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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) is a global pandemic. Although much has been learned about the novel 
coronavirus since its emergence, there are many open questions related to tracking its spread, describing 
symptomology, predicting the severity of infection, and forecasting healthcare utilization. Free-text clinical notes 
contain critical information for resolving these questions. Data-driven, automatic information extraction models 
are needed to use this text-encoded information in large-scale studies. This work presents a new clinical corpus, 
referred to as the COVID-19 Annotated Clinical Text (CACT) Corpus, which comprises 1,472 notes with detailed 
annotations characterizing COVID-19 diagnoses, testing, and clinical presentation. We introduce a span-based 
event extraction model that jointly extracts all annotated phenomena, achieving high performance in identi-
fying COVID-19 and symptom events with associated assertion values (0.83–0.97 F1 for events and 0.73–0.79 F1 
for assertions). Our span-based event extraction model outperforms an extractor built on MetaMapLite for the 
identification of symptoms with assertion values. In a secondary use application, we predicted COVID-19 test 
results using structured patient data (e.g. vital signs and laboratory results) and automatically extracted symptom 
information, to explore the clinical presentation of COVID-19. Automatically extracted symptoms improve 
COVID-19 prediction performance, beyond structured data alone.   

1. Introduction 

As of December 20, 2020, there were over 75 million confirmed 
COVID-19 cases globally, resulting in 1.6 million related deaths [1]. 
Surveillance efforts to track the spread of COVID-19 and estimate the 
true number of infections remains a challenge for policy makers, 
healthcare workers, and researchers, even as testing availability in-
creases. Symptom information provides useful indicators for tracking 
potential COVID-19 infections and disease clusters [2]. Certain symp-
toms and underlying comorbidities have directed COVID-19 testing. 
However, the clinical presentation of COVID-19 varies significantly in 
severity and symptom profiles [3]. 

The most prevalent COVID-19 symptoms reported to date are fever, 
cough, fatigue, and dyspnea [4], but emerging reports identify addi-
tional symptoms, including diarrhea and neurological symptoms, such 
as changes in taste or smell [5–7]. Certain initial symptoms may be 
associated with higher risk of complications; in one study, dyspnea was 
associated with a two-fold increased risk of acute respiratory distress 

syndrome [8]. However, correlations between symptoms, positive tests, 
and rapid clinical deterioration are not well understood in ambulatory 
care and emergency department settings. 

Routinely collected information in the Electronic Health Record 
(EHR) can provide crucial COVID-19 testing, diagnosis, and symptom 
data needed to address these knowledge gaps. Laboratory results, vital 
signs, and other structured data results can easily be queried and 
analyzed at scale; however, more detailed and nuanced descriptions of 
COVID-19 diagnoses, exposure history, symptoms, and clinical decision- 
making are typically only documented in the clinical narrative. To 
leverage this textual information in large-scale studies, the salient 
COVID-19 and symptom information must be automatically extracted. 

This work presents a new corpus of clinical text annotated for 
COVID-19, referred to as the COVID-19 Annotated Clinical Text (CACT) 
Corpus. CACT consists of 1,472 notes from the University of Washington 
(UW) clinical repository with detailed event-based annotations for 
COVID-19 diagnosis, testing, and symptoms. The event-based annota-
tions characterize these phenomena across multiple dimensions, 
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including assertion, severity, change, and other attributes needed to 
comprehensively represent these clinical phenomena in secondary use 
applications. This work is part of a larger effort to use routinely collected 
data describing the clinical presentation of acute and chronic diseases, 
with two major aims; (1) to describe the presence, character, and 
changes in symptoms associated with clinical conditions, where delays 
or misdiagnoses occur in clinical practice and impact patient outcomes 
(e.g. infectious diseases, cancer) [9], and (2) to provide a more efficient 
and cost-effective mechanism to validate clinical prediction rules pre-
viously derived from large prospective cohort studies [10]. To the best of 
our knowledge, CACT is the first clinical data set with COVID-19 an-
notations, and it includes 29.9K distinct events. We present the first 
information extraction results on CACT using an end-to-end neural event 
extraction model, establishing a strong baseline for identifying COVID- 
19 and symptom events. We explore the prediction of COVID-19 test 
results (positive or negative) using structured EHR data and automati-
cally extracted symptoms and find that the automatically extracted 
symptoms improve prediction performance. 

