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ABSTRACT: Cryptosporidiosis is a leading cause of moderate-to-
severe diarrhea in low- and middle-income countries, responsible
for high mortality in children younger than two years of age, and it
is also strongly associated with childhood malnutrition and growth
stunting. There is no vaccine for cryptosporidiosis and existing
therapeutic options are suboptimal to prevent morbidity and
mortality in young children. Recently, novel therapeutic agents
have been discovered through high-throughput phenotypic and
target-based screening strategies, repurposing malaria hits, etc., and
these agents have a promising preclinical in vitro and in vivo anti-
Cryptosporidium efficacy. One key step in bringing safe and
effective new therapies to young vulnerable children is the establishment of some prospect of direct benefit before initiating pediatric
clinical studies. A Cryptosporidium controlled human infection model (CHIM) in healthy adult volunteers can be a robust clinical
proof of concept model for evaluating novel therapeutics. CHIM could potentially accelerate the development path to pediatric
studies by establishing the safety of a proposed pediatric dosing regimen and documenting preliminary efficacy in adults. We present,
here, perspectives regarding the opportunities and perceived challenges with the Cryptosporidium human challenge model.

KEYWORDS: diarrhea, cryptosporidiosis, human-challenge model, drug discovery, Cryptosporidium, pediatric development,
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■ CRYPTOSPORIDIOSIS MEDICAL NEED

Cryptosporidium spp. are protozoan parasites responsible for
acute enteritis with diarrhea as the primary clinical symptom.
Cryptosporidiosis in humans is caused primarily by two
species, Cryptosporidium parvum and Cryptosporidium hominis.1

Transmission typically occurs when feces containing Crypto-
sporidium oocysts from infected animals or humans contam-
inate food or water supplies, thereby infecting humans
predominantly via the fecal oral route. Once ingested, the
oocysts reach the small intestine, where motile, infectious
sporozoites are released and infect intestinal epithelial cells.
The organisms then goes through multiple cycles of asexual
replication, followed by sexual reproduction, ultimately
resulting in excretion of numerous mature oocysts in the
feces.2 During a single infection period individuals may shed
up to 108−109 oocysts.3
Cryptosporidiosis is a self-limiting infection in immuno-

competent adults and can be successfully managed with
supportive care and treatment. In the vulnerable patients
population (young children and immunocompromised adults),
Cryptosporidium infection is associated with prolonged (7−14
days) or persistent (>14 days) diarrhea.4 Indeed, Cryptospori-

dium spp. are a leading cause of pediatric diarrhea in low- and
middle-income countries (LMICs) and represents one of the
leading causes of diarrheal deaths in young children aged 0−24
months.5−8 Cryptosporidiosis is estimated to be responsible
for 48 000−202 000 deaths annually in children younger than
two years of age in South Asia and Sub-Saharan Africa and
∼7.6 million diarrhea cases annually are attributable to
Cryptosporidium infection in these regions.5,9 In addition,
evidence suggests that repeated Cryptosporidium infections in
children are associated with long-term effects and debilitating
growth-stunting.10,11

Nitazoxanide (Alinia) is the only drug approved by the U.S.
Food and Drug Administration for the treatment of
cryptosporidiosis in children aged 1 year of age and older
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and immunocompetent adults.12,13 It is a safe oral antiparasitic
agent and significantly improves clinical response and reduces
the duration of diarrhea and oocyst shedding in immuno-
competent adults with cryptosporidiosis.14,15 As a parasitistatic
agent,16 efficacy of nitazoxanide is largely dependent on host-
immunity and is not effective for treating cryptosporidiosis in
immunocompromised patients.17,18 In a study that enrolled
HIV-negative, malnourished children, nitazoxanide treatment
resulted in resolution of diarrhea in only 56% of children (23%
in placebo group) and only 52% demonstrated oocyst
clearance (14% in placebo group).19 The limited efficacy of
nitazoxanide in malnourished children may be attributed to
immunological alterations or intestinal dysbiosis associated
with malnutrition in these children.20,21 Overall, there is a
pressing, highly unmet therapeutic need to address enteric
cryptosporidiosis in three major target patient populations:
young children aged 0−24 months in LMICs, malnourished
children under age five, and immunosuppressed individuals of
any age.22

