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Abstract

Research on genetic transformation in various crop plants using the DREB1A

transcription factor has shown better abiotic stress tolerance in transgenic crops.

The AtDREB1A transgenic peanut (Arachis hypogaea L. cv. GG 20), which was

previously developed, was characterized in terms of its physio-biochemical,

molecular and growth parameters. The tolerance of this transgenic peanut to

drought and salinity stresses was evaluated at the seedling (18 days old) and

maturity stages. Transgenic peanut lines showed improved tolerance to both

stresses over wild-type, as observed by delayed and less severe wilting of leaves

and by improved growth parameters that were correlated with physio-biochemical

parameters such as proline content, total chlorophyll content, osmotic potential,

electrolytic leakage and relative water content. The expression pattern of the

AtDREB1A gene evaluated using qPCR at different time points demonstrated that

transgene expression was induced within two hours of stress imposition. The better

performance of transgenic AtDREB1A peanut at the seedling stage and the

improved growth parameters were due to the expression of the transgene, which is

a transcription factor, and the possible up-regulation of various stress-inducible,

downstream genes in the signal transduction pathway under abiotic stress.

Introduction

Peanut, or groundnut (Arachis hypogaea L.), is an important oil-yielding,

leguminous cash crop, which is cultivated in the semi-arid tropical and sub-

tropical regions of the world between 40˚ N and 40˚ S [1]. The crop is generally

cultivated in low-input farming systems, primarily in the developing countries of
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Africa and Asia [2]. Across the world, it is cultivated over approximately 20–25

million ha in total, yielding 35–40 million tons of pods annually. India, the second

largest peanut producer in the world, cultivated approximately 5–6 million ha,

yielding 6–7 million tons of pods, during 2011–2012 [3, 4]. Water-deficit and soil-

salinity conditions are considered to be complex abiotic stresses that affect both

the growth and productivity of peanut crops [5] by disturbing the integrity of

plant membrane, pigment content, osmotic adjustments, water retention capacity

and photosynthetic activity [6–9].

Approximately 70% of the global peanut-growing areas are located in semi-arid

regions, where drought is a key environmental constraint limiting peanut

production. According to a recent estimate, global peanut productivity incurred

an annual loss of approximately 6 million tons due to drought alone [2].

Similarly, the global salinity-affected area is approximately 830 million ha [10]. In

India alone, salinity affects approximately 7.61 million ha [11], an issue that

deserves major attention. Ensuring food security for the burgeoning world

population is nearly impossible without considerably increasing the crop

production in such marginal areas of the world [12]. It is therefore necessary to

develop abiotic stress-tolerant peanut varieties that can be cultivated in the vast

drought-prone and salinity-affected areas of the world [13, 14].

Because abiotic stress tolerance is a polygenic trait, developing abiotic stress-

tolerant varieties through traditional breeding approaches is a difficult task. Not

only that, very limited success in the genetic improvement of cultivated peanuts

through conventional and marker-assisted breeding methods is also attributed

mainly to the genetic isolation of the tetraploid (or amphidiploid) peanut from its

wild diploid ancestors and highly conserved genome with very low polymorphism

[15, 16].

Moreover, molecular breeding approaches are not widely attempted due to the

difficulty in foreground and background selections. Linkage drag and only minor

quantitative trait loci (QTLs) are reported for improved water use efficiency and

its components [2, 17]. Ultimately, a transgenic approach could be a viable option

to address this problem [18]. Globally, transgenic work for abiotic stress tolerance

involves mostly the crops having cash market such as rice, maize, tomato or

tobacco. Although peanut is quite critical to the livelihoods of over 650 million

most food-insecure poor people living in the dryland areas of Africa and South

Asia but this grain legume is not very ‘‘attractive’’ to the private sector industries

[2].

The complex nature of drought and salinity responses likely involves different

gene expression which could be regulated using genes encoding transcription

factors (TFs) controlling gene expression under abiotic stress conditions [19, 20].

One interesting approach could be based on genetic modification of the crop of

interest by introducing stress tolerance genes such as TFs, as single-action genes

may not be sufficient to confer the desired abiotic stress tolerance [20].

Dehydration-responsive element-binding proteins (DREBs) are one of the most

important classes of TFs, which are transcriptionally up-regulated during abiotic

stress imposition [21]. TFs recognize a specific DNA sequence in the promoter
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region of targeted stress responsive genes and activate the expression of those

genes [22]. The DREBs, which belong to the group of ethylene responsive factors

(ERF), are involved in the regulation of signal transduction pathways under low

temperature, salinity and dehydration conditions [8, 23–25].

AtDREB1A, a class of DREB from Arabidopsis thaliana, recognizes dehydration

responsive elements/C-repeat elements (DRE/CRT) of the promoters of many

downstream stress-inducible genes under various abiotic stresses [19, 26–27].

Transgenics over-expressing the DREB group of TFs is an efficient tool for

regulating the expression of many abiotic stress-responsive genes [8, 18, 19] and it

have been reported to enhance the tolerance in various crops [2, 28–30]. Breeding

efforts to improve the drought tolerance in peanut have been undertaken by

mostly focusing on improving the water use efficiency, whereas for salinity

tolerance not much is reported [31–32].

Available reports on AtDREB1A transgenic peanuts have used a Spanish-type

cultivar named JL 24 [5, 33–34], which has been phased out of cultivation in

India. Here, we characterize a transgenic peanut with the AtDREB1A heterologous

transgene, under the control of the stress-inducible rd29A promoter, for its

tolerance to drought and salinity stresses. We utilized the Virginia Bunch variety

GG20, which is high yielding, bold-seeded, and one of the most widely grown

varieties in India.

Materials and Methods

Plant Materials

Homozygous lines of three single-copy transgenic events in the T2 generation (viz.

D1, D2 and D3) of the peanut cv. GG 20, developed using Agrobacterium

tumefaciens mediated genetic transformation [35], were used for the experiments.

Imposition of Drought and Salinity Stresses

To evaluate tolerance to polyethylene glycol (PEG)-induced drought stress and

NaCl-induced salinity stress, the physio-biochemical parameters under laboratory

conditions and growth-parameters under glasshouse conditions (containment

facility) were studied for both transgenic (T) and wild-type (WT) lines. The seeds

were sown in a soil-sand mix (1:1), and the 15-day-old plants were transferred to

Hoagland’s solution and kept in an incubation room for 3 d at 28 C̊ for

adaptation and further growth. The experiment was conducted in three replicates

and data was recorded for three plants per replication. Water deficit stress and

salinity stress were created by supplementing the Hoagland’s solution with 0, 10,

15, 20% PEG or 0, 100, 150 and 200 mM NaCl. The plants were grown for 7 d

under water deficit stress in PEG-supplemented medium and for 12 d under

salinity stress in NaCl-supplemented medium.

Following the application of stress, the roots were washed with distilled water,

and the plants were transferred to Hoagland’s solution (without PEG and NaCl)
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for recovery to normal physiological conditions. After recovery, the plants were

transferred to earthen pots containing soil-sand mix (1:1), kept in a glasshouse,

and grown to maturity. During the stress treatments and recovery period in

Hoagland’s solution, visual observations were made to compare the severity of the

wilting of leaves and the rate of recovery of the T and WT lines.

Analysis of Growth Parameters

The growth parameters including shoot length, root length and root volume were

recorded at maturity after harvesting (approximately 115–120 days after sowing).

When the plants were completely dried, traits including the dry weight of pods,

kernel weight, root weight, shoot weight, and total biomass were measured. The

harvest index (HI) and root-shoot ratio were calculated thereafter.

Physio-Biochemical Characterization

Physio-biochemical parameters viz. proline content, osmotic potential, relative

water content (RWC), electrolytic leakage (EL) and total chlorophyll content were

analyzed from the uppermost fully expanded leaves of seedlings that were

collected prior to, during and just before removal of the stress.

Electrolytic leakage (EL)

EL was analyzed according to Wang et al. [36] by which fresh leaf discs (1 cm

diameter) were washed with distilled water, blotted to dry and placed in 25 mL

distilled water under continuous shaking for 2 h. The initial electrical

conductivity (EC1) was measured using a pH/EC/TDS Meter (HI991301,

HANNA, USA). The leaf discs were then boiled for 30 min in a water bath and

cooled to 25 C̊, and the final electrical conductivity (EC2) was measured. The

percent leakage of electrolytes was calculated using the formula (EC1/EC2)

6100%.

Relative water content (RWC)

The RWC of fresh leaf discs (1 cm dia.) from the T and WT plants was measured.