2. Related work 

2.1. Annotated corpora 

Given the recent onset of COVID-19, there are limited COVID-19 
corpora for natural language processing (NLP) experimentation. 
Corpora of scientific papers related to COVID-19 are available [11,12], 
and automatic labels for biomedical entity types are available for some 
of these research papers [13]. However, we are unaware of corpora of 
clinical text with supervised COVID-19 annotations. 

Multiple clinical corpora are annotated for symptoms. As examples, 
South et al. [14] annotated symptoms and other medical concepts with 
negation (present/not present), temporality, and other attributes. 
Koeling et al. [15] annotated a pre-defined set of symptoms related to 
ovarian cancer. For the i2b2/VA challenge, Uzuner et al. [16] annotated 
medical concepts, including symptoms, with assertion values and re-
lations. While some of these corpora may include symptom annotations 
relevant to COVID-19 (e.g. “cough” or “fever”), the distribution and 
characterization of symptoms in these corpora may not be consistent 
with COVID-19 presentation. To fill the gap in clinical COVID-19 an-
notations and detailed symptom annotation, we introduce CACT to 
provide a relatively large corpus with COVID-19 diagnosis, testing, and 
symptom annotations. 

2.2. Medical concept and symptom extraction 

The most commonly used United Medical Language System (UMLS) 
concept extraction systems are the clinical Text Analysis and Knowledge 
Extraction System (cTAKES) [17] and MetaMap [18]. The National Li-
brary of Medicine (NLM) created a lightweight Java implementation of 
MetaMap, MetaMapLite, which demonstrated real-time speed and 
extraction performance comparable to or exceeding the performance of 
MetaMap, cTAKES, and DNorm [19]. In previous work, we built on 
MetaMapLite, incorporating assertion value predictions (e.g. present 
versus absent) using classifiers trained on the 2010 i2b2 challenge 
dataset to create the extraction pipeline referred to here as Meta-
MapLite++ [20]. MetaMapLite++ assigns each extracted UMLS Meta-
thesaurus concept an assertion value with an Support Vector Machine 
(SVM)-based assertion classifier that utilizes syntactic and semantic 
knowledge. The SVM assertion classifier achieved state-of-the-art 
assertion performance (Micro-F1 94.23) on the i2b2 2010 assertion 
dataset [21]. Here, we use MetaMapLite++ as a baseline for evaluating 
extraction performance for a subset of our annotated phenomena, 

specifically symptoms with assertion values, using the UMLS “Sign or 
Symptom” semantic type. The Mayo Clinic updated its rule-based 
medical tagging system, MedTagger [22], to include a COVID-19 spe-
cific module that extracts 18 phenomena related to COVID-19, including 
11 common COVID-19 symptoms with assertion values [23]. We do not 
use the COVID-19 MedTagger variant as a baseline, because our symp-
tom annotation and extraction is not limited to known COVID-19 
symptoms. 

2.3. Relation and event extraction 

There is a significant body of information extraction (IE) work 
related to coreference resolution, relation extraction, and event extrac-
tion tasks. In these tasks, spans of interest are identified, and linkages 
between spans are predicted. Many contemporary IE systems use end-to- 
end multi-layer neural models that encode an input word sequence using 
recurrent or transformer layers, classify spans (entities, arguments, etc.), 
and predict the relationship between spans (coreference, relation, role, 
etc.) [24–29]. Of most relevance to our work is a series of developments 
starting with Lee et al. [30], which introduces a span-based coreference 
resolution model that enumerates all spans in a word sequence, predicts 
entities using a feed-forward neural network (FFNN) operating on span 
representations, and resolves coreferences using a FFNN operating on 
entity span-pairs. Luan et al. [31] adapts this framework to entity and 
relation extraction, with a specific focus on scientific literature. Luan 
et al. [32] extends the method to take advantage both of co-reference 
and relation links in a graph-based approach to jointly predict entity 
spans, co-reference, and relations. By updating span representations in 
multi-sentence co-reference chains, the graph-based approach achieved 
state-of-the-art on several IE tasks representing a range of different 
genres. Wadden et al. [33] expands on Luan et al. [32]’s approach, 
adapting it to event extraction tasks. We build on Luan et al. [31] and 
Wadden et al. [33]’s work, augmenting the modeling framework to fit 
the CACT annotation scheme. In CACT, event arguments are generally 
close to the associated trigger, and inter-sentence events linked by co- 
reference are infrequent, so the graph-based extension, which adds 
complexity, is unlikely to benefit our extraction task. 

