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Signature stemmed from two transcription factor families 
determines histological fate and regulates immune infiltration in 
patients with lung cancer
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Background: Earlier research has reported that transcription factors play a crucial role in the anti-
tumorigenic immune response of lung cancer patients. The aim of this study is to determine the relationship 
between post-translational modifications of transcription factors and histological fate and patient prognosis.
Methods: Based on the information of 293 lung cancer patients in the Gene Expression Omnibus (GEO) 
database, differentially expressed genes (DEGs) related to the interferon regulatory factor (IRF) and signal 
transducer and activator of transcription (STAT) families between patients experiencing early death and 
those with long-term survival were identified and characterized. A survival prediction model was established 
by incorporating 7 STAT genes and 9 IRF genes into the least absolute shrinkage and selection operator 
(LASSO) algorithm. Gene Ontology (GO) enrichment analysis indicated that these two transcription factor 
families can govern lung cancer tissue differentiation and predict patient prognosis. Moreover, the Cox 
proportional hazards regression model was applied to select the genes with the highest predictive capability 
to construct a gene-based signature. Lastly, the data of 1,803 and 784 lung cancer patients from the Kaplan-
Meier plotter (KMPLOT) and The Cancer Genome Atlas (TCGA) databases were used to evaluate the 
accuracy and sensitivity of the model.
Results: Based on the minimum criterion, TRIM28, IRF3, and STAT3 were employed to generate the 
prognostic model. The 1-, 3-, and 5-year area under the curve (AUC) values of the three-gene-based 
signature showed consistent results, signifying that the model had excellent accuracy and sensitivity in 
predicting overall survival (OS) for patients with lung cancer. Finally, the three-gene signature and tumor-
node-metastasis (TNM) staging system were combined to construct a nomogram for evaluating the OS of 
lung cancer patients. TRIM28 may affect the stability of IRF3. Encouragingly, the predicted OS was highly 
consistent with the observed OS in multiple cohorts. 
Conclusions: Taken together, these findings implied that the predictive model based on the three-gene 
signature showed robust discriminatory performance. 
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Introduction

As well documented, lung cancer is one of the leading 
cancer types both in terms of incidence and mortality (1). 
Indeed, its 5-year survival rate is less than 30% (2). The 
non-small cell lung cancer (NSCLC) histological subtype 
accounts for approximately 85% of lung cancer patients, of 
which lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LUSC) are the most prevalent (1). Ascribed 
to the malignant nature and considerable inter-/intra-tumor 
heterogeneity of NSCLC, its treatment and management 
have extensively garnered the attention of clinicians and 
researchers. Despite advancements in treatment strategies 
such as the use of cytotoxic drugs, small-molecule tyrosine 
kinase inhibitors, and the introduction of immunotherapy, 
having enhanced survival benefits in selected patients, the 
survival and overall cure rates for NSCLC remain largely 
unsatisfactory. Immune checkpoint blockades (ICB) have 
been established as an effective therapeutic strategy for 
NSCLC but are still associated with challenges such as 
innate and acquired resistance. Previous researchers have 
dedicated tremendous efforts and resources to unraveling 
the mechanisms underlying resistance and identifying 

solutions, such as combining immunotherapy and other 
adjuvant therapies. Nevertheless, there remains an urgent 
need for a more extensive characterization of immune 
therapy resistance.

Inflammation is elicited as a defense mechanism to 
combat invading pathogens, which are recognized by 
specific receptors that reside in the plasma membrane or 
the endosome. Specifically, the receptors sense danger-
associated molecular patterns or pathogen-associated 
molecular patterns. Stimulation of the receptors leads 
to the induction of pro-inflammatory signaling cascades 
and transcription factors such as signal transducer and 
activator of transcription (STAT) and interferon regulatory 
factor (IRF), which in turn mediate the synthesis and 
release of inflammatory cytokines such as chemokines and 
macrophage migration inhibitory factors, interleukins, 
and tumor necrosis factor (TNF) (3). Cyclic guanosine 
5'-monophosphate-adenosine monophosphate (GMP-
AMP) synthase (cGAS) is a double-stranded DNA sensor 
that catalyzes the synthesis of cyclic GMP-AMP (cGAMP), 
which stimulates type I interferons through the stimulator 
of interferon response cGAMP interactor 1 (STING)-
TANK binding kinase 1 (TBK1)-IRF3 signaling axis. 
STING oligomerizes after the binding of cGAMP, leading 
to the recruitment and activation of the TBK1 kinase. The 
IRF3 transcription factor is then recruited to the signaling 
complex and activated by TBK1 (4). Therefore, the IRF-
STAT family is believed to play a vital role in the anti-
tumorigenic immune response of lung cancer patients.

