentations using a Dice
Similarity Coefficient and Hausdorff Distance, respectively.

Figure 1 | This image presents the segmentation results of GrowCut
(green) for the tumor and background initialization of Figure 3. After the

initialization of the GrowCut algorithm under Slicer it took about ten

seconds to get the segmentation result on an Intel Core i7-990 CPU,

12 3 3.47 GHz, 12 GB RAM, Windows 7 Home Premium x64 Version,

Service Pack 1.

Figure 2 | Comparison of glioblastoma multiforme (GBM) segmentation results on an axial slice: semi-automatic segmentation under Slicer
(green, left image) and pure manual segmentation (blue, middle image). Moreover, a fused visualization of the 3D masks of the manual and the Slicer

segmentation is presented (rightmost image).

www.nature.com/scientificreports
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To provide readers with a point of comparison on how DSC and
HD computations vary between expert raters, we include in Table 2
some statistics that we published in another article where we ana-
lyzed the results of 12 manual slice-by-slice GBM segmentations by 3
neurosurgeons40,41.

In addition to the quantitative results, we present sample GBM
segmentation results in Figures 1 and 2 for visual inspection. Figure 1
shows the results of the 3D Slicer GrowCut function (for the tumor
and background initialization shown in Figure 3). The rendered 3D
tumor segmentation is superimposed (green) on three orthogonal
cross-sections of the data. Figure 2 presents the direct comparison of
3D Slicer vs. manual segmentation on an axial slice: the semi-
automatic segmentation under 3D Slicer (green) is shown on the left
side of the figure and the pure manual segmentation (blue) is shown

in the middle of the figure. A fused visualization of the 3D masks of
the manual and the Slicer segmentations are displayed on the right
side of the figure.

Discussion
We observed that the automatic segmentation results produced by
3D Slicer (GrowCut) typically required some additional editing on
some slices to achieve the desired boundary and the time required for
this manual correction is included in our measurements. Manual
segmentation by neurosurgeons took three to nineteen minutes
(mean: ten minutes), in contrast to the semi-automatic segmentation
with the GrowCut implementation under 3D Slicer that took about
60% of that time (mean: five minutes) including the time needed for
editing the GrowCut results.

Figure 3 | These images present a typical user initialization for glioblastoma multiforme (GBM) segmentation under Slicer with GrowCut: axial
(left image) sagittal (second image from the left), and coronal (third image from the left). Besides, a 3D visualization of all three slices is presented

(rightmost image). Note: the tumor has been initialized in green and the background has been initialized in yellow.

Figure 4 | Detailed workflow of the segmentation process that is used in the training and the evaluation phase (left). The segmentation process starts

with the initialization of the GrowCut algorithm by the user on an axial, sagittal and coronal slice. Then, the automatic segmentation is started and

afterwards reviewed by the user. This results into the refinement phase where the Editor tools under Slicer are used to correct the automatic segmentation

result – mostly by navigating along the axial slices. During the evaluation phase the time for the initialization and the refinement has been measured. The

overall workflow of the proposed study is presented on the right side; it starts with the image data and ends with the training or the evaluation process.

Therefore, the data is divided into two pools of data sets: the training data set and the evaluation data set. The segmentation process is for both stages the

same. However, for the evaluation phase further image processing (voxelization and volume calculation) is required to calculate the Dice Similarity

Coefficient (DSC) and the Hausdorff Distance (HD) for a quantitative evaluation.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1364 | DOI: 10.1038/srep01364 4



To quantify the quality of the GrowCut algorithm, we per-
formed intra- and inter-physician segmentations40,41. The results
also provided an upper segmentation threshold and therefore a
quality measure for our algorithm. For the intra-physician seg-
mentation, a neurosurgeon segmented twelve glioblastoma multi-
forme. After two weeks, the same neurosurgeon segmented these
twelve cases again. The detailed results are presented in Table 2
and provide a mean value m and a standard deviation s of 90.29 6

4.48% with a minimal Dice Similarity Coefficient of 84.01% and
a maximal Dice Similarity Coefficient of 96.30% (see the first
column). Finally, Table 2 also shows inter-physician segmentation
results for the twelve glioblastoma multiforme (see the second and
third columns). Therefore, the segmentation of the neurosurgeons
Y and Z have been compared with the segmentations of neuro-
surgeon X. It is evident that there is an upper threshold with a
Dice Similarity Coefficient of around ninety percent for the man-
ual intra- and inter-physician segmentations (average DSC when
compared with an automatic segmentation: 79.96 6 8.06% (neu-
rosurgeon X), 77.79 6 8.49% (neurosurgeon Y) and 76.83 6

13.67% (neurosurgeon Z)). The DSC of 90% can be thought of
as a metric for estimating how well an automatic segmentation
result is performing relative to the range of performance of
experts, and perhaps also can serve as an indicator for how much

Figure 5 | Slicer interface with the Editor on the left side and a loaded glioblastoma multiforme (GBM) data set on the right side: axial slice (upper left
window), sagittal slice (lower left window), coronal slice (lower right window) and the three slices shown in a 3D visualization (upper right window).