Many recent NLP systems use pre-trained language models (LMs), 
such as ELMo, BERT, and XLNet, that leverage unannotated text 
[34–36]. A variety of strategies for incorporating the LM output are used 
in IE systems, including using the contextualized word embedding 
sequence: as the input to a Conditional Random Field entity extraction 
layer [37], as the basis for building span representations [32,33], or by 
adding an entity-aware attention mechanism and pooled output states to 
a fully transformer-based model [38]. There are many domain-specific 
LM variants. Here, we use Alsentzer et al. [39]’s Bio+Clinical BERT, 
which is trained on PubMed papers and MIMIC-III [40] clinical notes. 

2.4. COVID-19 outcome prediction 

There are many pre-print and published works exploring the pre-
diction of COVID-19 outcomes, including COVID-19 infection, hospi-
talization, acute respiratory distress syndrome, need for intensive care 
unit (ICU), need for a ventilator, and mortality [41–53]. These COVID- 
19 outcomes are typically predicted using existing structured data 
within the EHR, including demographics, diagnosis codes, vitals, and lab 
results, although Izquierdo et al. [46] incorporates automatically 
extracted information from the existing EHRead tool. Our literature 
review identified 24 laboratory, vital sign, and demographic fields that 
are predictive of COVID-19 (see Table 7 in the Appendix details). While 
there are some frequently cited fields, there does not appear to be a 
consensus across the literature regarding the most prominent predictors 
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of COVID-19 infection. These 24 predictive fields informed the devel-
opment of our COVID-19 prediction work in Section 5. Prediction ar-
chitectures includes logistic regression, SVM, decision trees, random 
forest, K-nearest neighbors, Naïve Bayes, and multilayer perceptron 
[46,47,51–53]. 

3. Materials 

3.1. Data 

This work used inpatient and outpatient clinical notes from the UW 
clinical repository. COVID-19-related notes were identified by searching 
for variations of the terms coronavirus, covid, sars-cov, and sars-2 in notes 
authored between February 20-March 31, 2020, resulting in a pool of 
92K notes. Samples were randomly selected for annotation from a subset 
of 53K notes that include at least five sentences and correspond to the 
note types: telephone encounters, outpatient progress, emergency 
department, inpatient nursing, intensive care unit, and general inpatient 
medicine. Multiple note types were used to improve extraction model 
generalizability. 

Early in the outbreak, the UW EHR did not include COVID-19 specific 
structured data; however, structured fields indicating COVID-19 test 
types and results were added as testing expanded. We used these 
structured fields to assign a COVID-19 Test label describing COVID-19 
polymerase chain reaction (PCR) testing to each note based on patient 
test status within the UW system (no data external to UW was used):  

• none: patient testing information is not available  
• positive: patient will have at least one future positive test  
• negative: patient will only have future negative tests 

More nuanced descriptions of COVID-19 testing (e.g. conditional or 
unordered tests) or diagnoses (e.g. possible infection or exposure) are 
not available as structured data. For the 53K note subset, the COVID-19 
Test label distribution is 90.8% none, 7.9% negative, and 1.3% positive.1 

Given the sparsity of positive and negative notes, CACT is intentionally 
biased to increase the prevalence of these labels. To ensure adequate 
positive training samples, the CACT training partition includes 46% none, 
5% negative, and 49% positive notes. Ideally, the test set would be 
representative of the true distribution; however, the expected number of 
positive labels with random selection is insufficient to evaluate extraction 
performance. Consequently, the CACT test partition was biased to 
include 50% none, 46% negative, and 4% positive notes. Notes were 
randomly selected in equal proportions from the six note types. CACT 
includes 1,472 annotated notes, including 1,028 train and 444 test 
notes. 