First, the fresh weights (FW) of leaf disks were recorded. Next, the pre-weighed

discs were floated in water in petri-plates for 8 h, after which the turgid weight

(TW) of the hydrated leaf discs was recorded. The leaf discs were then dried in a

hot air oven at 80 C̊ for 72 h and weighed until a consistent dry weight (DW) was

obtained. RWC was calculated using the formula RWC 5 (TW–DW)/(FW–DW)

6100, as described by Barrs and Weatherey [37].

Total chlorophyll content

Total chlorophyll content in the leaf tissue was determined using the

dimethylsulfoxide (DMSO) method described by Hiscox and Israelstam [38]. Fifty

milligrams of leaf tissue were placed in a plastic vial containing 2 mL DMSO

(protected from light) and incubated in a water bath at 65 C̊ for 12 h. Absorbance

of the extract was read at 645 and 663 nm using a spectrophotometer, and the

total chlorophyll content was calculated as (mg/g FW) 57[(20.26OD645) +
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(8.026OD663)] 6V/(10006W), where ‘V’ is the volume of extract and ‘W’ is

the weight of tissue in grams.

Osmotic potential

Osmotic potential was analyzed according to Bhauso et al. [4], with minor

modifications. Leaf tissue samples (100 mg) of T and WT plants were first frozen

in liquid nitrogen, thawed in 1.5 mL microfuge tubes at room temperature (RT)

for 2 h, and then centrifuged at 12000 rpm for 10 min to collect the cell sap. The

osmotic potential was estimated using a direct reading Vapor Pressure

Osmometer (WESCOR, Model 5500, USA).

Proline content

The proline content of the leaves was estimated according to Bates et al. [39].

Leaves of WT and T seedlings (100 mg) were homogenized using a mortar and

pestle with 5 mL of 3% sulfosalicylic acid and centrifuged at 5000 g for 10–

15 min. The supernatant was collected and diluted to 5 mL with 3% sulfosalicylic

acid. Two milliliters of glacial acetic acid and 2 mL acid ninhydrin were added to

2 mL of the supernatant and mixed well. The mixture was boiled in a water bath

for 1 h and cooled. Then, 4 mL toluene was added and allowed to stand for 2–

3 min for color development. The absorbance of the solution was recorded

spectrophotometrically at 520 nm. A blank containing 2 mL of 3% sulfosalicylic

acid without sample was also run simultaneously. The proline content was

calculated according to the proline standard (100 mg/mL in 3% sulfosalicylic

acid).

Quantitative Expression of the Transgene in Transgenics Exposed

to Drought and Salinity Stresses by qPCR

AtDREB1A gene expressions were analyzed at the transcript level in the leaf

samples of all the T lines (D1, D2 and D3) exposed to a water deficit (20% PEG)

and salinity stress (200 mM NaCl) for 16 h. Leaf samples were collected at 2 h

intervals starting before the imposition of both salinity and drought stresses until

the 16th h of stress imposition. Total RNA was extracted using a Quiagen RNeasy

kit, and cDNAs were prepared using a first strand cDNA synthesis kit (Fermentas,

USA). Then, semi-quantitative RT-PCR was performed in triplicate with gene-

specific primers (F: 59-CCT CAG GCG GTG ATT ATA TTC C-39, R: 59-ACG

ACC CGC CGG TTT C-39) using a Quantifast SYBR Green PCR Kit (Qiagen,

GmbH) and a step one Real-Time PCR system (Applied Biosystems California,

USA). The relative quantification of AtDREB1A was normalized with respect to

the housekeeping gene 18S rRNA as an internal control using the primers (F: 59-

GGC TCA AGC CGA TGG AAG T-39, R: 59AGC ACG ACA GGG TTT AAC AAG

A-39) on the Real-Time PCR system.

Comparative fold expression of the transgene was measured according to the 2-

DDC
T method [8, 40], and DCT was calculated by subtracting 18S rRNA CT from

AtDREB1A CT in a given sample. The DCT value at t50 h, i.e., before stress

imposition, was used as a calibrator. The DDCT value was estimated by

Abiotic Stress Tolerance in AtDREB1A Transgenic Peanut

PLOS ONE | DOI:10.1371/journal.pone.0110507 December 29, 2014 5 / 25



subtracting the DCT of the calibrator from the DCT values at different time points.

Each reaction was performed in 20 mL (volume) and consisted of 1x SYBR Green

Master mix, 20 pmol of each primer and 100 ng of diluted cDNA template.

Statistical Analysis

Statistical analysis was performed using the mean value and standard error (SE) of

three replicates per analysis. Significance of a treatment effect was determined by

performing a one-way ANOVA using SPSS 11.0 (Statistical Package For Social

Sciences, SPSS Inc., Illinois) and a 5% probability level according to Tukey’s test.

The correlation coefficient was determined using PAST (PAlaeontological

STatistics, ver. 1.89).

Results and Discussion

Phenotypically, all three T lines (D1, D2 and D3) were found to be similar to WT

under controlled conditions, with no growth or developmental abnormality. This

indicated that the insertion of the transgene did not disrupt any major

endogenous functional gene(s).

Physio-Biochemical Characterization under Drought and Salinity

Stress

Changes in proline content

Proline is known to be accumulated under water deficit and salinity stresses

[5, 7, 18] and is thought to protect the plant from cellular dehydration. It is an

important component of cell wall proteins, which protect membrane integrity and

photosynthetic machinery [18, 41]. Under drought stress levels corresponding to

10% and 15% PEG, increases in proline accumulation were recorded on the 7th

and 3rd d, respectively. However, at 20% PEG, all three T lines exhibited 11–25%

more proline (4598–5463 mg/g FW) on the 3rd d compared to WT (4011 mg/g

FW) (Fig. 1A). Similar observations have been previously reported in peanut [34]

and tomato [41], expressing AtDREB1A and BcZAT12 genes, respectively. Similar

patterns of proline accumulation were also observed in maize and tall fescue,

expressing molybdenum cofactor sulfurase and DREB1A/CBF3 genes, respectively,

under drought stress [42, 43].

At various levels of NaCl-induced salinity stress (i.e., 100, 150 and 200 mM

NaCl), proline content was relatively low up to the 4th d, but drastic increases were

observed on the 7th d onwards. However, in T lines, at various salinity levels,

significantly higher levels of proline were recorded on the 7th and 12th d. At

200 mM NaCl, on the 7th d, all T lines exhibited 19–26% (5491 to 5997 mg/g FW)

more proline accumulation than WT (4394 mg/g FW) (Fig. 1B). Significantly

higher proline accumulation has also been observed under increasing salinity

stress in Populus tomentosa and tobacco, which express AhDREB1 and SbSOS1

transgenes, respectively [7, 44].
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Moreover, under both drought and salinity stresses, high levels of proline

accumulation were recorded in T compared to WT which may be a major factor

responsible for the tolerance of T peanut lines. This could be due to the up-

regulation of some endogenous gene(s) by expression of the AtDREB1A transgene

[45, 46], although further studies are required to confirm this possibility.

Changes in osmotic potential

In general, increased osmotic potential under abiotic stress conditions confers

plants with a higher water retention capacity, a lower rate of water loss, and higher

water use efficiency [47]. Under drought stress, a gradual increase in osmotic

potential was recorded, and T peanut lines showed better osmotic adjustment

than WT during the 3rd and 7th d of stress imposition. In the T line D3, better

osmotic adjustment was apparent, as revealed by the significantly higher osmotic

potential compared with the D1 and D2 lines and with WT at 20% PEG on the 3rd

Fig. 1. Proline Content of three transgenic lines and WT. Under various levels of PEG (A) and NaCl (B) with increasing days of stress exposure. Values
represent mean activities (n53) ¡ SE at P50.05. Means followed by the same lower case letters within a column are not significantly different.

doi:10.1371/journal.pone.0110507.g001
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d (Fig. 2A). Macková et al. [48] also observed better osmotic adjustment due to

the ectopic expression of the CKX1 gene in tobacco.

For NaCl-induced salinity stress (i.e., 100, 150, and 200 mM NaCl), two of the

T lines (D2 and D3) showed better osmotic adjustment than WT with increasing

NaCl concentration and durations of stress exposure. Overall, the T lines

exhibited 31.04 to 41.07% higher osmotic potential than WT on the 4th and 7th d

when exposed to 200 mM NaCl (Fig. 2B). This result was supported by the

observations made for OsNHX1 and TaSRHP transgene containing maize [49]

and Arabidopsis [9] respectively.

