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Integrating Sequence-based GWAS 
and RNA-Seq Provides Novel 
Insights into the Genetic Basis of 
Mastitis and Milk Production in 
Dairy Cattle
Lingzhao Fang1,2, Goutam Sahana1, Guosheng Su1, Ying Yu2, Shengli Zhang2, 
Mogens Sandø Lund1 & Peter Sørensen1

Connecting genome-wide association study (GWAS) to biological mechanisms underlying complex 
traits is a major challenge. Mastitis resistance and milk production are complex traits of economic 
importance in the dairy sector and are associated with intra-mammary infection (IMI). Here, we 
integrated IMI-relevant RNA-Seq data from Holstein cattle and sequence-based GWAS data from 
three dairy cattle breeds (i.e., Holstein, Nordic red cattle, and Jersey) to explore the genetic basis of 
mastitis resistance and milk production using post-GWAS analyses and a genomic feature linear mixed 
model. At 24 h post-IMI, genes responsive to IMI in the mammary gland were preferentially enriched 
for genetic variants associated with mastitis resistance rather than milk production. Response genes 
in the liver were mainly enriched for variants associated with mastitis resistance at an early time point 
(3 h) post-IMI, whereas responsive genes at later stages were enriched for associated variants with milk 
production. The up- and down-regulated genes were enriched for associated variants with mastitis 
resistance and milk production, respectively. The patterns were consistent across breeds, indicating 
that different breeds shared similarities in the genetic basis of these traits. Our approaches provide a 
framework for integrating multiple layers of data to understand the genetic architecture underlying 
complex traits.

A better understanding of the genetic architecture underlying complex traits and diseases would be beneficial for 
the genomic prediction of disease risk in personalized medicine and would support the genomic selection in live-
stock and plant breeding1–4. Genome-wide association studies (GWAS) have had limited successes in illustrating 
the genetic architecture (e.g., the distribution of causal variants and their effects) underlying complex traits and 
diseases, even with large sample sizes (n >  100,000), due to a huge number of loci with small effects2,5–8. Extending 
GWAS results to biological and genetic mechanistic hypotheses of variation in complex traits and diseases has 
been a major challenge9. To overcome this challenge, one approach could be to assess the collective evidence of 
the association of a phenotype with all genomic variants in a group of genes defined by prior biological knowl-
edge9–13, as causal variants have been proposed to preferentially cluster in genes interconnected in biological 
processes14,15. Over the last decade, transcriptomic studies have been commonly conducted on small-scale exper-
imental populations to identify genes involved in biological processes underlying complex traits and diseases. 
Genomic variants affect complex phenotypes often through modulating gene expression16, therefore integrating 
genomic variants and gene expression data could contribute to a better understanding of the genetic architecture 
underlying the trait variation16. Compared to most existing pathway annotation databases (e.g., Gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes), these transcriptomic studies could provide more reliable 
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gene clusters that are functionally related to traits of interest9. This information is of particular interest in live-
stock and plant genomics due to the lack of genome annotation. Moreover, patterns of gene expression have been 
suggested to be more consistent across breeds and populations compared to genome-wide significant loci of 
GWAS17–19.

Mastitis is most often caused by invading pathogens and frequently occurs in all lactating mammals and is 
a significant health problem in both human and veterinary medicine20. Gram-negative Escherichia coli (E. coli) 
is one of the most common mastitis-causing pathogens21. In the dairy industry, mastitis is one of the costliest 
diseases owing to its consequences of reduced milk production and quality and the need for the treatment and 
replacement of animals20. In addition, mastitis is unfavourably genetically correlated with milk production22,23. 
Due to its heavy toll on the health and productivity of animals, many transcriptome profiling studies have been 
conducted in vivo or in vitro during intra-mammary infection (IMI) to gain a better understanding of the molec-
ular mechanisms underlying the host response to pathogen invasion. These studies have revealed that many genes 
with significantly affected expression levels are involved in both inflammatory responses and overall metabo-
lism24–27. However, few studies have investigated whether the genomic variants associated with mastitis resistance 
and milk production are enriched in these active transcriptome regions during IMI. As both mastitis resist-
ance and milk production are typical complex traits controlled by a minimum of 400–4000 effective loci in cat-
tle2,28, the genetic architecture underlying them is currently poorly elucidated. We hypothesized that integrating 
sequence-based GWAS results with IMI-relevant transcriptome data from different tissues could contribute to a 
deeper insight into the genetic architecture underlying these economically important traits.

In the present study, mastitis resistance and three milk production traits (milk, fat, and protein yields) of 
Nordic Holstein (HOL), Nordic red cattle (RDC) and Jersey (JER) were analysed for their associations with 
imputed sequence-level genotype variants. The genotype data consisted of approximately 13–15 million single 
nucleotide polymorphisms (SNPs) from 10,597 animals. The RNA-Seq data were generated from IMI experi-
ments of nine HOL animals involving two tissues (liver and mammary gland) and two pathogenic factors (E. coli 
and E. coli endotoxin (LPS)). We assumed that the gene expression patterns induced by IMI were similar across 
breeds. The major objectives of this study were (1) to investigate the distributions of association signals of mastitis 
resistance and milk production traits in gene regions responsive to IMI, (2) to gain novel immuno-biological 
insights into the genetic basis of mastitis resistance and milk production, and (3) to provide a general framework 
for extending GWAS results to biological mechanistic hypotheses of variation in complex traits and diseases by 
integrative analysis with biological information from small-scale independent experimental populations.

Results
Single-marker GWAS based on imputed sequence markers. A single-marker GWAS using imputed 
sequence markers (~13–15 M SNPs) was conducted for mastitis resistance, milk, fat, and protein yields in HOL, 
RDC, and JER separately. The –log10P-values of the tested SNPs from GWAS analyses for the four traits in the 
three breeds are shown as Manhattan plots (see Supplementary Figs S1–12). The genomic inflation statistics 
(lambda) of all the GWAS analyses ranged from 1.04 to 1.23, indicating that the residual population-stratifica-
tion effects were very small and that the GWAS test statistics were not inflated. Detailed information of the top 
genome-wide significant SNP on each chromosome is shown in Table 1 for each trait in the three breeds.