In this study, pivotal genes of the IRF-STAT family 
were selected to delineate three primary clusters of lung 
cancer patients by leveraging publicly available databases. 
Next, the gene expression pattern of the two clusters was 
analyzed to identify differentially expressed immune-
related pathways and genes. Lastly, a prognostic model for 
survival based on these genes was constructed and validated 
in the Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) databases. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-24-
733/rc).

Highlight box

Key findings 
•	 High expression of TRIM28 led to higher levels of IRF3, which 

was associated with poorer histological differentiation and poor 
prognosis in lung cancer patients.  

What is known and what is new? 
•	 Interferon regulatory factor (IRF) and STAT families have been 

considered as principal regulators of type I interferons response. 
However, the relationship between these transcription factors and 
the prognosis of lung cancer patients requires further exploration.

•	 Ubiquitination, as its common regulatory pathway, plays a 
more critical role in tumor progression. This research evaluated 
the prognostic performance and potential therapeutic value of 
ubiquitin ligase TRIM28.

What is the implication, and what should change now?
•	 For lung cancer patients, the signature established by TRIM28 

combined with IRF3 and STAT3 can be a new prognostic marker.
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Methods

Publicly available messenger RNA (mRNA) data

This study retrieved data from three publicly available 
databases. GSE30219, the most comprehensive lung 
cancer dataset from the GEO database (http://www.ncbi.
nlm.nih.gov/geo/), and TCGA data of samples from lung 
cancer patients (5) were acquired from the UCSC Xena 
(https://tcga.xenahubs.net) to serve as one of the individual 
validation sets. Additional gene expression and prognostic 
datasets of lung cancer patients were downloaded from the 
Kaplan-Meier plotter (KMPLOT) database (http://kmplot.
com/analysis/) (6,7). After log2 transformation and quantile 
normalization, mRNA expression data detected using 
multiple probes were calculated by computing the mean 
expression values. Patients with incomplete information 
were subsequently excluded from the analysis.

Cell lines and cell culture 

Human lung cancer cell lines, NCI-H358 and NCI-H520, 
were cultured in RPMI-1640 media (10-040-CV; Corning, 
NY, USA) containing 10% fetal bovine serum (FBS) and 
antibiotic mixture, including 100 U/mL penicillin and 100 
μg/mL streptomycin (15140-122; Gibco, NY, USA). 293T 
cells were cultured in Dulbecco’s modified eagle medium 
(DMEM) media (10-013-CVR; Corning) containing 10% 
FBS and antibiotic mixture.

Western blotting and cell counting kit-8 (CCK-8) assay

Protein was extracted from cell lines with Pierce RIPA 
Buffer (C1053; Applygen Technologies, Beijing, China) and 
quantified by Pierce BCA Protein Assay Kit (23225 Thermo 
Fisher Scientific, NY, USA). Protein extracts were subjected 
to polyacrylamide gel electrophoresis using the 4–20% 
Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) gel system (AQ-129; Aoqing Biotechnology, 
Beijing, China), transferred to polyvinylidene fluoride 
(PVDF) membranes (Millipore, Darmstadt, Germany). 
Transferred protein was immunoblotted using antibodies 
against KAP1 (ab109287; Abcam, MA, USA), IRF3 
(ab68481; Abcam), and GAPDH (ab8245; Abcam), 
incubation at 4 ℃ overnight. The membranes with 
horseradish peroxidase (HRP)-conjugated secondary 
antibodies at room temperature for 1 h, and visualized the 
protein bands using enhanced chemiluminescence.

A CCK-8 assay was used to analyse cell proliferation. 

Cells were seeded into 96-well plates at 6,000 cells per well. 
After 24, 48, 72, 96, and 120 h, Cells were treated with  
10 μL CCK-8 reagent (Dojindo, Kumamoto, Japan) for 2 h, 
and the absorbance values at 450 nm were recorded.