■ ANTI-CRYPTOSPORIDIUM DRUG DISCOVERY AND
DEVELOPMENT EFFORTS

Despite the substantial global disease burden and a clear need
for effective antiparasitic treatments, cryptosporidiosis remains
an under-appreciated global health concern. Earlier efforts to
repurpose approved drugs, such as paromomycin, rifamycin,
spiramycin, azithromycin, letrazuril, HIV protease inhibitors,
or clofazimine, for the treatment of cryptosporidiosis in HIV-
AIDS patients have been unsuccessful.1,23 Recently, significant
progress has been made in identifying and optimizing diverse
new chemical entities (NCEs) with promising in vitro activity
and in vivo efficacy as defined in the proposed target product
profile for cryptosporidiosis treatment.24,25 Some of the
promising NCEs include Cryptosporidium calcium-dependent
protein kinase 1 (CpCDPK1) inhibitors,26 phosphatidylinosi-
tol-4-OH kinase (PI(4)K) inhibitors,27 piperazine-based lead
compound MMV665917,16 lysyl-tRNA synthetase (KRS)

inhibitors,28 oxaboroles that are a cleavage and polyadenylation
specificity factor3 inhibitors,29,30 bicyclic azetidines that are
phenylalanyl-tRNA synthetase inhibitors,31 methionyl-tRNA
synthetase inhibitors,32 a choline-based phospholipid VB-
201,33 and multiple novel cell-active hits.34 Most of these
NCEs have demonstrated antiparasitic activity against both C.
parvum and C. hominis. Further, unlike nitazoxanide, many of
these anti-Cryptosporidium NCEs are effective in reducing the
fecal oocyst burden in immunocompromised mouse models.
This rich and diverse pipeline of drug candidates is very
encouraging and could also enable drug combinations to
address the potential for drug resistance.32

To address the unmet medical need in the highly vulnerable
young pediatric cryptosporidiosis patient population, the most
critical aspects are an exceptional safety profile and robust
efficacy demonstrated by rapid resolution of diarrhea to
minimize the risk of dehydration. A few candidate molecules
such as the CDPK inhibitor BKI-1369,26 PI(4)K inhibitor
KDU731,27 MMV6659917,16 and 6-carboxamide benzoxabor-
ole AN797329 have demonstrated promising activity in
resolving diarrheal symptoms in neonatal calves, a preclinical
model of cryptosporidiosis diarrhea which closely resemble
pediatric infection and illness. Overall, in the past few years,
substantial progress has been made in identifying diverse
NCEs, and it is anticipated that some may soon start clinical
development.

■ CHALLENGES IN DEVELOPING A NOVEL
ANTIPARASITIC AGENT TO TREAT PEDIATRIC
CRYPTOSPORIDIOSIS

Cryptosporidiosis disproportionately affects young children,
and the highest unmet medical need is in the malnourished
who are at the greatest risk for severe disease and mortality.22

Drug development is expensive, takes considerable time, has a
high attrition rate and the pediatric population in LMICs
presents additional challenges. Four study populations to
establish proof of concept (PoC) of new anti-Cryptosporidium

Table 1. Pros and Cons of Potential First in Human Proof of Concept Efficacy Studies for Testing a Novel Anti-
Cryptosporidium NCEs

pros cons

Cryptosporidium controlled human infection
model (CHIM) in healthy adults

· prospect of benefit in healthy adults with
Cryptosporidium induced diarrhea

· C. parvum model utilized for technical reasons, although C.
hominis more common human pathogen

· informs dose selection for studies in pediatric
patients

· needs to be established and validated

· clinical syndrome, parasitological and clinical end
points under monoinfection condition

· limited viability period of GMP oocysts

· conducted in healthy volunteers, mitigates safety
confounders

· monoinfection state may not be clinically relevant to target
pediatric patient population

· phase 1 settings: faster recruitment and smaller
sample size

· unknown translatability of efficacy to target population

Adult HIV-positive cryptosporidiosis patients · natural infection in potential secondary target
population

· confounded safety and efficacy due to advanced
immunocompromised state

· PK in context of high GI motility · presence of other pathogens/coinfections and/or
concurrent medications

· high mortality
· operational complexity in the resource poor settings

Pediatric cryptosporidiosis patient population · assessment of safety and efficacy in the target
population

· prospect of clinical benefit will not have been previously
established

· natural course of infection · high-risk and vulnerable patient population
· with relevant clinical strains · uncertainty in predicted efficacious dose in the context of

high GI motility
· risk investment in juvenile toxicity study prior to phase I to
avoid program delays