The SNPs with the largest effect on fat and milk yields in the three breeds were in very close proximity to 
the well-known fat/milk-associated DGAT1 gene on chromosome 14 and explained 18.3% and 13.9% (HOL), 
6.3% and 7.2% (RDC), and 3.1% and 2.8% (JER) of the genomic variance of fat and milk yields, respectively. By 
contrast, no large-effect SNPs were observed for mastitis resistance or protein yield in any of the three breeds. 
Notably, the top SNPs on the significantly associated chromosomes jointly explained 9.7%, 17.4%, 22.3%, and 
23.9% of the variance for mastitis resistance and protein, fat, and milk yields, respectively, in HOL; 6.8%, 8.4%, 
12.6%, and 13.82% in RDC; and 0%, 0%, 3.1%, and 3.9% in JER. Hence, although the GWAS results demonstrated 
the importance of a small number of loci with moderate to large effects, they collectively explained only a small 
fraction of the total genomic variance. Loci with small effects remained undetectable by GWAS due to limited 
sample size (especially in JER) and very stringent genome-wide significance thresholds.

Genomic features construction based on RNA-Seq analyses of bovine liver and mammary 
gland data. The complete datasets with statistical results for each of the 24,616 bovine genes at different time 
points (i.e., 3, 6, 9, 12, and 48 h) post-IMI with LPS compared with a time point before IMI (i.e., − 22 h) in the liver 
are available in Supplementary Table S1. The detailed results of different time points (i.e., 12 and 24 h) post-IMI 
with E. coli compared with a time point before IMI (i.e., − 144 h) in the liver and that of infected mammary quar-
ters compared with controls at 24 h post-IMI are available in Supplementary Table S2. The genomic features (i.e., 
the sets of response genes) were constructed using six FDR cut-offs (i.e., 0.05, 0.01, 1e-3, 1e-6, 1e-8, and 1e-10) in 
each experimental comparison. Ultimately, a total of 48 genomic features containing 11,446 unique genes were 
included for the following post-GWAS analyses (Table 2). Table 2 shows that the expression levels of many more 
genes in the liver were affected at 6–12 h compared with 3 (early) and 48 h (late) post-IMI with LPS, and more 
genes responded in the liver than in the mammary gland at 24 h post-IMI with E. coli.

Post-GWAS enrichment analyses and biological interpretation. To investigate the distributions 
of association signals for mastitis resistance and milk production traits in gene regions responsive to IMI, a 
post-GWAS analysis of the 48 genomic features identified from RNA-Seq was applied to each trait in each of the 
three breeds separately. The average number of SNPs mapped in each genomic feature was 443,359 (ranging from 
1,668 to 1,755,179). The –log10P-values of the genomic features from the post-GWAS analysis in HOL and RDC 
are shown in Fig. 1A,B, respectively, demonstrating that association signals for both mastitis resistance and milk 
production were significantly enriched (P <  0.05) in a subset of genes responsive to IMI, and the averaged Pearson 
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correlation of –log10P-values between HOL and RDC was 0.67 across the four traits with high significance 
(P <  0.01) (Fig. 1C–F). A similar pattern was also observed between HOL and JER (see Supplementary Fig. S13). 
These findings indicated that certain similarities of the genetic basis underlying mastitis resistance and milk pro-
duction are shared among breeds. The detailed statistical results for all the post-GWAS analyses in HOL, RDC 
and JER are summarized in Supplementary Tables S3, 4, and 5, respectively.

Tissue differences in the enrichment of association signals for mastitis resistance and milk production. The liver 
data from six HOL animals at 24 h post-IMI with E. coli compared with a time point before IMI (i.e., − 144 h) 
and the mammary gland data from the same animals at 24 h post-IMI compared with the control were ana-
lysed. Figure 2A and C show that in the mammary gland, more association signals of mastitis resistance were 

Trait Breed Chromosome
Position of the top 

SNP (bp) P-value Hs
2 (%)

Mastitis resistance

HOL 6 88,840,407 5.55e-19 4.1

13 59,260,175 2.09e-11 2.0

18 43,909,571 2.44e-10 1.9

23 11,477,969 1.10e-13 1.3

25 35,353,527 2.89e-10 0.4

RDC 6 88,723,742 2.31e-10 2.3

24 60,959,835 3.72e-10 4.5

Protein yield

HOL 6 88,478,678 9.79e-10 1.5

14 1,892,784 6.93e-22 2.9

18 57,015,407 4.23e-11 1.2

23 10,504,197 4.80e-11 5.0

25 36,403,719 8.36e-14 0.9

26 41,231,611 4.72e-19 1.4

28 10,749,791 1.91e-09 1.9

29 12,741,604 3.38e-10 2.6

RDC 5 112,450,860 1.32e-09 1.1

14 1,802,667 3.02e-09 1.1

23 8,581,891 1.22e-09 0.8

25 3,498,960 1.98e-12 1.0

26 10,268,885 4.48e-10 4.4

Fat yield

HOL 5 93,945,991 8.95e-26 1.8

14 1,810,124 3.64e-132 18.3

26 20,547,445 2.06e-22 1.5

29 17,696,734 1.82e-10 0.7

RDC 5 93,945,694 3.23e-28 2.6

14 1,807,140 9.80e-43 6.3

23 28,567,796 4.35e-10 0.8

25 9,870,005 3.98e-15 1.3

26 24,379,571 5.20e-15 1.6

JER 14 1,802,667 9.36e-15 3.1

Milk yield

HOL 5 93,944,849 8.79e-16 2.2

14 1,825,125 6.16e-86 13.9

20 29,996,727 1.79e-12 2.3

23 17,821,120 1.55e-09 4.3

26 37,869,380 3.80e-15 1.2

RDC 5 112,343,204 2.00e-09 1.1

14 1,743,939 9.75e-34 7.2

16 1,322,611 2.63e-09 0.95

19 61,449,096 1.19e-09 0.55

20 31,909,478 2.78e-16 3.2

25 3,498,960 4.83e-10 0.82

JER 14 1,828,456 1.21e-21 2.8

20 33,922,713 3.38e-09 1.1

Table 1.  Summary of the top SNP on each chromosome with genome-wide significance determined by 
single-marker genome-wide association analyses (GWAS) of each trait in three cattle breeds. Hs

2 (%) 
represents the proportion of genomic variance explained by the top SNP. HOL, Nordic Holstein; RDC, Nordic 
red; JER, Jersey.
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enriched in response gene regions compared with those of milk production traits (P <  0.05) in both HOL and 
RDC, indicating that IMI mainly influenced the immune response in the mammary gland. A similar pattern was 
also observed in JER (see Supplementary Fig. S14). In the liver, more association signals of milk production traits 
tended to be enriched in response gene regions compared with those of mastitis resistance, particularly in RDC 
(P <  0.01) (Fig. 2B,D), suggesting that IMI affected the overall metabolism in the liver.