Figure 6 | In these images the usage for the Dilate and Erode options
under Slicer are presented. The background shows an axial slice with a

glioblastoma multiforme (white rectangle). The left white rectangle

presents the zoomed segmentation result of GrowCut (green). As shown,

the segmentation result is not very smooth at the tumor border. To get a

smoother result the Dilate and Erode options under Slicer can be used. For

this example Dilate, Erode and an additional Erode have been performed.

The result of this operations is shown in the right white rectangle (green).

www.nature.com/scientificreports
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manual post-editing will be required after the automatic seg-
mentation is performed.

In this paper, the evaluation of glioblastoma multiforme seg-
mentation with the free and open source medical image analysis
software 3D Slicer has been presented. Slicer provides a semi-
automatic, 3D segmentation algorithm, GrowCut, that is a viable
alternative to the time-consuming process of volume determination
during monitoring of a patient, for which slice-by-slice contouring
has been the best demonstrated practice. Editing tools available in 3D
Slicer are used for manual editing of the results upon completion of
the automatic GrowCut segmentation. The volume of the 3D tumor
is then computed and stored as an aide for the surgeon in decision
making for comparison with follow-up scans. This segmentation has
been evaluated on 10 GBM data sets against manual expert segmen-
tations using the Dice Similarity Coefficient (DSC) and the Hausdorff
Distance (HD). Additionally, intra-physician segmentations have
been performed to provide a quality measure of the presented evalu-
ation. In summary, the achieved research highlights of the presented
work are:

. Manual slice-by-slice segmentations of glioblastoma multiforme
(GBM) have been performed by clinical experts to obtain ground
truth of tumor boundaries and estimates of rater variability.

. Physicians have been trained in segmenting glioblastoma multi-
forme with GrowCut and the Editor module of 3D Slicer.

. Trained physicians used Slicer to segment a glioblastoma multi-
forme evaluation set.

. Semi-automatic segmentation times have been measured for
GrowCut based segmentation in 3D Slicer.

. Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD)
have been calculated to evaluate the quality of the segmentations.

There are several areas for future work. In particular, some steps of
the segmentation workflow under Slicer can be automated. Instead of
initializing the foreground on three single 2D slices, a single 3D
initialization could be used by means of generating a sphere around
the position of the user-defined seed point. Additionally, the algo-
rithm can be enhanced with statistical information about the shape42

and the texture of the desired object43 to improve the automatic
segmentation. Furthermore, we plan to evaluate the method on
magnetic resonance imaging (MRI) data sets with World Health
Organization grade I, II and III gliomas. As compared to high-grade
gliomas, low-grade tumor MR images lack gadolinium enhance-
ment. Thus, for these tumors, outlines cannot be expressed by con-
trast-enhancing T1-weighted images, but by surrounding edema in
T2-weighted images. In addition, we want to study how Slicer can be
used to enhance the segmentation process of vertebral bodies.
Besides, we want to apply the scheme to segment other organs and
pathologies. Moreover, we are considering improving the algorithm
by performing the whole segmentation iteratively; that is, after the
segmentation has been performed, the result of the segmenta-
tion can be used as a new initialization for a new segmentation run
with the process repeated under user control. We anticipate that the
iterative approach will result in more robustness with respect to
initialization.

Methods
Data. Ten diagnostic T1-weighted MRI scans with gadolinium enhancement were
used for segmentation. These were acquired on a 1.5 Tesla MRI scanner (Siemens
MAGNETOM Sonata, Siemens Medical Solutions, Erlangen, Germany) using a
standard head coil. Scan parameters were: TR/TE 2020/4.38 msec, isotropic matrix,
1 mm; FOV, 250 3 250 mm; 160 sections.

Software. For the semi-automatic segmentation work in this study we used 3D Slicer
4.0, which is freely downloadable from the website http://www.slicer.org.

Manual segmentation of each data set was performed on a slice-by-slice basis by
neurosurgeons at the University Hospital of Marburg in Germany (Chairman: Prof.
Dr. Ch. Nimsky) with several years of experience in the resection of gliomas (note: if
the tumor border was very similar between consecutive slices, the software allowed
the user to skip manual segmentation in each slice, and instead interpolated the
boundaries in these areas). The software used for this manual contouring provided
simple contouring capabilities, and was created by us using the medical prototyping
platform MeVisLab (see http://www.mevislab.de/). The hardware platform used was
an Intel Core i5-750 CPU, 4 3 2.66 GHz, 8 GB RAM, Windows XP Professional 364
Version, Version 2003, Service Pack 2.