A gradual increase in osmotic potential was observed with increasing PEG and

NaCl concentrations for all durations of exposure across all T and WT peanut

lines. However, T lines showed better osmotic adjustment than WT under stress

conditions by more efficiently increasing their osmotic potential (Fig. 2). An

increase in osmotic potential is an effective mechanism adopted by plants that

allows them to adapt to environmental constraints by accumulating osmolytes,

such as amino acids, quaternary amines, sugar alcohols and various sugars [50].

In the present investigation, both osmotic potential and free proline content

were elevated with increasing levels of PEG and NaCl-induced stresses. This

supports the hypothesis that there was a positive correlation between osmotic

potential and proline content at 20% PEG after the 3rd d of treatment (r50.57,

Fig. 2. Osmotic potential of three transgenic lines and WT. Under various levels of PEG (A) and NaCl (B) with increasing days of stress exposure (refer
to Fig. 1).

doi:10.1371/journal.pone.0110507.g002
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Table 1) and at 150 and 200 mM NaCl after the 7th d of treatment (r.0.90,

Table 2). Similar relationships were observed in tomato under water deficit stress

[51]. Therefore, free proline accumulation could be one of the reasons for the

enhancement in the osmotic potential of both AtDREB1A transgenic and WT

peanut plants.

Changes in RWC

Relative water content is a physiological index that is used to evaluate the water

retention capacity because it acts as an appropriate parameter to measure water

status and osmotic adjustments of plants under abiotic stresses [18, 52, 53]. It was

observed that even under unstressed conditions, the T peanut lines exhibited

significantly more RWC than WT. Moreover, with increased durations of drought

stress (10, 15 and 20% PEG), a steady decline in RWC was recorded in WT

compared to T plants. The WT and the T lines (D1, D2 and D3) showed 20.84,

62.60, 62.09 and 38.09% RWC (at 20% PEG), respectively, on the 3rd d (S1A Fig.).

At 100 mM NaCl, with increased durations of stress, relatively smaller

reductions in RWC were observed (in both T and WT). However, a sharp

reduction was observed for WT compared with T at 150 mM NaCl on the 7th and

12th d. At higher NaCl (200 mM), on the 7th d, WT and T lines (D1, D2 and D3)

exhibited 38.01, 58.61, 48.28 and 61.11% RWC, respectively (S1B Fig.).

Significant positive correlations between osmotic potential and RWC under 10%

PEG (r50.83) and 150 mM NaCl (r50.97), were observed after the 3rd d

(Table 1) and 7th d of treatment (Table 2). Similarly, Calcagno et al. [54] reported

Table 1. Correlation coefficient (r) between the different physio-biochemical parameters under various concentration of PEG after 3 days of treatments.

PRO10 PRO15 PRO20 OP10 OP15 OP20 RWC10 RWC15 RWC20 EC10 EC15 EC20 CHL10 CHL15

PRO15 0.79** 1.00

PRO20 0.57* 0.54 1.00

OP10 0.23 0.54 0.19 1.00

OP15 0.28 0.54 0.07 0.83** 1.00

OP20 0.32 0.54 0.57* 0.26 20.17 1.00

RWC10 0.48 0.54 0.19 0.83** 0.91** 20.03 1.00

RWC15 0.67* 0.83** 0.39 0.33 0.17 0.27 0.54 1.00

RWC20 0.69** 0.75** 0.30 0.40 0.47 20.04 0.75** 0.89** 1.00

EC10 20.24 20.32 20.24 20.41 0.00 20.57* 20.15 20.35 20.05 1.00

EC15 20.32 20.61* 20.29 20.15 0.01 20.33 20.32 20.74** 20.61* 20.06 1.00

EC20 20.57* 20.53 20.48 20.86** 20.60* 20.53 20.77** 20.67* 20.59* 0.62* 0.41 1.00

CHL10 0.46 0.47 0.59* 0.52 0.09 0.75** 0.28 0.62* 0.35 20.58* 20.4-
7

20.7-
7

1.00

CHL15 0.28 0.39 0.36 0.80** 0.41 0.57 0.58* 0.56 0.38 20.80** 20.2-
7

20.9-
0

0.76** 1.00

CHL20 0.41 0.51 0.61* 0.45 0.13 0.91** 0.23 0.30 0.14 20.42 20.3-
1

20.6-
2

0.70** 0.59*

For each parameter, average values of three AtDREB1A transgenic peanut lines along with WT were used. Where: PRO-proline, OP-osmotic potential,
RWC-relative water content, EC-electrolytic leakage, CHL-chlorophyll content. The letters indicate the parameters followed by concentration of PEG
followed by days of exposure to PEG (e.g. PRO10, Proline content at 10% PEG).* indicates a significant correlation: *P #0.05, and **P#0.01.

doi:10.1371/journal.pone.0110507.t001

Abiotic Stress Tolerance in AtDREB1A Transgenic Peanut

PLOS ONE | DOI:10.1371/journal.pone.0110507 December 29, 2014 9 / 25



Ta
b
le

2
.
C
o
rr
e
la
tio

n
co

e
ffi
ci
e
n
t
(r
)
b
e
tw
e
e
n
th
e
d
iff
e
re
n
t
p
h
ys
io
-b
io
ch

e
m
ic
a
l
p
a
ra
m
e
te
rs

u
n
d
e
r
va

rio
u
s
co

n
ce

n
tr
a
tio

n
o
f
N
a
C
l
a
ft
e
r
7
d
a
ys

o
f
tr
e
a
tm

e
n
ts
.