Dynamic impact of the hepatic transcriptome during IMI with LPS. At a very early time point (3 h) post-IMI with 
LPS, response genes in the liver were mainly enriched for association signals in mastitis resistance rather than in 
milk production, whereas at 9 h post-IMI, the response genes were enriched for association signals in both mas-
titis resistance and milk production (Fig. 3), except for JER milk production traits that were less associated with 
the response genes (see Supplementary Fig. S15). Notably, the response genes at 48 h post-IMI were more associ-
ated with protein yield compared with other traits in the three breeds (Fig. 3, see Supplementary Fig. S15). These 
observations provided genomic evidence that genes associated with mastitis resistance were activated initially in 
the liver and then genes associated with milk production traits was affected.

Differences in up- and down-regulated genes in the enrichment of association signals. To explore the distribu-
tions of association signals in up- and down-regulated gene regions, we further divided each of the 48 genomic 
features into four subsets of up- or down-regulated genomic features based on four log2(fold-change) values 
(i.e., >2, > 1, < − 1, < − 2). The detailed statistical information of the post-GWAS analysis for these genomic 
features in the three breeds is also summarized in Supplementary Tables S3–5. At 48 h post-IMI with LPS, there 
were no genes with an FDR <  1e-8 and log2 (fold-change) <  − 1 in the liver. The average number of markers 
mapped in the up-regulated features was 121,027 (ranging from 1,587 to 741,975), whereas the average number 
of markers mapped in the down-regulated features was 161,798 (ranging from 85 to 1,103,205). More association 
signals of mastitis resistance were enriched in the highly up-regulated features (log2(fold-change) >  2) compared 
with those of milk production with high significance (P <  0.01), whereas more association signals of milk pro-
duction were enriched in the highly down-regulated genes (log2(fold-change) <  − 2) compared with those of 
mastitis resistance with high significance (Fig. 4). The patterns were consistent across the three breeds (Fig. 4, 
see Supplementary Fig. S16), except for JER down-regulated genes that were less associated with milk produc-
tion compared with mastitis resistance (see Supplementary Fig. S16). These patterns were also observed for up- 
(down-) regulated genomic features with log2(fold-change) >  1 (< − 1) (see Supplementary Figs S16–17). These 
observations provided genomic evidence that genes associated with mastitis resistance were activated by IMI but 
at the same time genes associated with the overall metabolism were inhibited.

Explanation of genomic variance and biological interpretation for the top genomic feature in 
each trait. The genomic feature with the smallest P-value from the post-GWAS analysis in HOL was identi-
fied as the top feature for each trait. A genomic feature linear mixed model (GFLM) was applied to estimate the 
explained genomic variance by each of the top features (details in the Methods section).

Mastitis resistance. The top genomic feature (FDR <  1e-6, log2(fold-change) >  1) was identified in the liver at 6 h 
post-IMI with LPS, containing 1790 up-regulated genes with approximately 1% of SNPs over the whole genome. 
This feature explained 7.53%, 10.89%, and 18.88% of the genomic variance (H 2) for mastitis resistance in HOL, 
RDC, and JER, respectively, approximately 5% of the variance for three milk production traits in HOL and RDC, 
but less than 1% of the variance for milk production traits in JER (Fig. 5A). A functional enrichment analysis of 
this feature demonstrated that these up-regulated genes were mainly engaged (FDR <  0.05) in RNA processing, 
the regulation of gene expression, the regulation of apoptotic processes, the inflammatory response, and metab-
olism processes (Fig. 6A). The detailed information of the top three enriched (FDR <  0.05) GO terms relevant to 
the immune response is summarized in Table 3.

Milk and fat yield. Milk and fat yield shared the same top genomic feature (FDR <  0.01, log2(fold-change) <  − 1),  
which was identified in the liver at 12 h post-IMI with E. coli, containing 654 down-regulated genes with approx-
imately 0.5% of SNPs over the whole genome. This feature explained 13.34% (17.79%), 14.95% (19.32%), and 

Tissue
Pathogenic 

factor
Comparison 

(h) No.0.05 No.0.01 No.1e-3 No.1e-6 No.1e-8 No.1e-10

Liver LPS 3 vs. − 22 1163 826 583 289 192 139

Liver LPS 6 vs. − 22 7888 6800 5422 3047 2172 1638

Liver LPS 9 vs. − 22 8014 6859 5559 3312 2504 1923

Liver LPS 12 vs. − 22 6998 5809 4430 2402 1768 1319

Liver LPS 48 vs. − 22 483 240 128 48 32 25

Liver E. coli 12 vs. − 144 4183 2835 1576 390 199 102

Liver E. coli 24 vs. − 144 4650 3537 2228 837 525 316

Mammary E. coli 24i vs. 24c 2308 1533 996 365 227 146

Table 2.  The number of genes responsive to intra-mammary infection in each of 48 genomic features 
defined at six FDR cut-offs (i.e. 0.05, 0.01, 1e-3, 1e-6, 1e-8, 1e-10) in eight experimental comparisons. 24i vs. 
24c: comparison between infected mammary glands and controls at 24 h post IMI with E. coli.
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8.79% (9.49%) of the genomic variance for milk (fat) yield in HOL, RDC, and JER, respectively, and approxi-
mately 6% of the variance for protein yield and less than 0.01% of the variance for mastitis resistance in the three 
breeds (Fig. 5B). A functional enrichment analysis of this feature revealed that these down-regulated genes par-
ticipated in multiple biological functions, including cell cycle regulation, hepatobiliary system development, lipid 
metabolic processes and long-chain fatty acid metabolic processes (Fig. 6B). The details of the enriched GO terms 
relevant to metabolic processes are summarized in Table 4.