· operational complexity in the resource poor settings
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compounds are possible: (i) adult immunocompromised
patients in LMICs; (ii) adult patients during a sporadic
outbreaks; (iii) malnourished pediatric patients in endemic
regions; and (iv) a Cryptosporidium controlled human infection
model (CHIM) in healthy adult volunteers. Typical drug
development and regulatory pathways involve demonstrating
the prospect of direct benefit in adult populations before
initiating pediatric studies.35

Cryptosporidium infection is a common cause of chronic
diarrhea in HIV/AIDS patients in LMICs.36 Currently, the
best treatment is reconstitution of the immune response via
antiretroviral therapy. HIV/AIDS patients are the only
naturally occurring adult population of adequate size to
facilitate early stage drug efficacy studies for cryptosporidiosis
in LMICs. However, a recent controlled clinical trial to assess
the safety and efficacy of clofazimine for the treatment of
cryptosporidiosis in this population highlighted the significant
challenges with this approach.23 In addition to the operational
complexity of conducting early phase clinical trials in resource-
poor settings,37 safety and efficacy evaluation in the HIV/AIDS
cryptosporidiosis patient population is highly confounded by
the severe immunocompromised state, presence of multiple
diarrheal pathogens, other opportunistic coinfections, con-
current medications, failure of antiretroviral therapy, and high
mortality.38 As a potential alternative to investigating NCEs in
HIV/AIDS cryptosporidiosis coinfected patients, a Cryptospori-
dium CHIM in adult healthy volunteers is considered herein as
it offers a scientifically robust path to PoC for novel
antiparasitic agents. In CHIM, the infectious pathogen is
administered to healthy adult volunteers with the intent to
deliberately induce infection and clinical symptoms in a
controlled setting. Novel therapies can then be evaluated in a
randomized blinded treated cohort and compared to the

clinical symptoms and disease duration in the untreated
(placebo-treated) cohort. Across different infectious diseases,
CHIM studies have played a very important role for the
understanding of disease mechanisms and also for establishing
PoC for drug and vaccine development.39−41 A sporadic
outbreak of cryptosporidiosis is not a feasible option for
structured drug development due to its anticipated protracted
time period. Table 1 summarizes the pros and cons of the
other three PoC human efficacy studies, namely, Cryptospori-
dium CHIM, HIV-positive adult cryptosporidiosis patients and
pediatric cryptosporidiosis patient populations for testing novel
anti-Cryptosporidium NCEs.

■ ESTABLISHING A CRYPTOSPORIDIUM CHIM TO
ENABLE DRUG DISCOVERY

More than 15 species of Cryptosporidium are known to cause
human infection with two predominant clinical species, C.
hominis (∼80%) and C. parvum (∼10%).9 The safety and
feasibility of controlled human Cryptosporidium challenge
studies are well documented in the literature, using C.
parvum,42−48 C. hominis,49 C. meleagridis,50 and C. muris.51

These challenge studies focused on: identifying the minimum
human infectious dose for C. parvum and C. hominis;
comparing the clinical symptoms caused by different clinical
isolates; understanding the impact of prior Cryptosporidium
infection on rechallenge; assessing fecal inflammatory markers;
and exploring mechanisms of pathogenesis (Table 2). To date,
more than 200 healthy adult volunteers have been challenged
with Cryptosporidium oocysts, of which ∼175 were infected
with various isolates of C. parvum. Among them, C. parvum
Iowa isolate from the University of Arizona was used in 5 of
the 7 published studies.43,44,46−48 The C. parvum Iowa isolates
used were not from a single oocyst stock, but were

Figure 1. Pediatric cryptosporidiosis drug discovery and development, a proposed path to registration. Development of C. parvum oocyst CHIM is
shown above. Cp, C. parvum and Ch, C. hominis.

Figure 2. Proposed controlled human C. parvum high-dose infection model for testing NCE with anticipated incubation period and duration of
infection. NTZ, nitazoxanide.
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continuously propagated in calves, which could lead to
mutations and/or genetic drift in oocysts over time. In these
CHIM studies, a high percentage of infections with
Cryptosporidium could be elicited and many of the infected
individuals developed clinical symptoms after challenge
(summarized in Table 2). In addition, no safety concerns
(other than clinical symptoms of acute cryptosporidiosis) have
been observed in any of the CHIM studies with doses up to
106 oocysts.
We propose establishing a C. parvum Iowa isolate high-dose