3.2. Annotation scheme 

We created detailed annotation guidelines for COVID-19 and symp-
toms, using the event-based annotation scheme in Table 1. Each event 
includes a trigger that identifies and anchors the event and arguments 
that characterize the event. The annotation scheme includes two types of 
arguments: labeled arguments and span-only arguments. Labeled arguments 
(e.g. Assertion) include an argument span, type, and subtype (e.g. pre-
sent). The subtype label normalizes the span information to a fixed set of 
classes and allows the extracted information to be directly used in sec-
ondary use applications. Span-only arguments (e.g. Characteristics) 
include an argument span and type but do not include a subtype label, 
because the argument information is not easily mapped to a fixed set of 
classes. 

For COVID events, the trigger is generally an explicit COVID-19 
reference, like “COVID-19” or “coronavirus.” Test Status characterizes 
implicit and explicit references to COVID-19 testing, and Assertion cap-
tures diagnoses and hypothetical references to COVID-19. Symptom 
events capture subjective, often patient reported, indications of disor-
ders and diseases (e.g “cough”). For Symptom events, the trigger iden-
tifies the specific symptom, for example “wheezing” or “fever,” which is 
characterized through Assertion, Change, Severity, Anatomy, Characteris-
tics, Duration, and Frequency arguments. Symptoms were annotated for 
all conditions/diseases, not just COVID-19. Notes were annotated using 
the BRAT annotation tool [54]. Fig. 1 presents BRAT annotation 
examples. 

Most prior medical problem extraction work, including symptom 
extraction, focuses on identifying the specific problem, normalizing the 
extracted phenomenon, and predicting an assertion value (e.g. present 
versus absent). This approach omits many of the symptom details that 
clinicians are taught to document and that form the core of many clinical 
notes. This symptom detail describes change (e.g. improvement, wors-
ening, lack of change), severity (e.g. intensity and impact on daily ac-
tivities), particular characteristics (e.g. productive, dry, or barking for 
cough), and location. We hypothesize that this symptom granularity is 

Table 1 
Annotation guideline summary. * indicates the argument is required. † indicates 
at least one of the arguments, Test Status or Assertion, is required.  

Event 
type, e 

Argument 
type, a 

Argument subtypes, Ll  Span examples 

COVID Trigger* – “COVID,” 
“COVID-19” 

Test Status† {positive, negative, pending, 
conditional, not ordered, not 
patient, indeterminate} 

“tested positive” 

Assertion† {present, absent, possible, 
hypothetical, not patient} 

“positive,” “low 
suspicion” 

Symptom Trigger* – “cough,” 
“shortness of 
breath” 

Assertion* {present, absent, possible, 
conditional, hypothetical, not 
patient} 

“admits,” 
“denies” 

Change {no change, worsened, 
improved, resolved} 

“improved,” 
“continues” 

Severity {mild, moderate, severe} “mild,” “required 
ventilation” 

Anatomy – “chest wall,” 
“lower back” 

Characteristics – “wet 
productive,” 
“diffuse” 

Duration – “for two days,” 
“1 week” 

Frequency – “occasional,” 
“chronic”  

Fig. 1. BRAT annotation examples for COVID and Symptom (SSx) event types.  

1 The COVID-19 test positivity rate cannot be inferred from these label dis-
tributions, as there can be multiple test results associated with each note-level 
label. 
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needed for many clinical conditions to improve timely diagnosis and 
validate diagnosis prediction rules. 