Protein yield. The top genomic feature for protein yield (FDR <  1e-3, log2(fold-change) >  2) was identified in 
the liver at 48 h post-IMI with LPS, containing 48 highly up-regulated genes with less than 0.01% of SNPs over the 
whole genome. This feature explained 2.67%, 3.31%, and 5.33% of the genomic variance for protein yield in HOL, 
RDC and JER, respectively, 1.09%, 1.89%, and 1.34% of the variance for mastitis resistance, respectively, but less 
than 1% of the variance for milk and fat yield in the three breeds (Fig. 5C). A functional enrichment analysis of 
this feature revealed that these up-regulated genes were involved (FDR <  0.05) in multiple biological processes 
that were mainly relevant to inflammatory and defence responses and the regulation of protein metabolic pro-
cesses (Fig. 6C). The details of the top three enriched GO terms relevant to metabolic processes and the top three 
enriched GO terms for immune response are summarized in Table 5.

Discussion
To the best of our knowledge, this study is the first to integrate sequence-based GWAS and IMI-relevant tran-
scriptome data to exploit the genetic basis underpinning mastitis resistance and milk production in dairy cat-
tle. We provide genomic evidence that genes in the mammary gland responding to IMI were more associated 
with mastitis resistance than milk production. Moreover, responsive genes in the liver played roles not only in 
the regulation of the immune response but also in the dysregulation of overall metabolism, providing novel 
immuno-biological insights into the genetic mechanisms underlying the unfavourable correlation between mas-
titis and milk production. The patterns were consistent across breeds, revealing that different breeds could share 
similarities in genetic architecture underlying mastitis resistance and milk production. This finding is in line with 
previous observations that the innate immune response to IMI remains highly conserved among breeds29,30. Our 
findings here might indicate that it is possible to improve multi-breed genomic predictions by borrowing infor-
mation across breeds, which is currently a major ongoing challenge in the animal breeding area31. However, in 
several analyses, slightly different results for Jersey compared to Nordic Red and Holstein were observed. These 
differences are probably due to the breed differences in segregating QTLs, minor allele frequencies, and SNP 
effects. In addition, the smaller sample size for Jersey animals may also have resulted in lower power to detect the 
associated SNPs compared to Nordic red and Holstein cattle.

The global gene expression alterations in the mammary gland and liver during IMI with E. coli and LPS as 
determined by microarray analyses have been previously reported using the same samples as those in the current 
study24,27,32. Compared to microarray technology, RNA-Seq has several advantages, including a greater dynamic 
range, higher reproducibility, less bias, and a lower frequency of false-positive signals33. A previous study34 
re-analysed the microarray dataset of Jiang et al.24 using a dynamic impact approach (DIA) and found that at 3 h 

Figure 1. Post-GWAS analysis results for the 48 genomic features identified from RNA-Seq based on six 
FDR cut-offs in Holstein (HOL) and Nordic red cattle (RDC). –log10P indicates the –log10-transformed P-
values from the post-GWAS analysis. r is the Pearson correlation of the –log10P of genomic features between 
HOL and RDC. P is the significance for the Pearson correlation test. Each point is one of the 48 genomic 
features. (A) post-GWAS results in HOL, (B) post-GWAS results in RDC, (C) Pearson correlation for mastitis 
resistance between HOL and RDC, (D) Pearson correlation for milk yield, (E) Pearson correlation for fat yield, 
(F) Pearson correlation for protein yield.
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post-IMI with LPS, all pathways activated in the liver were primarily related to the innate immune system, with 
this activation persisting for up to 12 h. The authors found that between 6 and 12 h post-IMI, pathways related to 
metabolism were strongly inhibited, whereas the transcriptional response subsided at 48 h post-IMI. This result is 
in agreement with our current findings. Together, these findings from both transcriptome functional annotation 
and genome association analyses confirm that soon after IMI, the liver initially increases its immune response 
(e.g., increased production of acute phase proteins) and then decreases its overall metabolism, particularly of 
lipids and cholesterol35. There is clear evidence to indicate that the immune response in the liver is highly inte-
grated with metabolic regulation and that the biological dysfunction of either could severely impact the other36, 
as the liver is a crucial organ for host immune responses and metabolism, including lipogenesis, gluconeogenesis, 
and cholesterol metabolism37,38.

Single-marker GWAS has limitations for deciphering the genetic and biological mechanisms underlying com-
plex traits, therefore many studies using different strategies have been conducted to investigate the distributions 
of causal genomic variants contributing to complex phenotypes along the genome1,13,28,39.

Secondary analyses of GWAS results (i.e., post-GWAS) based on prior biological knowledge have been sug-
gested as a computationally simple way to extract additional information from genome-wide marker data12. 
This approach has the potential to identify joint effects of multiple markers with independent subtle effects in a 
genomic feature that may be missed when estimated individually. Furthermore, statistical analysis incorporating 
external biological information can provide novel insights into the mechanisms causing phenotype variation, 
helping to open the “black box” of the genetic architecture underlying complex traits. A host of methods for this 
type of post-GWAS analysis have been developed to date40. A commonly used approach is count-based; that is, to 

Figure 2. Tissue differences in the enrichment of association signals for mastitis resistance and milk 
production traits in Holstein (HOL) and Nordic red cattle (RDC). The genomic features were identified using 
six FDR cut-offs (i.e., 0.05, 0.01, 1e-3, 1e-6, 1e-8, 1e-10) from the mammary gland data of 24i vs. 24c and the 
liver data of 24 h vs. − 144 h after IMI with E. coli, respectively. (A and C) are the analyses conducted in HOL 
and RDC, respectively, using genomic features defined from the mammary gland data of 24i vs. 24c. (B and D) 
are the analysis conducted in HOL and RDC, respectively, using genomic features defined from the liver data 
of 24 h vs. − 144 h. Student’s t-test (paired) was used to test the significance of differences. n.s represents P ≥  0.1, 
*represents P <  0.05, **represents P <  0.01.



www.nature.com/scientificreports/

7Scientific RepoRts | 7:45560 | DOI: 10.1038/srep45560

compare the proportion of associations over a certain pre-defined significance threshold in the genomic feature 
to the proportion of such associations in the remaining genome41–43. One major limitation of this type approach 
is the dichotomization of associations into significant and non-significant groups based on a pre-specified sig-
nificance cut-off, which ignores information about the strength of association44,45. Our post-GWAS approach 
assessed the enrichment of association signals in a genomic feature by comparing the sum of squared single 
marker test statistics (i.e., t2) within the region to an empirically derived distribution under a competitive null 
hypothesis. This approach is more likely to match the genetic architecture underlying complex phenotypes, 
whereby genetic variation is governed by many loci with small effects. Our previous studies44,45 using simula-
tions have shown that the performance of this procedure is better or similar to other approaches (e.g., count or 
score-based) in most scenarios, and the number of false positives could be effectively controlled when the follow-
ing criteria are met: 1) the average number of markers in each gene is approximately the same among the genomic 
features, and 2) the average linkage disequilibrium (LD) between markers in different genes is approximately the 
same44,45.