IRF-STAT-related clustering for lung cancer

Principal component analysis (PCA) and hierarchical 
cluster were applied to IRF-STAT family genes to identify 
molecular subtypes of lung cancer. These algorithms were 
unsupervised class discovery algorithms to classify patients 
by applying specific clustering techniques to the random 
subsets of the data.

Functional enrichment analysis and gene set enrichment 
analysis (GSEA)

Gene Ontology (GO) functional enrichment analysis was 
performed to identify significantly enriched pathways 
associated with differentially expressed genes (DEGs) 
correlated with the signature, using the R package 
“clusterProfiler” (8). Biological pathways with P<0.05 were 
considered significant, using functional annotation chart 
options with the whole human genome as a background. 
Meanwhile, GSEA was also performed between different 
risk subgroups via “javaGSEA” to obtain GSEA results (9).

Prognostic model establishment and validation 

The least absolute shrinkage and selection operator 
(LASSO) algorithm was employed to further screen 
prognosis-specific IRF-STAT family genes (10). The linear 
model for microarray data (LIMMA) package was employed 
to identify DEGs and targeted metabolic enzymes in 
patients with different molecular subtypes. The Cox 
proportional hazards regression model was used to identify 
significant prognostic genes and to determine correlation 
estimated coefficients, which were employed to develop a 
risk score incorporating the expression levels of optimized 
genes. Patients were divided into high-risk and low-risk 
groups according to the signature. 

Following this, time-dependent receiver operating 
characteristic (ROC) analysis was utilized to determine the 
cut-off value and to calculate the area under the curve (AUC) 
for 1-, 3-, and 5-year overall survival (OS) and relapse-free 
survival in order to verify the performance of the signature 
using the ‘survivalROC’ R package (11). Kaplan-Meier (K-
M) survival curve analyses and log-rank tests were used 
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to evaluate the prognostic significance of the risk score 
formula. Besides, the relationship between the distribution 
of patients’ risk scores and survival and recurrence status 
was investigated. Using the “ComplexHeatmap” R package, 
a heatmap with cluster analysis based on differences in gene 
expression was generated (12). Variables with P<0.05 in the 
univariate model were used to construct the nomogram. 
ROC and K-M survival analyses were used to evaluate the 
performance of the developed nomogram.

For clinical assessment, human tissue microarray 
(TMA) chips that contain 90 cases of paired LUAD 
and paracancerous normal specimens were purchased 
(HLugA180Su11, ShGnghGi Outdo Biotech Company, 
Shanghai, China). We performed immunohistochemistry 
(IHC) of several markers (IRF3, STAT3 and TRIM28) on 
the TMA. Two independent pathologists without prior 
knowledge of our research evaluated the IHC staining 
results. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Identification and characterization of DEGs between 
patients experiencing early death and those with long-term 
survival 

The data of 293 lung cancer patients with complete clinical 
and transcriptional information were downloaded from the 
GSE30219 dataset. When categorizing patients who died 
within 2 years as early death cases and those who survived 
for more than 4 years as long-term survival cases, a total of 
128 patients exhibited significant differences in prognosis. 
Then, GSEA was performed on the GO gene sets, and the 
findings exposed that the immune response to cytokine 
production and the JAK-STAT signaling pathway were 
markedly enriched (Figure 1A). Thereafter, DEGs associated 
with the cGAS-STING pathway were selected through a 
thorough literature review, and the results demonstrated 
that the IRF family and STAT family were two important 
transcription factor families related to the cGAS-STING 
pathway and interferon response. Thus, 7 STAT genes and 9 
IRF genes were introduced into unsupervised cluster analysis. 
Importantly, PCA determined significant heterogeneity 
in the expression levels of these two transcription factor 
families in lung cancer patients (Figure 1B). At the same 
time, hierarchical clustering accurately characterized these 
three patient clusters (Figure 1C). The expression patterns 
of IRF and STAT genes in these three clusters are displayed 

in the heatmap (Figure 1D). It is worth noting that patients 
in groups A and C were predominantly composed of LUAD 
and LUSC patients, while those in group B were largely 
poorly differentiated lung cancer patients. Additionally, 
K-M survival analysis demonstrated significant differences 
in prognosis between unsupervised lung cancer subgroups 
based on the expression levels of IRF and STAT, with group 
A patients manifesting a better prognosis (Figure 1E). Then, 
all 16 genes were further inputted into the LASSO algorithm 
to establish a survival prediction model. According to the 
minimum criterion, IRF3 and STAT3 were selected for the 
construction of the risk signature formula (Figure 1F).