oocyst human challenge model to enable future assessment of
NCEs for the treatment of cryptosporidiosis. The proposed
path for pediatric cryptosporidiosis drug discovery and
development incorporates CHIM for establishing PoC for
efficacy in adults (Figure 1). The synopsis of a CHIM study
design is further outlined in Figure 2. Following Cryptospori-
dium challenge, healthy, immunocompetent individuals may
experience profuse, watery, nonbloody diarrhea after an
incubation period of 3−12 days. Without any treatment,
symptoms are expected to resolve within 2−3 weeks or less
(mean duration of 12.7 days) but could persist for up to a
month. Thus, to minimize the risk of long-term asymptomatic
shedding and/or recurrence, all subjects with elicited infection
will receive nitazoxanide treatment, the standard of care, at the
end of the 21-day study. Of note, as a precaution any subjects
who remain asymptomatic postchallenge will also be treated to
prevent any potential secondary transmission. Once CHIM is
established, it could potentially be used for a NCE develop-
ment after phase I studies. The following section highlights the
opportunities and challenges with Cryptosporidium CHIM in
healthy adult volunteers, a model designed for establishing
efficacy with NCEs.

■ OPPORTUNITIES AND CHALLENGES IN
CRYPTOSPORIDIUM CHIM

Some of the major advantages of Cryptosporidium CHIM are as
follows:

• It enables the assessment of the prospect of benefit in
adults before NCE is advanced into efficacy studies in
the vulnerable pediatric patient population in the
LMICs.

• Subjects in a cryptosporidiosis CHIM will have a typical
noninflammatory diarrhea because of a single pathogen,
allowing for unconfounded interrogation of the effect of
an investigational drug on clinical and parasitological
end points.

• It allows for careful and extensive analysis of the
pharmacokinetic−pharmacodynamic (PK−PD) relation-
ship of an investigational drug in the presence of
diarrhea, providing valuable data that informs dose
selection for future pediatric clinical trial designs.

• Cryptosporidium challenges induce nonlife threatening,
self-limiting infections in healthy adults with the option
to use nitazoxanide as the rescue medication.

• Finally, CHIM PoC efficacy studies can help prioritize
NCEs for juvenile toxicity studies designed to under-
stand potential adverse effects on postnatal growth and
development, thereby hastening the pediatric clinical
development.

Overall, Cryptosporidium CHIM may enable scientifically
rigorous and rapid clinical development path for novel drug
candidates to treat cryptosporidiosis in young children.

However, there are some challenges in establishing and
utilizing a Cryptosporidium CHIM for drug development.
Some of these challenges and mitigation strategies are
described below.

Challenge Organisms Are Regulated As Biological
Products and Drugs in the US. According to a 2013
guidance from the US Food and Drug Administration (FDA),
an Investigational New Drug Application (IND) is required for
challenge studies in which a live organism is administered to
subjects to study the pathogenesis of disease or the host
response to the organism. While the challenge organism is not
intended to have a therapeutic purpose, there is intent to affect
the structure or function of the body. Consequently, the FDA
considers the organism to be both a biological product and a
drug and therefore subject to the corresponding regulatory
requirements.52 As per the Federal Food, Drug, and Cosmetic
Act, current good manufacturing practice (CGMP) must be in
effect for the manufacture of investigational drug used during
phase 1 clinical trials.53 C. parvum human challenge studies
(Table 2) were conducted in the US during 1990s and early
2000s with oocysts purified from experimentally infected
neonatal calves. At the time, there was no requirement for an
IND application for the challenge organism. Currently, there is
no suitable robust manufacturing process available to produce
Cryptosporidium oocysts ex vivo. A major barrier to producing
large quantities of oocysts ex vivo has been the lack of a robust
and reproducible in vitro culture system, although a hollow
fiber continuous culture setup has been described with C.
parvum.54 Our attempts to establish a robust hollow fiber C.
parvum in vitro culture system were unsuccessful. The
proposed alternate approach is by obtaining a purified C.
parvum (Iowa isolate) oocysts from experimentally infected
neonatal calves (a non-GLP source, Good Laboratory
Practice). Oocysts are, then, surface sanitized, quality tested,
and released by a GMP facility for use in the establishment of
CHIM. We have also developed a surface sanitization protocol
using peracetic acid to inactivate potential microbial and viral
contaminants and demonstrated that this process is effective
while having limited impact on C. parvum oocyst viability
(Jumani et al., unpublished). Cryptosporidium oocysts can
withstand peracetic acid treatment in contrast to other
organisms.55,56 Peracetic acid is one of the most effective
organic peroxide broad-spectrum biocide agents. It has been
cleared by FDA as a sanitizer for direct food/food contact
surfaces and recommended by CDC for the disinfection and
sterilization of healthcare facilities and equipment, including
reusable medical and dental devices. To confirm the
effectiveness of the sanitization procedure, we have tested
the oocysts treated with peracetic acid for the presence of
microbial contaminants and shown that the sanitized oocysts
do not contain any viable aerobic or anaerobic microorganisms
as determined by regulatory guidelines. Furthermore, to
confirm the effectiveness of the sanitization procedure on
viral contaminants, purified oocysts were artificially contami-
nated with six different types of model viruses. The peracetic
acid treatment reduced the infectivity of the spiked viruses to
below the limit of detection. Currently, we are evaluating the
logistics and feasibility of releasing C. parvum oocysts under
GMP for CHIM studies.