Our current GFLM approach could be an alternative way to examine the collective contribution of markers in 
a genomic feature to the phenotypic variation. It is based on partitioning genomic variance into two components: 
markers within and outside a genomic feature. We previously applied this approach to partition the genomic 
variance in health and milk production traits based on pathways13. This approach is similar to those proposed 
by other investigators, who used multiple variance components based on markers belonging to different chro-
mosomes or sequence ontologies39,46. Here, we examined genomic markers in response gene regions detected 
from IMI-transcriptomic studies, which were more likely to be associated with mastitis and milk production. 
Moreover, our GFLM approach builds on a solid statistical modelling framework that is commonly applied to 
predict genetic values in animals and plants in genomic selection programmes47. Compared to the standard 
genomic best linear unbiased prediction (GBLUP) model, whereby the genetic marker relationships are weighted 
equally47, our GFLM approach could improve the ability to predict genomic values for complex traits through 
differential weighting of the individual genetic marker relationships based on the estimated genomic parameters, 
provided that causal genomic variants are enriched in the genomic feature48. The GFLM approach is more likely 
to match the genetic architecture of complex traits compared to GBLUP48. Additionally, the multiple-trait GFLM 
can be used to further disentangle the negative genetic correlation between mastitis and milk production in future 
studies.

In principle, many genomic features can be constructed using prior information from different sources, such 
as single genes, haplotypes, chromosomes, sequence ontologies, biological pathways, and experimental studies. 
The gain in knowledge generated by their use relies heavily on the quality of the genomic feature classification 

Figure 3. Dynamic impact on the hepatic transcriptome during intra-mammary infection (IMI) with 
LPS in Holstein (HOL) and Nordic red cattle (RDC). The genomic features identified in the liver data of 
3 h vs. − 22 h, 9 h vs. − 22 h, and 48 h vs. − 22 h comparisons post-IMI (pi) with LPS based on six cut-offs (i.e., 
0.05, 0.01, 1e-3, 1e-6, 1e-8, 1e-10) were used for analyses. (A and D) are the analyses conducted in HOL and 
RDC, respectively, using genomic features defined from the liver data of 3 h vs. − 22 h. B and E are the analyses 
conducted in HOL and RDC, respectively, using genomic features defined from the liver data of 9 h vs. − 22 h. 
(C and F) are the analyses conducted in HOL and RDC, respectively, using genomic features defined from the 
liver data of 48 h vs. − 22 h. Student’s t-test (paired) was used to test the significance of differences. n.s represents 
P ≥  0.1, o represents P <  0.1, *represents P <  0.05, **represents P <  0.01.
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strategies on which the marker sets are based. As trait-associated genomic markers are not uniformly, or neces-
sarily physically, clustered in the genome14,39, dissecting genomic variance using adjacent genomic regions is not 
an ideal way to detect the joint effect of many loci with small effects and does not facilitate the interpretation of 
biological mechanisms underlying the trait. Biological interpretation may be better served by the use of biological 
pathways as genomic features; however, the quantity and quality of genes that are functionally annotated in cur-
rent pathway databases are limited9, particularly for livestock and plant genomes. Here, we used information from 
our transcriptomic studies of a small-scale experimental population to define genomic features, providing novel 
insights into the genetic and biological basis of mastitis and milk production traits. Our approaches can be easily 
extended to use diverse types of biological knowledge obtained from costly high-throughput technologies (e.g., 
RNA-Seq, methylation-Seq, and ChIP-Seq) in small-scale samples to assist in the understanding of the genetic 
architecture and biological mechanisms underlying complex traits at the population level. However, because gene 
expression patterns are highly time- and tissue-dependent, some trait-associated genes might not show differen-
tial expression in some tissues at a certain time. Therefore, incorporating more biological information (e.g., pro-
tein and metabolite levels) related to the studied complex traits could be important for understanding the flow of 
biological information underpinning complex traits, which will help us identify the appropriate genomic features 
that are highly enriched for causal variants. Our current genomic feature modelling approaches provide a general 
framework to investigate and integrate multiple layers of omics data from high-throughput technologies or exist-
ing pathway annotation databases, potentially leading to a better understanding of the genetic and biological basis 
underlying complex traits and diseases.

Materials and Methods
Animal biopsy samples for IMI experiments. All experimental procedures involving animals were 
approved by the Danish Animal Experiments Inspectorate and complied with Danish Ministry of Justice laws 
concerning animal experimentation and care of experimental animals. The animal experiments were conducted 

Figure 4. Differences in up- and down-regulated genes in the enrichment of association signals for 
mastitis resistance and milk production traits in Holstein (HOL) and Nordic red cattle (RDC). (A and B) 
are the analyses conducted in HOL and RDC, respectively, using the genomic features identified based on a 
log2 (fold-change) >  2 and six different FDR cut-offs (i.e., 0.05, 0.01, 1e-3, 1e-6, 1e-8, 1e-10). (C and D) are 
the analyses conducted in HOL and RDC, respectively, using the genomic features identified based on a log2 
(fold-change) <  − 2 and six different FDR cut-offs. Student’s t-test (paired) was used to test the significance of 
differences. n.s represents P ≥  0.1, *represents P <  0.05, **represents P <  0.01.
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in strict accordance with regulations and guidelines established by these committees. An inspection was carried 
out by members of these committees during the animal infection experiments.

In total, three and six healthy Holstein animals at the early stage of their first lactation were used in the follow-
ing two IMI experiments, respectively. For the first IMI experiment, the udder health of the three Holstein cows 
was evaluated based on bacteriological examinations and somatic cell count (SCC) before LPS treatment. All 
cows were free of mastitis-causing pathogens and had SCCs <  138,000 cells/ml in all the quarters. At the start of 
the trial, the right front quarter of all the cows was inoculated with 200 μ g of E. coli LPS (0111:B4) (Sigma-Aldrich, 
Brøndby, Denmark) dissolved in 10 ml of a 0.9% NaCl solution, whereas the left front quarter received 10 ml of 
the 0.9% NaCl solution as a control. The following clinical findings verified the induction of mastitis by LPS, such 
as fever and high SCCs in the milk of the infected quarters. Liver biopsies were collected at − 22, 3, 6, 9, 12, and 
48 h relative to LPS treatment in all the studied cows. The detailed information of the liver biopsy samples from 
the three Holstein cows post-IMI with LPS has been previously described by Jiang et al.24.