Furthermore, GO enrichment analysis indicated that 
immune pathways played an instrumental role in regulating 
lung cancer and influencing patient prognosis.

DEGs were identified using LIMMA for both groups A 
versus B and groups A versus C, with a fold change ≥2.5 and 
P value <0.01. Of note, the expression level of 43 genes was 
differentially upregulated in group C compared to group A, 
whereas that of 21 genes was differentially downregulated. 
Similarly, the expression level of 23 genes was differentially 
upregulated in group B compared to group A, whilst 
that of 44 genes was downregulated. We speculated that 
these two transcription factor families could regulate the 
expression levels of key genes involved in type II alveolar 
epithelial development (such as SFTPB, SFTPD, SFTA2, 
Figure 2A-2G), and keratinization-related genes, which 
were upregulated in group C (KRT family, Figure 2G-2I).  
In addition, neuroendocrine-related genes, such as INSM1, 
CHGA, and CHGB, were significantly upregulated in 
group B and, therefore, may also be regulated by these 
two transcription factor families (Figure 2D-2F). Based 
on these results, the complement pathway and B cell-
mediated immune response were identified as key biological 
mechanisms mediating the impact of IRF and STAT on the 
prognosis of lung cancer patients (Figure 2B,2C). 

Target identification and establishment of prognostic 
models

Attributed to challenges in targeting transcription factors 
with bioactive molecules, an attempt was made to identify 
their upstream regulatory factors from metabolic enzymes. 
A list of 3,667 metabolic enzymes was downloaded from 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database, focusing on those that were positively correlated 
with IRF3 and negatively correlated with STAT3 while also 
significantly correlated with the prognosis of lung cancer 
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patients. Noteworthily, TRIM28, an enzyme that may 
regulate protein ubiquitination, was significantly enriched 
in IRF3-expressing patients (Figure 3A). A Cox proportional 
hazards regression model was applied to select the most 

predictive genes, which yielded three genes, comprising 
TRIM28, IRF3, and STAT3 (P<0.05). Upregulating 
those genes was associated with worse survival outcomes 
in lung cancer patients. The risk score was calculated as 

Figure 1 Concentration on IRF and STAT transcription factor family through unsupervised learning in GSE30219. (A) Lung cancer 
patients with different prognoses enriched into the IRF and STAT families through GSEA. (B) PCA based on two transcription factor 
families. (C) Hierarchical cluster on account of 16 IRF and STAT genes. (D) The expression pattern of IRF and STAT families and 
clinicopathological features of patients from GSE30219. (E) Kaplan-Meier survival curves of OS for three unsupervised groups in the 
GSE30219 cohort. (F) LASSO and partial likelihood deviance coefficient profiles of the selected genes. Dim, dimension; STAT, signal 
transducer and activator of transcription; IRF, interferon regulatory factor; ADC, adenocarcinoma; BAS, basaloid squamous cell carcinoma; 
CARCI, carcinoids; LCC, large cell carcinoma; LCNE, large cell neuroendocrine carcinoma; SCC, small cell carcinoma; SQC, squamous 
cell carcinoma; GSE, gene series; GSEA, gene set enrichment analysis; PCA, principal component analysis; OS, overall survival; LASSO, 
least absolute shrinkage and selection operator.
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Figure 2 Differential expression and GO pathway enrichment analysis between three unsupervised groups. (A) DEGs in group A relative to 
group B and group C. (B) Significantly upregulated pathways in group A, which are associated with better prognosis in lung cancer patients. 
(C) Cnetplot of upregulated genes in group A. (D) DEGs in group A relative to group B. (E) Significantly upregulated pathways in group 
A and group B. (F) Cnetplot of upregulated genes in group A and group B. (G) DEGs in group A relative to group C. (H) Significantly 
upregulated pathways in group A and group C. (I) Cnetplot of upregulated genes in group A and group C. AIRB, adaptive immune response 
based; SR, somatic recombination; IRB, immune receptors built; ISD, immunoglobulin superfamily domains; DEGs, differentially expressed 
genes; GO, Gene Ontology.