C. parvum Oocysts Gradually Lose Viability with
Storage. Despite being highly resistant to harsh disinfection
conditions, reliable cryopreservation of Cryptosporidium
oocysts has been a long-standing challenge. A cryopreservation
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method for C. parvum oocysts has been recently devel-
oped,57,58 but the scalability and impact of cryopreservation to
elicit human infection has not been evaluated. Currently, the
routinely used storage condition for C. parvum oocysts is in
aqueous suspension at 2−8 °C for 4−6 months. As the oocyst
suspension ages, the viability reproducibly decreases and thus,
the potential to induce an infection also decreases.
Consequently, to ensure consistent infectivity in the clinic,
CHIM will require a fresh batch of GMP oocysts every few
months and may need to adjust the oocyst dose for loss of
viability over time.
Majority of Clinical Infections Are Caused by C.

hominis and Anthroponotic C. parvum Strains. Epide-
miologic studies have revealed that the majority of clinical
infections in the endemic countries is caused by C. hominis
(∼80%) and anthroponotic C. parvum (∼10%) isolates.59−61

The proposed high-dose oocyst human challenge model uses a
C. parvum Iowa isolate, a zoonotic species which can cause a
profuse watery diarrhea in both cattle and humans. Therefore,
effectiveness of NCE in the CHIM may not directly reflect the
efficacy against the most predominant clinical species. Though
C. parvum and C. hominis share ∼96% nucleotide identity,62,63

it is critical to make sure the molecular target is conserved
across Cryptosporidium species and determine the activity of
NCE against C. hominis in early preclinical drug discovery
stages. Several promising NCEs have been reported to have
similar potency against C. parvum and C. homins in vitro
suggesting the molecular target is conserved across these two
species.16,26,27,29

No Clear Relationship between the C. parvum Oocyst
Infective Dose and Clinical Illness in Healthy Adults Has
Been Established. The C. parvum Iowa isolate human
challenge studies described in the literature have demonstrated
that this isolate is capable of inducing infection in up to 100%
of healthy volunteers with adequate doses of oocysts, but not
all infected volunteers will develop diarrhea or other
gastrointestinal (GI) symptoms (Table 2).43,44,46−48 In one
study, 100% of healthy volunteers (n = 7) receiving ≥1000 C.
parvum oocysts, that is, approximately 10 times above ID50
(infective dose) developed infection as measured by fecal
oocyst shedding; 71% had enteric symptoms, but of these only
29% had diarrheal illness.46 The absence of a clear relationship
between infective dose and diarrheal illness in healthy adults
poses a challenge for using CHIM to demonstrate efficacy in
improving diarrheal syndrome. It is likely that the positive
health status of CHIM participants contributes to this
variability. Multiple factors contribute to the susceptibility of
the host to clinical manifestations such as host immune status,
gut health, GI microbiota, the virulence of the C. parvum
isolate and prior exposure to Cryptosporidium. Our proposed
strategy is to use a high oocyst dose to increase the probability
of infection and clinical symptoms in CHIM participants. We
anticipate that ideally robust parasitological infection will be
observed. However, to test efficacy of NCE, sufficient and
consistent clinical illness along with parasitological infection in
a significant proportion of healthy adults may be needed.
Risk/Benefit Consideration for Participants. Aside

from a long-term philanthropic contribution to the develop-
ment of novel therapies for cryptosporidiosis, there is no direct
benefit expected for healthy adults participating in a CHIM
study. The risks to healthy participants may include GI
cryptosporidiosis with mild to severe diarrhea, asymptomatic
infections, persistent or recurrent illness, and possible