3.3. Annotation scoring and evaluation 

Annotation and extraction is scored as a slot filling task, focusing on 
information most relevant to secondary use applications. Fig. 2 presents 
the same sentence annotated by two annotators, along with the popu-
lated slots for the Symptom event. Both annotations include the same 
trigger and Frequency spans (“cough” and “intermittent”, respectively). 
The Assertion spans differ (“presenting with” vs. “presenting”), but the 
assigned subtypes (present) are the same, so the annotations are equiv-
alent for purposes of populating a database. Annotator agreement and 
extraction performance are assessed using scoring criteria that reflects 
this slot filling interpretation of the labeling task. 

The Symptom trigger span identifies the specific symptom. For 
COVID, the trigger anchors the event, although the span text is not 
salient to downstream applications. For labeled arguments, the subtype 
label captures the most salient argument information, and the identified 
span is less informative. For span-only arguments, the spans are not 
easily mapped to a fixed label set, so the selected span contains the 
salient information. Performance is evaluated using precision (P), recall 
(R), and F1. 

Trigger: Triggers, Ti, are represented by a pair (event type, ei; token 
indices, xi). Trigger equivalence is defined as 

Ti ≡ Tjif(ei ≡ ej) ∧ (xi ≡ xj).

Arguments: Events are aligned based on trigger equivalence. The 
arguments of events with equivalent triggers are compared using 
different criteria for labeled arguments and span-only arguments. Labeled 
arguments, Li, are represented as a triple (argument type, ai; token 
indices, xi; subtype, li). For labeled arguments, the argument type, a, and 
subtype, l, capture the salient information and equivalence is defined as 

Li ≡ Ljif(Ti ≡ Tj) ∧ (ai ≡ aj) ∧ (li ≡ lj).

Span-only arguments, Si, are represented as a pair (argument type, ai; 
token indices, xi). Span-only arguments with equivalent triggers and 
argument types, (Ti ≡ Tj) ∧ (ai ≡ aj), are compared at the token-level 
(rather than the span-level) to allow partial matches. Partial match 
scoring is used as partial matches can still contain useful information. 

3.4. Annotation statistics 

CACT includes 1,472 notes with a 70%/30% train/test split and 
29.9K annotated events (5.4K COVID and 24.4K Symptom). Fig. 3 con-
tains a summary of the COVID annotation statistics for the train/test 
subsets. By design, the training and test sets include high rates of COVID- 
19 infection (present subtype for Assertion and positive subtype for Test 
Status), with higher rates in the training set. CACT includes high rates of 
Assertion hypothetical and possible subtypes. The hypothetical subtype 
applies to sentences like, “She is mildly concerned about the coronavi-

rus” and “She cancelled nexplanon replacement due to COVID-19.” The 
possible subtype applies to sentences like, “risk of Covid exposure” and 
“Concern for respiratory illness (including COVID-19 and influenza).” 
Test Status pending is also frequent. 

There is some variability in the endpoints of the annotated COVID 
trigger spans (e.g. “COVID” vs. “COVID test”); however 98% of the 
COVID trigger spans in the training set start with the tokens “COVID,” 
“COVID19,” or “coronavirus.” Since the COVID trigger span is only used 
to anchor and disambiguate events, the COVID trigger spans were 
truncated to the first token of the annotated span in all experimentation 
and results. 

The training set includes 1,756 distinct uncased Symptom trigger 
spans, 1,425 of which occur fewer than five times. Fig. 4 presents the 
frequency of the 20 most common Symptom trigger spans in the training 
set by Assertion subtypes present, absent, and other (possible, conditional, 
hypothetical, or not patient). The extracted symptoms in Fig. 4 were 
manually normalized to aggregate different extracted spans with similar 
meanings (e.g. “sob” and “short of breath” → “shortness of breath”; 
“febrile” and “fevers” → “fever”). Table 6 in the Appendix presents the 

Fig. 4. Most frequent symptoms in the training set broken down by Asser-
tion subtype. 

Fig. 3. COVID annotation summary.  

Fig. 2. Annotation examples describing event extraction as a slot filling task.  
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symptom normalization mapping, provided by a medical doctor. These 
20 symptoms account for 62% of the training set Symptom events. There 
is ambiguity in delineating between some symptoms and other clinical 
phenomena (e.g. exam findings and medical problems), which in-
troduces some annotation noise. 