follows: risk value = (0.4652 × TRIM28 expression) + 
(0.2910 × IRF3 expression) − (0.2776 × STAT3 expression). 
This formula was subsequently used to calculate the risk 
score for each patient from the GSE30219, TCGA, and 
KMPLOT databases. As anticipated, K-M survival analyses 
illustrated that the OS of patients in the low-risk group 
was significantly longer than that in the high-risk group  
(Figure 3B). The distributions of patient survival and risk 
scores calculated based on the signature are displayed in 
Figure 3C. Moreover, time-dependent ROC analyses were 
conducted to assess the prognostic performance of the 

three-gene-based classifier, with AUC of 0.714, 0.687, and 
0.691 at the 1, 3, and 5 years, respectively (Figure 3D). Next, 
the interactions between TRIM28, IRF3, and STAT3, as 
well as downstream molecules that regulate neuroendocrine 
differentiation, were predicted using the STRING database 
(Figure 3E).

Validation of the prognostic model for OS in larger patient 
cohorts

The clinical information of 1,803 and 784 lung cancer 
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Figure 3 Identification and establishment of three-gene signature combined with performance and functional analysis. (A) TRIM28, the 
most significant differential gene. (B) Kaplan-Meier survival curves of OS between high-risk and low-risk patients in the GSE30219 cohort. 
(C) The distributions of the risk score and survival status of lung cancer patients. (D) AUC values of ROC predicted 1-, 3- and 5-year OS of 
the signature in the GSE30219 cohort. (E) Predicting protein-protein interactions based on STRING database. TP, true positive; FP, false 
positive; OS, overall survival; GSE, gene series; AUC, area under the curve; ROC, receiver operating characteristic.

patients was retrieved from KMPLOT and TCGA 
databases, respectively, with pathological types composed 
of LUAD and squamous cell carcinoma. The 1-, 3-, and 
5-year AUC values of the three-gene-based signature were 
consistent with the aforementioned results, corroborating 
the superior accuracy and sensitivity of the model to predict 
the OS of lung cancer patients (Figure 4A,4B). Notably, 
K-M survival analyses displayed that the OS in the high-
risk group was significantly shorter (Figure 4C,4D). What’s 
more, the survival distribution of high-risk cancer patients 
was significantly worse in both datasets (Figure 4E,4F).

After a comprehensive analysis of the results of 
univariable Cox regression, four variables, including the 
signature, T stage, N stage, and M stage, were identified 
as independent predictive parameters. Consequently, they 
were utilized to develop a nomogram in the GSE30219 
cohort (Figure 5A). Calibration curves were used to examine 
the reliability and predictive ability of the nomogram  
(Figure 5B-5D). Time-dependent ROC analyses were 
employed to assess the predictive performance of the 
nomogram. The AUC were 0.723, 0.714, and 0.751 for 1-, 

3-, and 5-year OS, respectively (Figure 5E). Lastly, K-M 
survival analyses revealed that patients in the low-risk group 
had significantly longer OS (Figure 5F, P<0.0001).

We evaluated the IHC expression level of IRF3, 
STAT3, and TRIM28 in our cohort and capitalized on 
time-dependent ROC analyses to verify the operation of 
three-gene signature. On account of the result of TMA, 
the model predicted that the AUC for survival of 1, 3, 
and 5 years were 0.946, 0.931, and 0.858, respectively  
(Figure 6A). Significantly, the OS of patients in the high-
risk group appeared to be lower than that in the low-risk 
group (Figure 6B). High-risk patients were concentrated 
in dying within 3 years (Figure 6C). Compared to normal 
tissue, IRF3 was notably upregulated in tumor tissue  
(Figure 6D). The nomogram constructed based on IHC 
and clinical features showed good consistency, and the 
prognostic effect of T stage was higher than grade in the 
cohort of LUAD patients (Figure 6E,6F). The representative 
IHC images of patient A and patient B selected from the 
high-risk group in Figure 6C are shown in the upper and 
lower parts of Figure 6G, respectively. Besides, we deployed 
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Figure 4 Validation of the predictive performance of the three-gene signature in the TCGA and KMPLOT cohorts. (A) Time-dependent 
ROC curves at the OS time of 1, 3, and 5 years in the TCGA cohort. (B) Time-dependent ROC curves at the OS time of 1, 3, and 5 years in 
the KMPLOT cohort. (C) Kaplan-Meier survival curves of OS between high-risk and low-risk patients in the TCGA cohort. (D) Kaplan-
Meier survival curves of OS between high-risk and low-risk patients in the KMPLOT cohort. (E) The distributions of the risk score and 
survival time and status in the TCGA cohort. (F) The distributions of the risk score and survival time and status in the KMPLOT cohort. 
TCGA, The Cancer Genome Atlas; KMPLOT, Kaplan-Meier plotter; TP, true-positive; FP, false-positive; AUROC, area under the ROC 
curve; ROC, receiver operating characteristic; OS, overall survival.