Figure 5. Genome feature linear mixed model (GFLM) analyses for the top genomic features in mastitis 
resistance and milk production traits. The point size represents the explained proportion of genomic variance 
by the feature (H2%); the colour represents the P-values of the feature from post-GWAS analyses. (A) the 
top genomic feature (FDR <  1e-6, log2(fold-change) >  1) in mastitis resistance; (B) the top genomic feature 
(FDR <  0.01, log2(fold-change) <  − 1) in milk and fat yield; (C) the top genomic feature (FDR <  1e-3, log2(fold-
change) >  2) in protein yield.
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For the second IMI experiment, prior to the E. coli treatment, all six Holstein animals were evaluated and had 
normal body temperature and white blood cell count, a negative glutaraldehyde test, and low Californian Mastitis 
Test (CMT; (Kruuse, Marslev, DK)) scores ranging from 1 to 5. They were found to be free from mastitis-causing 
pathogens and had SCCs in milk < 27,000 cells/ml in all the quarters. One of the front quarters from each of 
the six animals was infused with 10 ml of a 0.9% NaCl solution containing ~20–40 CFU of live E. coli, whereas 
another quarter serving as a control received 10 ml of the 0.9% NaCl solution. The details of the liver biopsy 

Figure 6. Scatterplots of enriched (FDR < 0.05) Gene Ontology (GO) terms from the functional 
enrichment analysis of top genomic features in mastitis resistance and milk production traits. The 
scatterplots show the enriched GO terms in a two-dimensional space (x and y coordinates) derived using 
multidimensional scaling to the matrix of semantic similarities of the GO terms. The closeness of the GO terms 
on a plot indicates their closeness in the GO graph structure (i.e., semantic similarity). The point size indicates 
the frequency of the GO term in the EBI GOA database; the colours represent the FDR values of GO terms from 
the functional enrichment analysis of genes in the top genomic feature using KOBAS2.0. (A) the top genomic 
feature (FDR <  1e-6, log2(fold-change) >  1) in mastitis resistance; (B) the top genomic feature (FDR <  0.01, 
log2(fold-change) <  − 1) in milk and fat yield; (C) the top genomic feature (FDR <  1e-3, log2(fold-change) >  2) 
in protein yield.
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samples from the six cows at − 144, 12 and 24 h post-IMI with E. coli have been previously described by Jorgensen 
et al.32, whereas the mammary gland samples of the infected and control quarters from the same animals at 24 h 
post-IMI have been described previously by Buitenhuis et al.27.

RNA sequencing and statistical analysis. RNA-Seq libraries were prepared from liver samples collected 
at − 22, 3, 6, 9, 12, and 48 h post-IMI with LPS (each condition with three biological replicates), liver tissue sam-
ples from − 144, 12, and 24 h post-IMI with E. coli (each condition with six biological replicates), and mammary 
gland tissues collected from udder quarters at 24 h post-IMI with and without E. coli infection (each condi-
tion with six biological replicates). The RNA extraction was performed as described previously50. In total, 48 
RNA libraries were constructed for RNA-Seq. Each sample (i.e., each library) was then sequenced using a 100 bp 
paired-end method with Illumina HiSeq 2000 sequencing technology by AROS Applied Biotechnology (Aarhus, 
Denmark).

The approaches applied for RNA-Seq bioinformatics analyses have been previously described49. Briefly, the 
indices of the bovine reference genome (UMD3.1) were first built using the Build-Index function implemented 
in the Rsubread package51. The sequence reads of each sample were then mapped to the bovine reference genome 
assembly with an efficient mapping program using the seed-and-vote algorithm51 implemented in the Rsubread 

GO term GO ID FDR Gene

Cellular response to biotic 
stimulus GO:0071216 2.79E-3

PPP1R15B, TLR2, MAPK14, CCL2, SCARB1, 
PRDM1, NFKBIA, TNFAIP3, EIF2AK3, TP53, 

DDIT3, XBP1, TRAF6, LITAF, ANKRD1, 
PLSCR4, PDE4B, TLR4, SERPINE1, ZC3H12A, 
LBP, TRIB1, RELA, MYD88, IRAK2, NLRP3, 

SBNO2

Response to 
lipopolysaccharide GO:0032496 4.29E-3

NOCT, IFNAR1, MAPK14, CCL2, SCARB1, 
PRDM1, NFKBIA, AKIRIN2, SRR, TNFAIP3, 
CYP27B1, XBP1, TRAF6, LITAF, ANKRD1, 
PLSCR4, PDE4B, TLR4, SERPINE1, LTBR, 

TNFRSF1A, TNFRSF6B, ZC3H12A, LBP, CD40, 
TRIB1, RELA, MYD88, IRAK2, NLRP3, SBNO2, 

GCH1, JUNB

Inflammatory response GO:0006954 4.30E-3

CHI3L1, CASP4, TLR2, IL10, SMAD1, MAPK14, 
ALOX5AP, CCL2, NLRC4, S100A8, S100A12, 

S100A9, TNFAIP3, APOD, BCL6, IL1B, IL1RN, 
ENSBTAG00000006354, B4GALT1, CCL19, 

NR1H4, S1PR3, HMOX1, IL20RB, TLR4, IL4R, 
RELB, OLR1, A2M, CD163, SERPINE1, LTBR, 
TNFRSF1A, TNFRSF6B, ZC3H12A, TNFAIP6, 

ENSBTAG00000022394, ENSBTAG00000002963, 
LBP, ENSBTAG00000037558, CD40, RELA, 

CCL20, MYD88, SEH1L, NLRP3, ITIH4, SBNO2, 
TNIP1, SNAP23, HIF1A, SOCS3

Table 3.  The top three enriched (FDR < 0.05) Gene Ontology (GO) terms relevant to the immune 
response detected by a functional enrichment analysis of the top genomic feature (FDR < 1e-6, log2(fold-
change) > 1) in Holstein (HOL) mastitis resistance.