P
R
O
1
0
0

P
R
O
1
5
0

P
R
O
2
0
0

O
P
1
0
0

O
P
1
5
0

O
P
2
0
0

R
W
C
1
0
0

R
W
C
1
5
0

R
W
C
2
0
0

E
C
1
0
0

E
C
1
5
0

E
C
2
0
0

C
H
L
1
0
0

C
H
L
1
5
0

P
R
O
1
5
0

0
.8
6
**

1
.0
0

P
R
O
2
0
0

0
.8
8
**

0
.9
5
**

1
.0
0

O
P
1
0
0

0
.8
6
**

0
.8
9
**

0
.8
9
**

1
.0
0

O
P
1
5
0

0
.8
2
**

0
.9
3
**

0
.9
6
**

0
.9
0
**

1
.0
0

O
P
2
0
0

0
.9
0
**

0
.8
1
**

0
.9
2
**

0
.8
1
**

0
.8
7
**

1
.0
0

R
W
C
1
0
0

0
.5
4

0
.8
2
**

0
.7
7
**

0
.8
4
**

0
.8
5
**

0
.5
9
*

1
.0
0

R
W
C
1
5
0

0
.8
7
**

0
.9
3
**

0
.9
3
**

0
.8
5
**

0
.9
7
**

0
.8
9
**

0
.7
3
**

1
.0
0

R
W
C
2
0
0

0
.6
4
*

0
.8
1
**

0
.7
8
**

0
.6
6
*

0
.8
9
**

0
.6
9
**

0
.6
7
*

0
.9
0
**

1
.0
0

E
C
1
0
0

2
0
.5
4

2
0
.8
1
*

2
0
.7
2
**

2
0
.6
2
*

2
0
.8
1
**

2
0
.5
9

2
0
.7
4
**

2
0
.8
2
**

2
0
.9
0
**

1
.0
0

E
C
1
5
0

2
0
.4
4

2
0
.7
5
*

2
0
.7
3
**

2
0
.5
1

2
0
.7
8
**

2
0
.6
2

2
0
.6
8
*

2
0
.7
9
**

2
0
.8
3
**

0
.8
9
**

1
.0
0

E
C
2
0
0

2
0
.5
7
*

2
0
.8
2
**

2
0
.8
3
**

2
0
.6
4
*

2
0
.8
9
*

2
0
.7
1
**

2
0
.7
7
**

2
0
.8
8
**

2
0
.8
9
**

0
.8
5
**

0
.9
3
**

1
.0
0

C
H
L
1
0
0

0
.6
9
**

0
.4
7

0
.5
3

0
.6
6
*

0
.4
2

0
.4
7

0
.2
9

0
.3
7

0
.1
5

0
.0
2

0
.1
2

2
0
.0
9

1
.0
0

C
H
L
1
5
0

0
.5
7

0
.8
2
**

0
.7
2

0
.7
4

0
.7
7
**

0
.5
6

0
.7
6
**

0
.7
8
**

0
.7
4
**

2
0
.8
2
**

2
0
.7
8

2
0
.7
2

0
.2
0

1
.0
0

C
H
L
2
0
0

0
.6
2
*

0
.7
1
**

0
.6
7
*

0
.4
4

0
.6
9
**

0
.6
2
*

0
.4
4

0
.7
5
**

0
.7
9
**

2
0
.7
3
**

2
0
.6
8

2
0
.7
9

0
.1
3

0
.4
1

F
o
r
e
a
ch

p
a
ra
m
e
te
r,
a
ve

ra
g
e
va

lu
e
s
o
f
th
re
e
A
tD
R
E
B
1
A
tr
a
n
sg

e
n
ic

p
e
a
n
u
t
lin
e
s
a
lo
n
g
w
ith

W
T
w
e
re

u
se

d
.
T
h
e
le
tt
e
rs

in
d
ic
a
te

th
e
p
a
ra
m
e
te
rs

fo
llo
w
e
d
b
y
co

n
ce

n
tr
a
tio

n
o
f
N
a
C
l

fo
llo
w
e
d
b
y
d
a
ys

o
f
e
xp

o
su

re
to

N
a
C
l
(e
.g
.
P
R
O

1
0
0
,
P
ro
lin
e
co

n
te
n
t
a
t
1
0
0
m
M

N
a
C
l)
(R

e
fe
r
to

Ta
b
le

1
).

do
i:1
0.
13
71
/jo
ur
na
l.p
on
e.
01
10
50
7.
t0
02

Abiotic Stress Tolerance in AtDREB1A Transgenic Peanut

PLOS ONE | DOI:10.1371/journal.pone.0110507 December 29, 2014 10 / 25



a close relationship between osmotic potential and RWC in Solanum lycopersicum

under water deficit stress.

Thus, a steady reduction in RWC was recorded with increasing PEG and NaCl

concentrations across T peanut lines, but the reduction was more prominent in

WT. This result implies that the T lines could effectively retain more water

content in their tissues than WT under increasing durations of both drought and

salinity. Similar results have been reported in other transgenic crops, including

maize [42], tomato [55] and tobacco [56] for drought stress and tobacco [7] and

pigeonpea [57] for salinity stress.

Transgenic rice expressing the AtDREB1A, exhibited closure of its stomata that

was correlated with its reduced water loss during transpiration under drought

stress compared to WT [8]. Likewise, in our study, T lines retained more RWC,

which may be due to AtDREB1A gene expression and its subsequent regulation of

stomatal behavior during stress conditions, [8, 34] which requires further

investigation.

Changes in electrolytic leakage

In a plant system, the cell membrane is one of the first targets of any abiotic stress,

and electrolyte leakage generally reflects the membrane’s stability and integrity

[52]. A significant increase in electrical conductivity (EC) was recorded in WT on

the 7th d (at 10% and 15% PEG) compared to T lines. However, at 20% PEG, on

the 3rd d itself, the T lines (D1, D2, and D3) exhibited 14.37 to 32.06% less EC

than WT (S2A Fig.). On a similar note, reduced EC in various T plants was

observed, indicating the re-establishment of membrane integrity [54, 57].

Progressive increases in EC were noted with increased concentrations and

durations of salinity exposure across all T and WT lines. On the 7th d at 200 mM

NaCl, WT demonstrated 61.89% EC which represents 11.23 to 38.64% higher EC

than the T lines (S2B Fig.). Large negative correlations under 15% PEG (r520.95,

Table 3) and under 200 mM NaCl (r520.83, Table 2) after the 7th d were

observed between electrolyte leakage and proline content, suggesting that proline

acts as an antioxidant and helps retain membrane stability. Similarly, a significant

Table 3. Correlation coefficient (r) between the different physio-biochemical parameters under various concentration of PEG after 7 days of treatments.

PRO10 PRO15 OP10 OP15 RWC10 RWC15 EC10 EC15 CHL10

PRO15 0.71** 1.00

OP10 0.44 0.30 1.00

OP15 0.44 0.28 0.99** 1.00

RWC10 0.44 0.68* 0.59* 0.62** 1.00

RWC15 0.44 0.44 0.27 0.28 0.69* 1.00

EC10 20.59* 20.80** 20.63** 20.58* 20.67* 20.67* 1.00

EC15 20.67* 20.95** 20.31 20.26 20.54 20.37 0.84** 1.00

CHL10 0.57* 0.71** 0.68* 0.63* 0.45 0.35 20.90** 20.79 1.00

CHL15 0.42 0.62* 0.80** 0.75** 0.44 0.19 20.80** 20.69 0.93**

For each parameter, average values of three AtDREB1A transgenic peanut lines along with WT were used (Refer to Table 1).

doi:10.1371/journal.pone.0110507.t003
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negative correlation has been observed between proline content and electrolytic

leakage in Brassica juncea under heat stress [58].

AtDREB1A transgenic peanut lines showed significantly less EC compared to

WT. The difference in EC between WT and T lines increased with the progression

of drought and salinity stresses. Similar results were also observed in other T

plants, including BcZAT12 tomato [55], mtlD eggplant [52] and VTE1 tobacco

[56] under dehydration stress and SbSOS1 tobacco [7], MdNHX1apple [59] and

AhCMO cotton [60] under salinity stress.

Changes in total chlorophyll content

Leaf chlorophyll content directly impacts the photosynthetic rate of plants [18].

Osmotic and oxidative stresses generate extensive reactive oxygen species (ROS),

which have detrimental effects on both the photosynthetic machinery and the

total chlorophyll content of leaves. In addition, under drought stress (at 20%

PEG), a significant decrease in chlorophyll was recorded in WT on the 3rd d (S3A

Fig.). Chlorophyll reduction under abiotic stress symbolizes osmotic/oxidative

stress, which may have resulted from pigment photo-oxidation and chlorophyll

degradation [55, 61]. Moreover it is also reported that the ectopic expression of

various genes (viz. Annexin, VTE1 and mtlD) helps in the retention of a greater

chlorophyll content in T under dehydration stress [56, 62].

At the various salinity levels, a significant reduction in total chlorophyll in WT

compared to T was observed. At 200 mM NaCl, the T line revealed 3.1–8.0% less

of a reduction in total chlorophyll than WT on the 7th d (S3B Fig.). It means T

lines were able to retain more chlorophyll across various drought and salinity

levels, which also implies its better photosynthetic capacities, resulting in

improved HI. Likewise, transgenic PeDREB2 tobacco, mtlD eggplant and mtlD

peanut also showed less chlorophyll reduction under salinity stress [4, 63, 64].

Proline, which acts as a powerful scavenger of free radicals in plant metabolism,

has a buffering capacity with redox potential, in addition to protecting the

photosynthetic pigments [18, 41]. Thus, a significant increase in proline content

in the AtDREB1A lines compared with WT may also be one reason for higher

chlorophyll retention in T under both salinity and drought stresses (Table 3, 4),

although this idea requires further confirmation.

Physio-biochemical parameters, such as proline content, osmotic potential,

RWC and chlorophyll content, were positively correlated, whereas electrolytic

leakage was negatively correlated in T and WT peanuts under both drought and

salinity stresses (Tables 1, 2).

Variation in the Levels of the Physio-Biochemical Response

Among T- lines, significantly different levels of physio-biochemical responses were

observed under both salinity and water deficit stresses, which may be due to a

positional difference of the transgene integration into the T-line genome [65–67].

Similar types of variations have also been observed in the level of tolerance to

abiotic stress, transgene expression, agronomic traits, dry-matter weight and

mannitol accumulation in various T plants [4, 8, 68]. Moreover, factors such as

Abiotic Stress Tolerance in AtDREB1A Transgenic Peanut
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the tissue culture regime may have conferred a positive pleiotropic effect in T

peanut, and/or differential regulation of stress responsive genes under the

influence of the AtDREB1A transcription factor may have caused the improved

Table 4. Correlation coefficient (r) between the different physio-biochemical parameters under various concentration of NaCl after 12 days of treatments.