small hairpin RNA (shRNA)-mediated TRIM28 knocked 
down. We observed that knocking down TRIM28 led to a 
decrease in the expression of IRF3 in two lung cancer cell 
lines, H358 and H520, indicating a regulatory relationship 
between TRIM28 and IRF3 (Figure 6H). Through the 
CCK-8 experiment, it was found that compared to negative 
control cell lines, reducing TRIM28 expression led to 
decreased cell proliferation (Figure 6I).

Discussion

Owing to inter-/intra-tumor heterogeneity, the prognosis 
of lung cancer patients is different, even among those 
with localized carcinoma. In this study, the tumor-node-
metastasis (TNM) staging system, in conjunction with the 
three-gene signature, was applied to predict the OS of lung 
cancer patients and to design a nomogram. ROC and K-M 
survival curves indicated that the three-gene signature had 
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Figure 5 Establishing a prognostic prediction model by combining clinical and transcriptome information. (A) Nomograms convey the 
results of prognostic models using the three-gene signature and TNM staging system to predict OS of patients with lung cancer. (B) The 
calibration curve for predicting patients’ OS at 1-year. (C) The calibration curve for predicting patients’ OS at 3-year. (D) The calibration 
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ADC, adenocarcinoma; SQC, squamous cell carcinoma; GSE, gene series; AUROC, area under the ROC curve; ROC, receiver operating 
characteristic; TP, true-positive; FP, false-positive; OS, overall survival; TNM, tumor-node-metastasis.

robust discriminative performance. The predictive value of 
the nomogram was validated via calibration curve analysis, 
which demonstrated a high degree of concordance between 
the predicted OS and the actual observed outcomes. 
Herein, a new mechanism for histological determination of 
lung cancer has been proposed, and an innovative method 
for drug target discovery has been developed. 

Previous studies have attempted to discover molecular 
markers for the prediction of OS and the detection of 
response to immunotherapy in lung cancer patients. Based 
on the expression levels of transcription factor families, 
numerous markers have been found to be correlated with 
histological classification and prognosis of lung cancer. For 
instance, the BACH1 transcription factor has been shown 

to be associated with an unfavorable prognosis in lung 
cancer patients (13). Likewise, ASCL1 is a determining 
transcription factor in small-cell lung cancer and is 
predictive of a poor prognosis in lung cancer patients 
(14,15). Prior investigations have described a correlation 
between the IRF and STAT families and inter-associated 
epigenetic memory (16). In addition, significant differences 
in their expression levels between primary and metastatic 
tumors have been documented, which may not only impact 
the malignant biological behavior of tumors but also play 
a decisive role in regulating immune responses (17). This 
also confirmed our research findings that gene signature 
based on the IRF and STAT transcription factor families 
can distinguish lung cancer with different degrees of 
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malignancy and predict patient prognosis. In addition, an 
earlier study concluded that TRIM28-induced changes in 
mouse prostates contributed to invasive prostate carcinoma 
progression, leading to a shorter OS (18), implying that 
TRIM28 may potentially play a similar role in lung cancer.

This  research has  some l imitat ions that  merit 
acknowledgment. To begin, this was a retrospective study; 
therefore, the possibility of inherent selection bias cannot 
be excluded. Secondly, further cytological research is 
warranted to investigate the mechanism by which the 
expression of TRIM28, IRF3, and STAT3 affect lung 
cancer differentiation. Lastly, the model necessitates 
further prospective assessment to corroborate its clinical 
effectiveness.

Conclusions

In summary, a three-gene signature was developed and 
validated for predicting the OS of lung cancer patients. 
The novel nomogram developed based on this signature 
exhibited sufficient discrimination and calibration 
capabilities and could serve as a valuable tool for guiding 
treatment strategies.
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