Given the long tail of the symptom distribution and our desire to 
understand the more prominent COVID-19 symptoms, we focused 
annotator agreement assessment and extraction model training/evalu-
ation on the symptoms that occurred at least 10 times in the training set, 
resulting in 185 distinct, unnormalized symptoms that cover 82% of the 
training set Symptom events. The set of 185 symptoms was determined 
only using the training set, to allow unbiased experimentation on the 
test set. The subsequent annotator agreement and information extrac-
tion experimentation only incorporate these 185 most frequent 
symptoms. 

3.5. Annotator agreement 

All annotation was performed by four UW medical students in their 
fourth year. After the first round of annotation, annotator disagreements 
were carefully reviewed, the annotation guidelines were updated, and 
annotators received additional training. Additionally, potential COVID 
triggers were pre-annotated using pattern matching (“COVID,” “COVID- 
19,” “coronavirus,” etc.), to improve the recall of COVID annotations. 
Pre-annotated COVID triggers were modified as needed by the annota-
tors, including removing, shifting, and adding trigger spans. Fig. 5 
presents the annotator agreement for the second round of annotation, 
which included 96 doubly annotated notes. For labeled arguments, F1 
scores are micro-average across subtypes. 

4. Event extraction 

4.1. Methods 

Event extraction tasks, like ACE05 [55], typically require prediction 
of the following event phenomena:  

• trigger span identification  
• trigger type (event type) classification  
• argument span identification  
• argument type/role classification 

The CACT annotation scheme differs from this configuration in that 
labeled arguments require the argument type (e.g. Assertion) and the 
subtype (e.g. present, absent, etc.) to be predicted. Resolving the argu-
ment subtypes require a classifier with additional predictive capacity. 

We implement a span-based, end-to-end, multi-layer event extrac-
tion model that jointly predicts all event phenomena, including the 
trigger span, event type, and argument spans, types, and subtypes. Fig. 6 
presents our Span-based Event Extractor framework, which differs from 
prior related work in that multiple span classifiers are used to accom-
modate the argument subtypes. 

Each input sentence consists of tokens, X = {x1,x2, ...xn}, where n is 
the number of tokens. For each sentence, the set of all possible spans, S =

{s1,s2, ...sm}, is enumerated, where m is the number of spans with token 
length less than or equal to M tokens. The model generates trigger and 
argument predictions for each span in S and predicts the pairing be-
tween arguments and triggers to create events from individual span 
predictions. 

Input encoding: Input sentences are mapped to contextualized word 
embeddings using Bio+Clinical BERT [39]. To limit computational cost, 
the contextualized word embeddings feed into a bi-LSTM without fine 
tuning BERT (no backpropagation to BERT). The bi-LSTM has hidden 
size vh. The forward and backward states, ht,f and ht,b, are concatenated 
to form the 1 × 2vh dimensional vector ht = [ht,f , ht,b], where t is the 
token position. 

Span representation: Each span is represented as the attention 
weighted sum of the bi-LSTM hidden states. Separate attention mecha-
nisms, c, are implemented for trigger and each labeled argument, and a 
single attention mechanism is implemented for all span-only arguments, 
c ∈ {1,2…6} (1 for trigger, 4 for labeled arguments, and 1 for span-only 
arguments). The attention score for span representation c at token po-
sition t is calculated as 

αc,t = wα,chT
t (1)  

where wα,c is a learned 1 × 2vh vector. For span representation c, span i, 
and token position t, the attention weights are calculated by normalizing 
the attention scores as 

ac,i,t =
exp(αc,t)

∑end(si)

k=start(si)

exp(αc,k)

, (2)  

where start(si) and end(si) denote the start and end token indices of span 
si. Span representation c for span i is calculated as the attention- 

Fig. 5. Annotator agreement.  