GrowCut segmentation in 3D Slicer. The GrowCut is an interactive segmentation
algorithm based on the idea of cellular automaton. The algorithm achieves reliable
and reasonably fast segmentation of moderately difficult objects in 2D and 3D using
an iterative labeling procedure resembling competitive region growing. A user’s
interactions results in a set of seed pixels which in turn try to assign their labels to their
pixel neighborhood. A pixel is assigned the label of its neighbor when the similarity
measure of the two pixels weighted by the neighboring pixel’s weight or ‘‘strength’’
exceeds its current weight. Label assignment also results in an update of the pixel’s
weight. The labeling procedure continues iteratively until a stable configuration is
reached when modification of the pixel labels is no longer possible. The algorithm is
simple to use requiring no additional inputs from the user besides the painted strokes
on the apparent foreground and background. Furthermore, the user can modify the
segmentation by adding additional labels in the image, thereby influencing the
segmentation result.

Our implementation of the algorithm in 3D Slicer consists of a GUI front-end to
enable interactions of the user with the image and an algorithm back-end where the
segmentation is computed. We employ a minimal interface, where the user interacts
by painting on the image. The algorithm requires labeling with at least two different
colors (for a foreground and a background label class). The naı̈ve implementation of
the algorithm would require every pixel to be visited in each iteration. Furthermore, a
pixel will need to visit every one of its neighbors to update the pixel strengths and
labels. Such an implementation would be computationally expensive especially for
large 3D images. We implemented the following techniques for speeding up the
segmentation. First, as the user may be interested only in segmenting out a small area
in the image, the algorithm computes the segmentation only within a small region of
interest (ROI). The ROI is computed as a convex hull of all user labeled pixels with an
additional margin of approximately 5% for our study. Second, the iterations involving
the image are executed in multiple threads, such that several small regions of the
image are updated simultaneously (note: the implementation is multithreaded and
automatically makes use of all the cores of the computer). Finally, the similarity
distance between the pixels are pre-computed once and reused. Also the algorithm
keeps track of saturated pixels (those whose weights and therefore labels can no
longer be updated) and avoids the expensive neighborhood computation on those
pixels. Keeping track of such pixels also helps to determine when to terminate the
algorithm.

GBM segmentation using 3D Slicer. After trials of the various segmentation facilities
available in Slicer, we determined that the use of GrowCut followed by morphological
operations such as erosion, dilation, and island removal provides the most efficient
segmentation method for GBMs from gadolinium enhanced T1 images. As shown in
Figure 4, we used the following workflow to perform GBM segmentation: 1) load the
data set into Slicer 2) initialization of an area inside the tumor, and a stroke drawn
outside the tumor with a brush size of about 1 cm 3) automatic competing region-
growing using GrowCut, and 4) usage of Editing tools like dilation, erosion, and island
removal or pure manual refinement after visual inspection of results (note: the users
are responsible for qualitatively deciding how much dilation, erosion and island
removal are required for the segmentation). Figure 5 shows the Slicer Editor module
user interface on the left side and a loaded GBM data set on the right side. Figure 3
presents a typical user initialization for GrowCut on the axial, sagittal and coronal
cross-sections. Figure 6 shows the results of subsequent erosion followed by a dilation,
and Figure 1 shows the results of the GrowCut method.

The hardware platform used was an Apple MacBook Pro (4 Intel Core i7, 2.3 GHz,
8 GB RAM, AMD Radeon HD 6750 M, Mac OS 3 10.6 Snow Leopard).

Measurement of segmentation time. We measured the time taken by the same
physician to segment manually vs. the 3D Slicer method. Within the 3D Slicer
segmentation, we separately measured the time taken by each of the three steps
(initialization, GrowCut, refinement using morphological operations) of the 3D Slicer
method (see left chart of Figure 4).

Metrics for comparison between 3D Slicer and manual segmentation. The
resulting segmentations from both methods were saved as binary volumes, and the
agreement between the two was compared using the Dice Similarity Coefficient and
the Hausdorff Distance.

The Dice Similarity Coefficient (DSC) of agreement between two binary volumes is
calculated as follows:

DSC ~
2:V(A\R)

V(A)zV(R)
ð1Þ

The DSC measures the relative volume overlap between A and R, where A and R are
the binary masks from the automatic (A) and the reference (R) segmentation. V(?) is
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the volume (in mm3) of voxels inside the binary mask, by means of counting the
number of voxels, then multiplying with the voxel size.

The Hausdorff Distance (HD) between two binary volumes is defined in terms of
the Euclidean distance between the boundary voxels of the masks. Given the sets A (of
the automatic segmentation) and R (of the reference segmentation) that consist of the
points that correspond to the centers of segmentation mask boundary voxels in the
two images, the directed HD h(A,R) is defined as the minimum Euclidean distance
from any of the points in the first set to the second set, and the HD between the two
sets H(A,R) is the maximum of these distances:

h(A,R) ~
max

a[A
d(a,R)ð Þ, where d(a,R) ~

min

r[R
a{rk k

H A,Rð Þ~ max h A,Rð Þ,h R,A,ð Þð Þ
ð2Þ
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