GO term GO ID FDR Gene

long-chain 
fatty acid 
metabolic 
process

GO:0001676 2.06E-3

ACSBG1, 
ENSBTAG00000031933, 
ENSBTAG00000003272, 
ENSBTAG00000013693, 

SLC27A1, CPT1A

bile acid 
biosynthetic 
process

GO:0006699 7.69E-3 HNF1A, NR1D1, CYP7A1

lipid 
metabolic 
process

GO:0006629 8.10E-3

ST3GAL2, SDR42E1, 
OXSM, ACSBG1, PIGS, 

SRD5A1, RUBCN, 
SMPD3, NPC1L1, 

ENSBTAG00000031933, 
HNF1A, ABCD3, SLC35C1, 

ENSBTAG00000003272, 
ID2, 

ENSBTAG00000013693, 
INPP1, HSD3B7, NR1D1, 
DOLPP1, GPAM, PDK1, 

SLC27A1, INSIG2, FITM2, 
HNF4A, SNAI2, CYP7A1, 

CPT1A, PIGV, PLPP2, 
AJUBA, IP6K2, IRS1

Table 4.  The three enriched (FDR < 0.05) Gene Ontology (GO) terms relevant to metabolism processes 
detected by a functional enrichment analysis of the top genomic feature (FDR < 0.01, log2(fold-
change) < −1) in Holstein (HOL) milk and fat yield.
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package in R/Bioconductor. The number of reads mapped to 24,616 Ensemble genes was counted using the func-
tion Feature-Counts in this package. The averaged uniquely mapping rate across all samples was 87.11%. The 
analysis of differential gene expression was conducted using edgeR52. The weighted trimmed means of M-values 
were used to normalize the count data. As the count data follow non-normal distributions and commonly exhibit 
a quadratic mean-variance relationship, a negative binomial generalized linear model (GLM) was used. To ensure 
stable inference, an empirical Bayes approach was applied to shrink gene-wise dispersions towards a common 
dispersion for all tested genes. The GLM allow adjustment for relevant factors in the experimental design, and 
the differential expression of each gene was determined based on a likelihood ratio test. Time (i.e., different 
time-points post-IMI) was considered as the only effect for the liver samples, whereas infection status (i.e., 
Infected and Control) was included in the model for the mammary gland samples. The statistical tests for each 
analysis were adjusted for multiple testing using the FDR method53.

Single-marker GWAS based on imputed sequence markers. The definitions of milk production 
traits (milk, protein, and fat yields) and mastitis resistance were standardized among the Nordic countries. The 
phenotypes used for the single-marker association analysis were de-regressed proofs (i.e., de-regressed breeding 
values) of 5,056 HOL, 4,310 RDC, and 1,231 JER cattle from routine genetic evaluation by Nordic Cattle Genetic 
Evaluation (http://www.nordicebv.info/). The average reliabilities of the de-regressed proofs for milk, fat, and pro-
tein yields and mastitis resistance were 0.95, 0.95, 0.95, and 0.85, respectively, in HOL; 0.95, 0.95, 0.95, and 0.83, 
respectively, in RDC; and 0.92, 0.92, 0.92, and 0.76, respectively, in JER. The details of the imputation from 50 K 
and High-Density (HD, 700 K) genotypes of these cattle to whole-genome sequence data have been described 
previously54. Briefly, a multi-breed reference of 3,383 individuals (1,222 HOL, 1,326 RDC, and 835 JER) with 
HD genotypes was used to impute individuals with 50 K genotypes to the HD level. Individuals with the imputed 
HD genotypes were then imputed to the whole-sequence level using a multi-breed reference of 1,222 individu-
als from run4 of the 1,000 Bull Genome project (288 HOL, 56 RDC, 61 JER and 743 individuals from different 
breeds)55 and private sequence data from Aarhus University (23 HOL, 30 RDC and 27 JER)54. IMPUTE2 v2.3.156 
was applied to impute 50 K to the HD level, and Minimac257 was used to impute HD to the whole-sequence level. 
Ultimately, a total of 15,355,382, 15,243,827, and 13,403,916 SNPs (minor allele frequency, MAF >  0.01 and devi-
ation from Hardy-Weinberg proportions > 10e-6) were included for GWAS in HOL, RDC, and JER, respectively.

An association analysis for the imputed sequence SNPs was performed using a two-step variance 
component-based approach, to account for population stratification, implemented in EMMAX58. The detailed 
information about this model was described by Kang et al.58. In the first step, the polygenic and residual variances 
were assessed using the following linear model:

µ= + +y a e1 Z , (1)

where y is a vector of phenotype (i.e., de-regressed proofs); 1 is a vector of ones; μ is the overall mean; Z is a design 
matrix relating phenotypes to random polygenic effects; a is a vector of random polygenic effects (i.e., breeding 
values), where a~N(0, σG a

2), and G is the genome relationship matrix constructed by EMMAX using HD geno-
types, excluding the chromosome harbouring the candidate SNP for controlling double fitting (i.e., fitting the 
SNP as a fixed effect for testing association and a random effect as part of the G)59, and σa

2 is the additive genetic 
variance; and e is the vector of residuals, where e~N(0, σI e

2), and I is an identity matrix. In the next step, the indi-
vidual sequence-level SNP effect was assessed using the following linear regression model:

GO term GO ID FDR Gene

negative regulation of cellular 
protein metabolic process GO:0032269 1.51E-5

ENSBTAG00000046540, SERPINA3-6, 
ENSBTAG00000007043, 
ENSBTAG00000007041, A2M, ITIH4, 
SOCS3

regulation of endopeptidase 
activity GO:0052548 2.50E-5

S100A8, S100A9, ENSBTAG00000046540, 
SERPINA3-6, ENSBTAG00000007043, 
ENSBTAG00000007041, A2M, ITIH4

enzyme inhibitor activity GO:0004857 3.02E-5
ENSBTAG00000046540, SERPINA3-6, 
ENSBTAG00000007043, 
ENSBTAG00000007041, A2M, SCGB1A1, 
ITIH4, SOCS3

inflammatory response GO:0006954 4.78E-7
CHI3L1, ALOX5AP, S100A8, S100A12, 
S100A9, ENSBTAG00000006354, A2M, 
ENSBTAG00000022394, LBP, ITIH4, 
SOCS3

detoxification GO:0098754 2.42E-6 ENSBTAG00000001595, S100A8, S100A9, 
ENSBTAG00000006354, CSN1S1, GPX3

defense response GO:0006952 3.22E-6

CHI3L1, ALOX5AP, S100A8, S100A12, 
S100A9, ENSBTAG00000006354, 
A2M, ENSBTAG00000022394, 
LBP, ENSBTAG00000048250, 
ENSBTAG00000005005, FGFBP1, ITIH4, 
SOCS3