secondary transmission. Extraintestinal manifestations in
immunocompetent healthy adults have not been described in
the published Cryptosporidium human challenge studies. Both
symptomatic and asymptomatic infections may result in
secondary transmission to household members and other
contacts. Overall, the risks to participants and their contacts
can be appropriately addressed in a clinical trial protocol for a
CHIM study. In comparison, in longitudinal studies of adult
outbreak-associated cryptosporidiosis, medium to long-term
sequelae after resolution of the acute infection included
diarrhea, abdominal pain, nausea, fatigue, headache, and joint
pain.64,65 These long-term sequelae were more prevalent
following infection with C. hominis than C. parvum.66,67 The
impact of nitazoxanide treatment on long-term sequelae is
unknown. In general, the interpretation of self-reported data
from outbreak-associated cohorts requires caution given the
potential for bias toward those most adversely affected and
those who attributed postacute symptoms to acute cryptospor-
idiosis. Further, no such long-term sequelae have been
described in the published C. parvum CHIM studies (Table
2). However, long-term follow up beyond 6−8 weeks was not
conducted in most of these studies, but can be potentially
monitored in future CHIM studies. Recently, an association
between Cryptosporidium infections and GI cancers have been
proposed, but a causal relationship has not been estab-
lished.68,69 In a 2015, C. muris challenge study, two subjects
with persistent oocyst shedding were successfully treated with
nitazoxanide at 200 mg twice a day for 3 days, and the
infection was resolved in both subjects, demonstrating the
potential of nitazoxanide as a rescue drug.51 We propose to
administer nitazoxanide to all participants in whom infection
was elicited at the conclusion of the study or earlier in case of
persistent or severe diarrhea to eliminate any remaining
infection and decrease potential long-term risks.

Uncertain Translatability of NCE Efficacy in a CHIM to
Pediatric Cryptosporidiosis Diarrhea. In immunocompe-
tent adults, Cryptosporidium infection causes self-limiting GI
illness and symptoms most often completely self-resolve within
1−2 weeks (Table 2). In contrast, Cryptosporidium infection in
young children, especially the malnourished or otherwise
immunocompromised, is associated with life-threatening
diarrhea with severe morbidity and mortality.6−8 In this
vulnerable patient population, Cryptosporidium infection is
often associated with persistent diarrhea (>14 days) leading to
a significant adverse effect on linear (height) growth and
nutritional shortfalls.11,70 Young children with cryptospor-
idiosis have more severe inflammation as measured by fecal
lactoferrin levels as compared to adult volunteers.48 This may
be due to various factors, including more severe diarrheal
illness in children than healthy adults, presence of other enteric
pathogens, nutritional status, gut health, sensitivity to fluid loss,
and also differences in the virulence of Cryptosporidium
isolates. Overall, cryptosporidiosis induced experimentally in
healthy adults is not the same as the disease observed in the
pediatric patients especially with respect to host health status,
severity of diarrheal illness and complexity of pathogenesis.
However, since the human challenge model recapitulates
logarithmic parasite replication in the GI tract leading to fecal
oocyst shedding, acute watery diarrhea, and other GI
symptoms similar to pediatric patients, the CHIM is a
scientifically robust and efficient approach to assess promising
antiparasitic agents.
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■ SUMMARY
Cryptosporidium is the second leading cause of diarrhea in
young children and a major contributor for diarrheal deaths in
LMICs. While cryptosporidiosis disproportionately affects
young children, establishment of an adult CHIM is a
scientifically robust and efficient way to assess novel
antiparasitic agents with relatively less safety risk. Following a
standard phase 1 with NCE in healthy adults, the
Cryptosporidium CHIM would be a stepping stone to pediatric
trials. It should help establishing a prospect of benefit for
NCEs in healthy adults before advancing to the vulnerable
pediatric population; derisking investment in juvenile toxicol-
ogy studies; and providing PK/PD data to inform dose
selection for pediatric trials.
Three key safety pillars of the proposed C. parvum CHIM

studies protect participating healthy adults. First, a GMP-
compliant oocyst manufacturing process to be established with
sanitization, testing and batch release of oocysts as an
investigational medical product. Second, the safety experience
from several published CHIM studies.43,44,46−48 And finally, C.
parvum infection in healthy adults causes a self-limiting illness
and an effective rescue medication is available. A Cryptospori-
dium CHIM has the potential to accelerate the development of
both new therapeutics and vaccines against cryptosporidiosis.
The recent accomplishments in early drug discovery and
availability of a Cryptosporidium controlled human infection
model offer a compelling vision toward enabling a much-
needed parasite-specific treatment for young children suffering
from the debilitating effects of cryptosporidiosis.
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