PRO100 PRO150 OP100 OP150 RWC100 RWC150 EC100 EC150 CHL100

PRO150 0.85** 1.00

OP100 0.89** 0.77** 1.00

OP150 0.85** 0.72** 0.93** 1.00

RWC100 0.88** 0.89** 0.75** 0.65* 1.00

RWC150 0.84** 0.90** 0.72** 0.57* 0.86** 1.00

EC100 20.60* 20.60* 20.64* 20.36 20.64* 20.74** 1.00

EC150 20.56 20.57 20.42 20.15 20.73 20.77** 0.81** 1.00

CHL100 0.63* 0.50 0.66* 0.65* 0.44 0.60* 20.37 20.36 1.00

CHL150 0.89** 0.86** 0.77** 0.65* 0.88** 0.90** 20.80 20.73 0.50

For each parameter, average values of three AtDREB1A transgenic peanut lines along with WT were used (Refer to Table 1).

doi:10.1371/journal.pone.0110507.t004

Fig. 3. Quantitative real-time PCR analysis of expression patterns of AtDREB1A transgene in the
leaves of transgenic lines at different time points and in response to various stresses. Values represent
mean activities (n53) ¡ SD. Bars denote fold expression as compared to the expression level at 0th h. Means
followed by the same lower case letters within a column are not significantly different (P#0.05).

doi:10.1371/journal.pone.0110507.g003
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physio-biochemical and growth parameters, even under unstressed condition, as

was observed in AtDREB1A transgenic rice [18].

Quantitative Expression of the AtDREB1A Gene under Drought

and Salinity Stress

Quantitative real-time PCR was carried out to confirm expression of the

heterologous AtDREB1A gene in T lines (D1, D2 and D3), and differential

expression of the transgene was observed at various time points during both

drought and salinity stresses. Within two h of drought (20% PEG) and salinity

(200 mM NaCl) stress imposition, AtDREB1A gene expression increased more

than 2-fold (Fig. 3). However, under drought stress, consistent increases in

transgene expression were recorded from the 10th h, and the maximum was

recorded at the 16th h (.10-fold). Under salinity stress, transgene expression

reached a maximum at the 6th h (.5.52-fold), and a gradual declining trend was

recorded subsequently until the 16th h.

All the three T lines showed similar pattern of transgene expression with minute

variations in 16 h treatment regime. However T line D3 showed the highest level

of AtDREB1A transcript under both the stresses. The strong response of

AtDREB1A gene under both the stimuli indicated that it possibly plays a role of

central regulator in the signal transduction pathway that is triggered by drought

and salinity stresses [9].

However, heterologous expression of the DgWRKY3 and ThbZIP1 genes in

tobacco, under drought and salinity stresses revealed that transgene expression

was more profound under drought compared to salinity stress [46, 69], whereas

the reverse phenomenon was reported in TaSRHP A. thaliana [9]. The differential

pattern of AtDREB1A expression in peanut, under both stresses, may be

responsible for the tolerance of the T plants, characterized by less wilting and a

subsequent speedy recovery, after the withdrawal of stress. Even for other crop

plants, different levels of abiotic stress tolerance in T expressing various

heterologous genes (AtDREB1A, LbDREB, DgWRKY3, PgDREB2A and ThbZIP1)

were reported [24, 43, 46, 69, 70].

Visual Observations during Drought and Salinity Stresses

During stress imposition, visual observations on wilting and its recovery rate after

the withdrawal of stress were recorded for both T and WT. At 15% PEG, WT

exhibited wilting on the 3rd d, whereas T did not show wilting symptoms until the

5th d (Fig. 4). Similarly, at 150 mM NaCl, WT and T showed wilting on the 6th

and 10th d, respectively (S4 Fig.). Moreover, at 20% PEG and 200 mM NaCl, in

WT, wilting was recorded after the 1st and 3rd d respectively; whereas for T wilting

was observed after the 2nd and 6th d, respectively (Fig. 4 and S4 Fig.). The severity

of wilting was more pronounced in WT, and during recovery, T recovered at a

faster rate than WT (S5 Fig.).

Abiotic Stress Tolerance in AtDREB1A Transgenic Peanut
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To save the plants form further wilting and subsequent death, both stresses

were withdrawn, and seedlings were recovered by transferring them to Hoagland’s

solution. The upper 3–4 leaves of the T plants remained either un-wilted or

partially wilted. However, all leaves of the WT remained wilted, even after the 6th

d of stress withdrawal (20% PEG and 200 mM NaCl) (S5 Fig.). Similarly, the

expression of the heterologous transgenes in tall fescue (DREB1A/CBF3), rice

(AtDREB1A), and soybean (AtDREB1A) also displayed a delay in the curling of

leaves under stress and a rapid recovery in T plants upon withdrawal of stress

[18, 22, 43].

In our studies, even under unstressed conditions, significantly improved

physio-biochemical traits were observed in the various T lines over WT (Figs. 1

and 2, S1 and S3 Figs.). Similar results have been reported for the AtDREB1A

soybean [22] and other plant species [19, 71]. This could be due to the basal level

of AtDREB1A expression during unstressed conditions, which is under the

regulatory control of the stress-inducible rd29A promoter. However, upon stress

imposition, there was a rapid induction and a higher level of transgene expression

[22].

Furthermore, results of the RT-PCR analysis also showed a basal level of

transgene expression at the transcript level under unstressed conditions (data not

shown). Despite the low level of activity under unstressed conditions, the rd29A

Fig. 4. Seedlings of wild type (A) and transgenic line (B) exposed to 0, 10, 15, 20% PEG for 3 days.

doi:10.1371/journal.pone.0110507.g004

Abiotic Stress Tolerance in AtDREB1A Transgenic Peanut

PLOS ONE | DOI:10.1371/journal.pone.0110507 December 29, 2014 15 / 25



Ta
b
le

5
.
G
ro
w
th
-p
a
ra
m
e
te
rs

o
f
tr
a
n
sg

e
n
ic

a
n
d
W
T
p
la
n
ts

u
n
d
e
r
d
ro
u
g
h
t-
st
re
ss
.

L
in
e
s

P
E
G

(%
)

G
ro
w
th
-p
a
ra
m
e
te
rs

R
o
o
t
w
e
ig
h
t

(g
)

S
h
o
o
t
W
e
ig
h
t

(g
)

To
ta
l

b
io
m
a
s
s
(g
)

R
o
o
t:
s
h
o
o
t

ra
ti
o

R
o
o
t
v
o
lu
m
e

(m
L
)

P
o
d
w
e
ig
h
t

(g
)

H
a
rv
e
s
t

in
d
e
x

K
e
rn
e
l

w
e
ig
h
t
(g
)

S
h
o
o
t
le
n
g
th

(c
m
)

R
o
o
t
le
n
g
th

(c
m
)