Table 5.  The top six enriched (FDR < 0.05) Gene Ontology (GO) terms relevant to metabolism processes 
and the immune response detected by a functional enrichment analysis of the top genomic feature 
(FDR < 1e-3, log2(fold-change) > 2) in Holstein (HOL) protein yield.

http://www.nordicebv.info/
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ηµ= + +y xb1 , (2)

where y, μ, and 1 are as described above, x is a vector of imputed genotype dosages (ranging from 0 to 2), b is the 
allele substitution effect, and η is a vector of random residual deviates with (co)variance structure σ σ+G Ia e

2 2. A 
Bonferroni approach was used to correct multiple testing. After correction, the genome-wide significance thresh-
olds corresponding to an error rate of 0.05 were set at 3.3 ×  10−9, 3.3 ×  10−9, and 3.7 ×  10−9. Manhattan plots were 
created using qqman v.0.1.2 in the R package60. The genomic inflation statistic (lambda) of GWAS was calculated 
as the median of the resulting chi-squared test statistics divided by the expected median of the chi-squared distri-
bution with one degree of freedom (i.e., 0.454). The variance explained by an individual SNP was calculated as 
follows:

β= −H p p2 (1 ) , (3)s
2 2

where Hs
2 is the additive genomic variance explained by one SNP, p is the allele frequency, and β is the SNP effect 

estimated from GWAS.

Post-GWAS enrichment analysis. Considering the genes detected in RNA-Seq as genomic features, 
a post-GWAS analysis was performed based on the GWAS results, where test statistics were obtained for the 
association of each individual SNP. The imputed sequence SNPs were mapped to the bovine reference genome 
(UMD3.1). A genetic marker was considered as relevant to a gene if the chromosome position of the marker 
was between the start and end positions of the gene13. The following summary test statistic was calculated for a 
genomic feature:

∑=
=

T t ,
(4)sum

i

m

1

2
f

where mf is the number of markers located in a genomic feature, and t2 is the squared of t (i.e., the estimated effect 
of a marker divided by its standard error). The approach applied to test the association between a phenotype and 
a genomic feature has been described previously44,45. Briefly, the observed test statistic (e.g., t2) was first ranked 
based on the chromosome position of the markers, and a test statistic was then randomly chosen from this vector. 
All test statistics were moved to the new positions, with the remaining markers maintaining the original order, 
whereby the chosen statistic became the first. This uncoupled any associations between markers and genomic 
features while maintaining the correlation structure among the test statistics. Afterward, a new summary statistic 
of a genomic feature was calculated based on the original position of the feature. The permutation was repeated 
1,000 times for each studied genomic feature, and an empirical P-value was then calculated based on one-tailed 
tests of the proportion of randomly sampled summary statistics larger than that observed. Here, we used response 
genes detected in RNA-Seq to define genomic features. Genes were thus used as the sampling units in the per-
mutation procedure. Our previous simulation studies demonstrated that this post-GWAS method performs bet-
ter than or equal to other commonly used methods (e.g., count or score-based approaches) in most situations, 
whereby the genetic variations of the traits are controlled by a large number of loci with small effects44,45.

Genomic feature-variance component analysis. By grouping markers into two sets (the genomic fea-
ture and the remaining genome), a genomic feature linear mixed model (GFLM) was used to assess the joint 
contribution of a set of markers in a genomic feature to a phenotype. The model is

µ= + + +y g g e1 , (5)f r

where y is the vector of phenotype (i.e., de-regressed proofs), 1 is a vector of ones, μ is the overall mean, gf is the 
vector of genomic values captured by markers in the genomic feature, gr is the vector of genomic values captured 
by markers in the remaining genome, and e is the vector of residuals. The assumptions for all the random effects 
are given by
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where Gf and Gr are genomic relationship matrices, built based on the markers located in the genomic feature and 
the remaining genome, respectively. These G matrices were built using the second method described by 
VanRaden (2008)61. D is a diagonal matrix with diagonal elements equal to − r

r
1 2

2
, where r2 is the reliability of the 

de-regressed proof, and σf
2, σr

2, and σe
2 are the variance components accounted for by the markers in the genomic 

feature and the remaining genome and residuals, respectively.
The proportion of genomic variance explained by a genomic feature was calculated as

σ

σ σ
=

+
H ,

(7)

f
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Downstream bioinformatics analyses of DEG sets of interest. The genomic feature with the smallest 
P-value detected in HOL for each of the studied traits was considered to be of interest, and these features were 
subjected to functional enrichment analyses using a web-based tool, KOBAS2.062 (http://kobas.cbi.pku.edu.cn/
home.do). A hypergeometric gene set enrichment test, based on a gene ontology (GO) database, was applied, and 
the P-values for each cluster were corrected using the FDR method. The semantic similarities among the enriched 
GO terms (FDR <  0.05) were calculated using the SimRel approach63 implemented in REVIGO64 (http://revigo.
irb.hr/). The detailed information for assigning x and y coordinates to each GO term to ensure more semantically 
similar terms are close in the scatterplots has been previously described64. Briefly, a multidimensional scaling pro-
cedure was applied to initially place the GO terms based on an eigenvalue decomposition of the pairwise distance 
matrix of the GO terms, followed by a stress minimization step that iteratively enhances the agreement between 
the terms’ closeness and their semantic similarities in the two-dimensional space.

Availability of data. The RNA-Seq data were submitted to NCBI with the accession number GSE75379. 
All genomic annotation data defining gene regions are publicly available in Ensembl (ftp://ftp.ensembl.org/
pub/release-84/gtf/bos_taurus). The whole-genome sequencing data from the 1000 Bull Genomes Project are 
publicly available as sequence data at NCBI with SRA no. SRP039339 (http://www.ncbi.nlm.nih.gov/biopro-
ject/PRJNA238491) and variations in dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/). The phenotype 
and imputed sequence genotype data are available only upon agreement with the commercial breeding organ-
ization (http://www.vikinggenetics.com/) and should be requested directly from the authors or the breeding 
organization.
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