Fig. 6. Span-based Event Extractor.  
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weighted sum of the bi-LSTM hidden state as 

gc,i =
∑end(si)

t=start(si)

ac,i,tht. (3) 

Span prediction: Similar to the span representations, separate span 
classifiers, c, are implemented for trigger and each labeled argument, 
and a single classifier predicts all span-only arguments, c ∈ {1,2…6} (1 
for trigger, 4 for labeled arguments, and 1 for span-only arguments). 
Label scores for classifier c and span i are calculated as 

ϕc(si) = ws,cFFNNs,c(gc,i), (4)  

where ϕc(si) yields a vector of label scores of size |Lc|,FFNNs,c is a non- 
linear projection from size 2vh to vs, and ws,c has size |Lc| × vs. The trigger 
prediction label set is Ltrigger = {null,COVID,Symptom}. Separate classi-
fiers are used for each labeled argument (Assertion, Change, Severity, and 
Test Status) with label set, Lc = {null ∪ Ll}, where Ll is defined in 
Table 1.2 For example, LSeverity = {null,mild,moderate, severe}. A single 
classifier predicts all span-only arguments with label set, Lspan− only = {

null,Anatomy,Characteristics,Duration,Frequency}. 
Argument role prediction: The argument role layer predicts the 

assignment of arguments to triggers using separate binary classifiers, d, 
for each labeled argument and one classifier for all span-only arguments, 
d ∈ {1,2,…5} (4 for labeled arguments and 1 for span-only arguments). 
Argument role scores for trigger j and argument k using argument role 
classifier d are calculated as 

ψd(sj, sk) = wr,dFFNNr,d([gj, gk]) (5)  

where ψd(sj, sk) is a vector of size 2, FFNNr,d is a non-linear projection 
from size 4vh to vr, and wr,d has size 2× vr. 

Span pruning: To limit the time and space complexity of the pair-
wise argument role predictions, only the top-K spans for each span 
classifier, c, are considered during argument role prediction. The span 
score is calculated as the maximum label score in ϕc, excluding the null 
label score. 

4.2. Model Configuration 

The model configuration was selected using 3-fold cross validation 
(CV) on the training set. Table 8 in the Appendix summarizes the 
selected configuration. Training loss was calculated by summing the 
cross entropy across all span and argument role classifiers. Models were 
implemented using the Python PyTorch module [56]. 

4.3. Data representation 

During initial experimentation, Symptom Assertion extraction per-
formance was high for the absent subtype and lower for present. The 
higher absent performance is primarily associated with the consistent 
presence of negation cues, like “denies” or “no.” While there are 
affirming cues, like “reports” or “has,” the present subtype is often 
implied by a lack of negation cues. For example, an entire sentence could 
be “Short of breath.” To provide the Symptom Assertion span classifier 
with a more consistent span representation, we replaced each Symptom 
Assertion span (token indices) with the Symptom trigger span in each 
event and found that performance improved. We extended this trigger 
span substitution approach to all labeled arguments (Assertion, Change, 
Severity, and Test Status) and found performance improved. By 
substituting the trigger spans for the labeled argument spans, trigger and 
labeled argument prediction is roughly treated as a multi-label classifi-
cation problem, although the model does not constrain trigger and 
labeled argument predictions to be associated with the same spans. As 
previously discussed, the scoring routine does not consider the span 
indices of labeled arguments. 

4.4. Results 

Table 2 presents the event extraction performance on the training set 
using CV and the withheld test set. Extraction performance is similar on 
the train and test sets, even though the training set has higher rates of 
COVID-19 positive notes. COVID trigger extraction performance is very 
high (0.97 F1) and comparable to the annotator agreement (0.95 F1). 
The COVID Assertion performance (0.73 F1) is higher than Test Status 
performance (0.62 F1), which is likely due to the more consistent 
Assertion annotation. Symptom trigger and Assertion extraction perfor-
mance is high (0.83 F1 and 0.79 F1, respectively), approaching the 
annotator agreement (0.86 F1 and 0.83 F1, respectively). Anatomy 
extraction performance (0.61 F1) is lower than expected, given the high 
annotator agreement (0.81 F1). Duration extraction performance is 
comparable to annotator agreement, and Frequency extraction perfor-
mance is lower than annotation agreement. Change, Severity, and Char-
acteristics extraction performance is low, again likely related to low 
annotator agreement for these cases. 