D
1

N
o
P
E
G

4
.1
4
¡
0
.1
6
a

11
.0
6
¡
0
.7
0
a
b

2
6
.6
8
¡
1
.2
1
a

0
.3
7
¡
0
.0
1
a

8
.1
5
¡

0
.3
6
a

11
.4
7
¡

0
.6
2
a

0
.4
3
¡
0
.0
2
a

9
.7
5
¡

0
.3
6
b

2
0
.9
4
¡
0
.8
8
b

2
7
.3
5
¡
0
.6
3
-

c

D
2

4
.2
5
¡
0
.6
3
a

9
.6
6
¡
0
.2
7
b

2
5
.8
5
¡
0
.5
1
a

0
.4
4
¡
0
.0
6
a

6
.3
2
¡

0
.4
9
b

11
.9
6
¡

0
.3
9
a

0
.4
6
¡
0
.0
2
a

1
0
.4
4
¡
0
.6
1
a

2
1
.0
4
¡
0
.8
9
b

4
8
.7
0
¡
5
.9
2
-

a

D
3

3
.8
6
¡
0
.4
6
a

1
2
.3
1
¡
0
.5
8
a

2
8
.5
3
¡
0
.6
4
a

0
.3
2
¡
0
.0
4
a

7
.7
7
¡

0
.2
0
a

1
2
.3
4
¡
0
.5
0
a

0
.4
3
¡
0
.0
2
a

11
.1
8
¡
0
.5
1
a

2
4
.8
7
¡
0
.4
0
a

3
3
.6
5
¡
1
.7
8
b
-

c

W
T

3
.8
2
¡
0
.2
3
a

11
.8
9
¡
0
.6
1
a

2
6
.7
5
¡
0
.9
1
a

0
.3
2
¡
0
.0
2
a

7
.4

¡
0
.5
5
a
b

11
.0
3
¡

0
.2
8
a

0
.4
1
¡
0
.0
1
a

1
0
.3
0
¡

0
.3
9
a

2
1
.9
9
¡
1
.5
3
a
b

3
7
.9
0
¡
2
.7
5
-

b

D
1

1
0
%

3
.4
4
¡
0
.5
4
a

1
0
.9
2
¡
0
.2
2
a

2
5
.4

¡
1
.5
0
a

0
.3
1
¡
0
.0
5
a

6
.0
0
¡

1
.0
1
a

11
.0
3
¡

0
.8
1
a

0
.4
3
¡
0
.0
1
a

9
.7
1
¡

0
.5
8
a

2
0
.3
7
¡
0
.7
0
a

2
6
.4
4
¡
0
.8
3
-

c

D
2

3
.1
7
¡
0
.4
6
a

1
0
.6
6
¡
0
.3
7
a

2
5
.3
2
¡
0
.8
4
a

0
.3
0
¡
0
.0
4
a

5
.6
3
¡

0
.7
1
a

11
.4
8
¡

0
.4
1
a

0
.4
5
¡
0
.0
2
a

1
0
.4
4
¡
0
.5
3
a

2
0
.5
2
¡
0
.2
5
a

4
5
.7
0
¡
2
.0
7
-

a

D
3

2
.6
7
¡
0
.1
7
a

11
.6
6
¡
0
.5
6
a

2
5
.0
9
¡
0
.7
1
a

0
.2
3
¡
0
.0
2
a

6
.1
0
¡

0
.3
2
a

1
0
.7
5
¡
0
.1
3
a

0
.4
3
¡
0
.0
1
a

9
.9
1
¡

0
.2
3
a

2
2
.7
9
¡
1
.7
4
a

3
3
.0
7
¡
3
.4
5
-

b

W
T

2
.5
7
¡
0
.1
7
a

1
2
.2
6
¡
1
.1
3
a

2
4
.8

¡
0
.8
4
a

0
.2
2
¡
0
.0
4
a

5
.3
0
¡

0
.4
4
a

9
.9
6
¡
0
.2
6
a

0
.4
0
¡
0
.0
2
a

9
.2
4
¡

0
.2
4
a

2
1
.7
6
¡
1
.1
9
a

3
5
.0
6
¡
0
.8
5
-

b

1
1
5
%

2
.6
4
¡
0
.4
1
a

1
0
.6
4
¡
0
.3
5
a
b

2
3
.0
6
¡
0
.4
2
a
b

0
.2
5
¡
0
.0
4
a

4
.7
2
¡

0
.8
1
a

9
.7
7
¡
0
.3
4
a

0
.4
2
¡
0
.0
1
a

9
.1
2
¡

0
.2
0
a

2
0
.1
2
¡
1
.8
6
a

2
6
.0
6
¡
1
.9
4
-

a

D
2

2
.7
7
¡
0
.2
7
a

9
.8
2
¡
0
.6
0
b

2
2
.8
5
¡
0
.3
8
b

0
.2
9
¡
0
.0
4
a

5
.6
3
¡

0
.4
4
a

1
0
.2
6
¡
0
.7
0
a

0
.4
5
¡
0
.0
2
a

8
.9
5
¡

0
.8
3
a

1
9
.5
2
¡
0
.4
9
a

2
6
.4
1
¡
1
.5
5
-

a

D
3

2
.4
8
¡
0
.2
2
a

11
.4
9
¡
0
.7
1
a
b

2
4
.3
8
¡
0
.6
8
a

0
.2
2
¡
0
.0
1
a

5
.6
1
¡

0
.3
2
a

1
0
.4
0
¡
0
.4
7
a

0
.4
3
¡
0
.0
2
a

9
.7
1
¡

0
.6
8
a

2
0
.3
1
¡
0
.6
5
a

3
2
.3
4
¡
4
.1
1
-

a

W
T

2
.1
6
¡
0
.1
5
a

11
.8
2
¡
0
.4
8
a

2
2
.9
9
¡
0
.1
4
a
b

0
.1
8
¡
0
.0
2
a

4
.0
7
¡

0
.2
6
a

9
.0
1
¡
0
.4
0
a

0
.3
9
¡
0
.0
2
a

8
.6
1
¡

0
.3
7
a

1
8
.7
4
¡
0
.4
2
a

2
4
.6
8
¡
0
.7
9
-

a

D
1

2
0
%

2
.5
1
¡
0
.3
9
a

1
0
.7
6
¡
0
.7
5
a
b

2
2
.6
4
¡
0
.1
7
b

0
.2
4
¡
0
.0
5
a
b

4
.1
3
¡

0
.5
5
a

9
.3
6
¡
0
.6
3
a

0
.4
1
¡
0
.0
3
a

8
.4
3
¡

0
.4
8
a

2
0
.0
4
¡
0
.5
4
a

2
5
.7
6
¡
3
.3
1
-

b

D
2

2
.8
8
¡
0
.3
4
a

1
0
.4
6
¡
0
.7
6
a
b

2
2
.8

¡
0
.4
1
b

0
.2
8
¡
0
.0
4
a

6
.3
9
¡

0
.7
5
a

9
.4
5
¡
0
.6
6
a

0
.4
1
¡
0
.0
3
a

8
.5
8
¡

0
.5
2
a

1
9
.5
3
¡
0
.8
2
a

2
6
.0
1
¡
4
.1
2
-

b

D
3

2
.7
4
¡
0
.4
1
a

1
2
.3
9
¡
0
.7
7
a

2
4
.5

¡
0
.4
3
a

0
.2
2
¡
0
.0
4
a
b

5
.5
7
¡

0
.7
4
a
b

9
.3
6
¡
0
.5
6
a

0
.3
8
¡
0
.0
3
a

8
.5
0
¡

0
.5
8
a

2
0
.1
6
¡
0
.7
9
a

3
1
.4
9
¡
1
.4
4
-

a

W
T

1
.1
5
¡
0
.0
3
a

8
.5
3
¡
0
.5
5
b

1
5
.2

¡
0
.7
8
c

0
.1
3
¡
0
.0
1
b

4
.0
7
¡

0
.3
8
b

5
.5
1
¡
0
.3
0
b

0
.3
6
¡
0
.0
1
a

4
.5
6
¡

0
.3
5
b

1
7
.3
9
¡
0
.7
4
b

2
1
.7
1
¡
0
.6
8
-

c

T
h
e
d
a
ta

a
re

m
e
a
n
o
f
th
re
e
re
p
lic
a
te
s

¡
S
E
;
M
e
a
n
s
fo
llo
w
e
d
b
y
th
e
sa

m
e
lo
w
e
r
ca

se
le
tt
e
rs

w
ith

in
a
co

lu
m
n
a
re

n
o
t
si
g
n
ifi
ca

n
tly

d
iff
e
re
n
t
(P

#
0
.0
5
).

do
i:1
0.
13
71
/jo
ur
na
l.p
on
e.
01
10
50
7.
t0
05

Abiotic Stress Tolerance in AtDREB1A Transgenic Peanut

PLOS ONE | DOI:10.1371/journal.pone.0110507 December 29, 2014 16 / 25



T
a
b
le

6
.
G
ro
w
th
-p
a
ra
m
e
te
rs

o
f
tr
a
n
sg

e
n
ic

a
n
d
W
T
p
la
n
ts

u
n
d
e
r
sa

lin
ity
-s
tr
e
ss
.

L
in
e
s

N
a
C
l

G
ro
w
th
-p
a
ra
m
e
te
rs

R
o
o
t
w
e
ig
h
t

(g
)

S
h
o
o
t
w
e
ig
h
t

(g
)

To
ta
l

b
io
m
a
s
s
(g
)

R
o
o
t:
S
h
o
o
t

ra
ti
o

R
o
o
t

v
o
lu
m
e

(m
L
)

R
o
o
t
le
n
g
th

(c
m
)

P
o
d
w
e
ig
h
t

(g
)

H
a
rv
e
s
t

in
d
e
x

S
h
o
o
t
le
n
g
th

(c
m
)

K
e
rn
e
l
w
e
ig
h
t

(g
)

D
1

N
o
N
a
C
l

4
.7
6
¡
0
.3
1
a

11
.6
8
¡
0
.4
0
a

2
9
.5
2
¡

0
.4
0
a

0
.4
1
¡

0
.0
2
a

6
.6
7
¡
0
.4
3
b

2
9
.9
2
¡
0
.4
9
a

1
3
.0
8
¡
0
.2
7
a

0
.4
4
¡
0
.0
2
a

2
0
.3
9
¡
0
.5
6
a

1
0
.0
6
¡
0
.4
9
a
-

b

D
2

3
.8
7
¡
0
.3
1
a
b

1
0
.6
8
¡
1
.1
8
a

2
7
.2
7
¡

1
.2
3
a
b

0
.3
6
¡

0
.0
7
a

7
.8
3
¡
0
.5
5
a

3
0
.2
6
¡
0
.8
7
a

1
2
.7
2
¡
0
.4
9
a

0
.4
7
¡
0
.0
3
a

2
0
.9
7
¡
0
.8
7
a

1
0
.5
5
¡
0
.5
8
a
-

b

D
3

4
.5
9
¡
0
.2
5
a

1
0
.9
5
¡
0
.1
4
a

2
8
.8
7
¡

0
.3
4
a

0
.4
2
¡

0
.0
3
a

6
.6
3
¡
0
.3
8
b

3
1
.8
3
¡
0
.0
8
a

1
3
.3
3
¡
0
.3
0
a

0
.4
6
¡
0
.0
2
a

2
1
.5
0
¡
0
.6
8
a

11
.2
9
¡
0
.6
7
-

a

W
T

3
.2
9
¡
0
.4
2
b

1
0
.8
9
¡
0
.5
9
a

2
4
.6
8
¡

1
.1
3
b

0
.3
0
¡

0
.0
3
a

6
.1
7
¡
0
.1
8
b

3
0
.8
9
¡
0
.2
0
a

1
0
.5
0
¡
0
.4
2
b

0
.4
2
¡
0
.0
1
a

1
9
.6
5
¡
0
.9
8
a

9
.4
8
¡
0
.4
0
b

D
1

1
0
0
m
M

3
.9
2
¡
0
.1
1
a

1
0
.5
7
¡
0
.3
7
a

2
6
.1
8
¡

0
.8
7
a

0
.3
7
¡

0
.0
1
a

6
.4
7
¡
0
.4
8
b

2
9
.4
3
¡
0
.7
8
a

11
.6
9
¡

0
.5
7
a

0
.4
4
¡
0
.0
1
a
b

2
0
.0
0
¡
1
.0
4
a

9
.9
2
¡
0
.6
0
a

D
2

3
.7
5
¡
0
.2
4
a

1
0
.8
0
¡
0
.5
0
a

2
5
.6
2
¡

0
.3
6
a

0
.3
5
¡

0
.0
2
a

7
.7
0
¡
0
.3
8
a

3
0
.0
5
¡
0
.4
6
a

11
.0
7
¡

0
.4
4
a

0
.4
3
¡
0
.0
2
b

1
9
.9
8
¡
0
.1
4
a

1
0
.0
7
¡
0
.7
3
-

a

D
3

2
.8
1
¡
0
.1
9
b

7
.8
0
¡
0
.8
1
b

2
0
.1
6
¡

1
.4
8
b

0
.3
6
¡

0
.0
1
a

5
.5
3
¡
0
.4
3
c

3
0
.6
0
¡
0
.6
1
a

9
.5
5
¡
0
.6
1
b

0
.4
7
¡
0
.0
1
a

1
9
.8
7
¡
0
.9
9
a

8
.5
1
¡
0
.5
2
b

W
T

2
.0
5
¡
0
.1
5
c

1
0
.9
5
¡
0
.4
4
a

2
1
.5
5
¡

0
.6
0
b

0
.1
8
¡

0
.0
2
b

5
.9
0
¡
0
.4
2
b
c

2
8
.5
9
¡
0
.7
7
a

8
.5
5
¡
0
.5
1
b

0
.4
0
¡
0
.0
1
b

1
9
.0
5
¡
0
.8
9
a

7
.7
2
¡
0
.7
5
b

D
1

1
5
0
m
M

2
.8
6
¡
0
.2
3
a

1
0
.4
1
¡
0
.3
2
a

2
3
.5
2
¡

0
.6
8
a

0
.2
7
¡

0
.0
3
a
b

6
.2
7
¡
0
.4
5
a

2
8
.1
4
¡
1
.0
7
a

1
0
.2
5
¡
0
.2
7
a

0
.4
4
¡
0
.0
1
a

1
9
.3
5
¡
1
.2
2
a

9
.3
1
¡
0
.7
2
a

D
2

2
.6
4
¡
0
.3
1
a

8
.6
6
¡
0
.0
9
a
b

1
9
.7
3
¡

0
.9
1
b

0
.3
0
¡

0
.0
5
a

5
.9
0
¡
0
.4
5
b

2
9
.7
7
¡
1
.1
3
a
b

8
.4
3
¡
0
.5
6
b

0
.4
2
¡
0
.0
1
a

1
9
.7
0
¡
0
.7
4
a

7
.2
7
¡
0
.7
7
a
b

D
3

2
.6
8
¡
0
.1
2
a

7
.8
3
¡
0
.2
6
b

1
9
.2
4
¡

1
.3
7
b

0
.3
4
¡

0
.0
3
a

4
.5
7
¡
0
.1
5
c

3
0
.3
6
¡
0
.2
7
a

8
.7
3
¡
0
.4
9
a
b

0
.4
5
¡
0
.0
1
a

1
9
.7
7
¡
0
.7
9
a

8
.1
9
¡
0
.9
0
a

W
T

1
.7
6
¡
0
.3
1
b

1
0
.2
9
¡
0
.0
6
a

1
8
.8
9
¡

0
.5
4
b

0
.1
7
¡

0
.0
3
b

4
.1
3
¡
0
.1
2
c

2
7
.1
5
¡
0
.6
8
b

6
.8
4
¡
0
.5
3
b

0
.3
6
¡
0
.0
2
b

1
8
.8
2
¡
0
.6
7
a

5
.7
7
¡
0
.8
7
b

D
1

2
0
0
m
M

2
.5
3
¡
0
.2
7
a

9
.5
5
¡
0
.1
0
a

2
1
.1
8
¡

0
.6
2
a

0
.2
6
¡

0
.0
3
a

5
.8
3
¡
0
.3
7
a

2
7
.3
8
¡
0
.5
6
b

9
.1
0
¡
0
.4
1
a

0
.4
3
¡
0
.0
1
a

1
9
.9
5
¡
0
.2
0
a

8
.0
4
¡
0
.8
0
a

D
2

2
.1
9
¡
0
.4
2
a

8
.2
9
¡
0
.2
0
b

1
7
.1
2
¡

0
.4
2
b

0
.2
6
¡

0
.0
5
a

5
.0
7
¡
0
.4
3
a

2
7
.6
4
¡
0
.4
0
b

6
.6
4
¡
0
.1
6
b

0
.3
9
¡
0
.0
1
b

1
9
.5
6
¡
0
.7
3
a

5
.3
9
¡
0
.6
5
b

D
3

2
.2
5
¡
0
.2
0
a

7
.2
5
¡
0
.4
7
b

1
7
.3
0
¡

1
.3
7
b

0
.3
1
¡

0
.0
1
a

4
.5
7
¡
0
.7
9
a
b

3
0
.1
7
¡
0
.2
7
a

7
.8
0
¡
0
.8
2
a
b

0
.4
5
¡
0
.0
1
a

1
9
.3
3
¡
0
.5
8
a

6
.6
4
¡
0
.7
9
a
b

W
T

1
.1
8
¡
0
.0
4
b

8
.8
0
¡
0
.0
1
a
b

1
5
.7
2
¡

1
.2
3
b

0
.1
3
¡

0
.0
1
b

3
.3
3
¡
0
.1
5
b

2
5
.7
3
¡
0
.4
0
c

5
.7
4
¡
0
.5
8
b

0
.3
7
¡
0
.0
1
b

1
7
.1
5
¡
0
.4
0
b

5
.0
4
¡
0
.5
2
b

T
h
e
d
a
ta

a
re

m
e
a
n
o
f
th
re
e
re
p
lic
a
te
s

¡
S
E
;
M
e
a
n
s
fo
llo
w
e
d
b
y
th
e
sa

m
e
lo
w
e
r
ca

se
le
tt
e
rs

w
ith

in
a
co

lu
m
n
a
re

n
o
t
si
g
n
ifi
ca

n
tly

d
iff
e
re
n
t
(P

#
0
.0
5
).

do
i:1
0.
13
71
/jo
ur
na
l.p
on
e.
01
10
50
7.
t0
06

Abiotic Stress Tolerance in AtDREB1A Transgenic Peanut

PLOS ONE | DOI:10.1371/journal.pone.0110507 December 29, 2014 17 / 25



promoter is still considered stress-inducible and has a higher level of expression

under stress compared to the 35S promoter [26].

Changes in Growth Parameters under Drought and Salinity

Stresses

Better growth parameters of various plant species over-expressing PgDREB2A

[24], GsZP1 [72], DREB1A/1B, [8] and mtlD [4] genes under various abiotic

stresses have been reported. For drought stress (up to 15% PEG), no significant

difference in the various growth parameters was observed among T and WT

(Table 5) as also reported for AtDREB1A soybean [23]. At 20% PEG, the three T

exhibited significantly improved growth parameters, including pod weight, shoot

weight, total biomass, kernel weight, root length, and shoot length, compared with

Table 7. Correlation coefficient (r) between different growth- and physio-biochemical parameters under 20% PEG after 3 days of treatment.

RW SW PW TB HI R:S PRO CHL RWC EC

SW 0.48 1.00

PW 0.77** 0.41 1.00

TB 0.84** 0.78** 0.87** 1.00

HI 0.32 20.30 0.73** 0.31 1.00

R:S 0.92** 0.12 0.72** 0.64* 0.53 1.00

PRO 0.28 0.61* 0.46 0.58* 0.12 0.07 1.00

CHL 0.55 0.75** 0.52 0.73** 0.02 0.31 0.61* 1.00

RWC 0.65* 0.23 0.82** 0.67* 0.64* 0.69** 0.30 0.14 1.00

EC 20.65* 20.74** 20.76** 20.88** 20.25 20.42 20.48 20.62* 20.59* 1.00

OP 0.46 0.69** 0.43 0.64* 20.02 0.21 0.57* 0.91** 20.04 20.53

For each parameter, average values of three AtDREB1A transgenic peanut lines along with WT were used. Where: RW-root-weight, SW-shoot-weight, PW-
pod-weight, TB- total biomass, HI-harvest index, R:S-root:shoot ratio, PRO- proline, OP-osmotic potential, RWC- relative water content, EC- electrolytic
leakage, CHL-chlorophyll content. *Indicates a significant correlation: *P#0.05, and **P#0.01.

doi:10.1371/journal.pone.0110507.t007

Table 8. Correlation coefficient (r) between the various growth- and physio-biochemical parameters under 200 mM NaCl after 7 days of treatment.

RW SW PW TB HI R:S PRO CHL RWC EC

SW 0.19 1.00

PW 0.74** 0.56 1.00

TB 0.75** 0.72** 0.96** 1.00

HI 0.60* 0.15 0.87** 0.71** 1.00

R:S 0.94** 20.13 0.57* 0.52 0.58* 1.00

PRO 0.61* 20.25 0.48 0.34 0.68* 0.70** 1.00

CHL 0.51 0.13 0.76** 0.62* 0.86** 0.46 0.67* 1.00

RWC 0.81** 0.08 0.84** 0.72** 0.91** 0.79** 0.78** 0.80** 1.00

EC 20.66* 0.01 20.72** 20.58* 20.86** 20.67* 20.83** 20.79** 20.89** 1.00

OP 0.63* 20.03 0.52 0.45 0.58* 0.64* 0.92** 0.61* 0.69** 20.71**

For each parameter, average values of three AtDREB1A transgenic peanut lines along with WT were used (Refer to Table 7).

doi:10.1371/journal.pone.0110507.t008
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WT. Moreover, under various stress conditions, an improved root-shoot ratio was

recorded for T lines (Table 5) which might be because of the stress-inducible

expression of AtDREB1A gene [33, 73]. Furthermore, in tobacco Ban et al. [70]

observed more profound expression of LbDREB transgene in the roots compared

to the leaves at 200 mM NaCl and 20% PEG-induced stresses.

Various levels of drought stress (10 and 15% PEG) did not induce any

significant adverse effect on the growth parameters in either T or WT (Table 5).

However, highly detrimental effects of PEG (20%) were recorded on various

growth parameters of WT compared with the T lines. Similar conclusions were

reported by Jagana et al. [73] for peanut expressing the AtDREB1A gene under

drought stress. Significantly higher root weight, root-shoot ratio and HI were

observed for T across the various concentrations of salinity with increasing days of

exposure (Table 6). The improvement in the growth parameters of T peanut were

in agreement with the observation made by Datta et al. [8].

In this study, at 20% PEG, both T and WT exhibited efficient partitioning of

total biomass, with more biomass in the roots (r50.84) and pods (r50.87) than

in the shoots (r50.78) (Table 7). Similarly, at 200 mM NaCl, more biomass was

found in the roots (r50.75) and pods (r50.96) than in the shoots (r50.72)

(Table 8). This result confirms the observations on AtDREB1A transgenic peanut

and WT under drought stress [73].

Under both drought (20% PEG) and salinity stresses (200 mM NaCl),

significant positive correlations were observed between RWC and the root-shoot

ratio (r50.69 and 0.79 respectively) and between RWC and pod weight (r50.82

and 0.84 respectively) (Table 7 and 8). Similar relationships have also been

reported between RWC and root biomass in apple [74], and between RWC and

grain yield in winter wheat [75]. This reiterates the fact that improvement in the

RWC has direct positive effect on the overall growth of the T plant.

Under 20% PEG, chlorophyll content was found to be positively correlated with

shoot weight (r50.75, Table 7), indicating an accumulation of above-ground

biomass. Similar relationship was established in SAG12:ipt transgenic Arabidopsis

under flood conditions [76]. However, under 200 mM NaCl, chlorophyll content

was positively correlated with pod weight (r50.76, Table 8), which indicates

higher yield. Such results were also reported in AtDREB1A rice under drought

stress [18]. In our study, T lines exhibited stress-inducible expression of the

AtDREB1A gene, which may have led to less wilting of the leaves and the speedy

recovery of seedlings. Moreover, better drought and salinity stress tolerance and

improved physio-biochemical parameters in T peanut may have improved its

growth performance.

Conclusions

From this study, we can conclude that AtDREB1A expression improved both the

drought and salinity tolerance of the T lines which could also be due to its

subsequent involvement in the signal transduction pathway [18, 19, 26, 77]. The T
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plants showed elevated levels of proline, which resulted in better osmotic

adjustments characterized by increased osmotic potential. This might be

responsible for a higher water retention capacity, a lower level of ion leakage due

to improved membrane integrity, and better protection of photosynthetic

mechanisms. However, better retention of leaf chlorophyll content in T compared

with WT could be related to higher above-ground biomass accumulation [76],

which could be due to the improved rate of photosynthesis and subsequently

improved productivity in T under various abiotic stresses [18].

Nevertheless, the exact mechanisms and network of AtDREB1A-induced

regulation of native, downstream, stress-inducible genes that are responsible for

improved physio-biochemical outcomes and growth parameters under various

stresses are yet to be fully elucidated. Further analysis is required to determine the

expression pattern of the AtDREB1A gene in different tissues of the T, which may

reveal the reasons behind improved abiotic stress tolerance and root-shoot ratio of

T over WT. Although many T peanut lines with varying degrees of improved

abiotic stress tolerance have been developed around the world by numerous

researchers, but to date, no commercial varieties have been developed [17]. Of the

three T lines studied, D3 showed improved, combined tolerance to drought and

salinity stresses, which can be used for further agronomic field trials.

Subsequently, the D3 line can also be utilized in crop improvement programs as a

valuable pre-breeding resource.

Supporting Information

S1 Fig. Relative Water Content of three transgenic lines and WT. Under various

levels of PEG (A) and NaCl (B) with increasing days of stress exposure (refer to

Fig. 1).

doi:10.1371/journal.pone.0110507.s001 (PPT)

S2 Fig. Electrolytic Leakage of three transgenic lines and WT. Under various

levels of PEG (A) and NaCl (B) with increasing of days of stress exposure (refer to

Fig. 1).

doi:10.1371/journal.pone.0110507.s002 (PPT)

S3 Fig. Total Chlorophyll Content of three transgenic lines and WT. Under

various levels of PEG (A) and NaCl (B) with increasing days of stress exposure

(refer to Fig. 1).

doi:10.1371/journal.pone.0110507.s003 (PPT)

S4 Fig. Seedlings of wild type (WT) and transgenic (T) exposed to 0 mM (A),

100 mM (B), 150 mM (C), 200 mM (D) for 6 days.

doi:10.1371/journal.pone.0110507.s004 (PPT)

S5 Fig. Recovery of wild type (WT) and transgenic (T) lines in Hoagland’s

solution. Recovery after 6 days following exposure to 20% PEG for 3 days (A) and
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recovery of WT and T in Hoagland’s solution after 6 days following exposure to

200 mM NaCl for 7 days (B).

doi:10.1371/journal.pone.0110507.s005 (PPT)
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