Existing symptom extraction systems do not extract all of the phe-
nomena in the CACT annotation scheme; however, we compared the 
performance of our Span-based Event Extractor to MetaMapLite++ for 
symptom identification and assertion prediction. MetaMapLite++ is an 
analysis pipeline that includes a UMLS concept extractor with assertion 
prediction [20]. Table 3 presents the performance of MetaMapLite++

on the CACT test set. The spans associated with medical concepts in 
MetaMapLite++ differ slightly from our annotation scheme. For 
example, “dry cough” was extracted by MetaMapLite++ as a symptom, 

Table 2 
Extraction performance.  

Event type Argument Train-CV Test 

# Gold P R F1 # Gold P R F1 

COVID Trigger 3,931 0.95 0.97 0.96 1,497 0.96 0.97 0.97 

Assertion 2,936 0.70 0.74 0.72 1,075 0.72 0.74 0.73 
Test Status 1,068 0.60 0.62 0.61 457 0.63 0.60 0.62  

Symptom Trigger 13,823 0.82 0.85 0.83 5,789 0.81 0.85 0.83 

Assertion 13,833 0.77 0.79 0.78 5,791 0.77 0.80 0.79 
Change 739 0.45 0.03 0.06 341 0.45 0.05 0.09 
Severity 743 0.47 0.30 0.37 327 0.45 0.31 0.37 

Anatomy 3,839 0.76 0.59 0.66 1,959 0.78 0.50 0.61 
Characteristics 3,145 0.59 0.26 0.36 1,441 0.66 0.25 0.36 
Duration 3,744 0.62 0.44 0.51 1,344 0.54 0.56 0.55 
Frequency 801 0.64 0.39 0.48 250 0.60 0.51 0.55  

2 The assertion classifier uses the larger label set associateed with Symptom. 
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whereas our annotation scheme labels “cough” as the symptom and 
“dry” as a characteristic. To account for this difference, Table 3 presents 
the performance of MetaMapLite++ for two trigger equivalence criteria: 
(1) exact match for triggers is required, as defined in Section 3.3 and 2) 
any overlap for triggers is considered equivalent. The Span-based Event 
Extractor outperforms MetaMapLite++ for symptom identification 
precision (0.81 vs. 0.66), recall (0.85 vs. 0.67), and F1 (0.83 vs. 0.66), 
even when MetaMapLite++ is evaluated with the more relaxed any 
overlap trigger scoring. The lower recall of MetaMapLite++ is partially 
the result of the UMLS not including symptom acronyms and abbrevi-
ations that frequently occur in our data, for example “N/V/D” for 
“nausea, vomiting, and diarrhea.” Table 3 only reports the performance 
for the UMLS “Sign or Symptom” semantic type. When all UMLS se-
mantic types are used, the recall improves; however, the precision is 
extremely low (P = 0.02 − 0.03) 3. 

Table 4 presents the assertion prediction performance for both sys-
tems, only considering the subset of predictions with exact trigger 
matches (i.e. assertion prediction performance is assessed without 
incurring penalty for trigger identification errors). The number of gold 
assertion labels (“# Gold”) is greater for the Span-based Event Extractor, 
because more of the symptom triggers predictions are correct. The Span- 
based Event Extractor outperforms MetaMapLite++ in assertion pre-
diction precision (0.95 vs. 0.81), recall (0.94 vs. 0.81), and F1 (0.94 vs. 
0.81). MetaMapLite++’s lower performance is partly the result of dif-
ferences between the distribution of assertion labels in CACT and the 
dataset used to train MetaMapLite++’s assertion classifier (2010 i2b2). 

5. COVID-19 prediction application 

The creation of the CACT Corpus and the Span-based Event Extractor 
is motivated by our larger effort to explore the clinical presentation of 
diseases through the comprehensive representation of symptoms across 
multiple dimensions. This section utilizes a subset of the extracted in-
formation to predict positive COVID-19 infection status among in-
dividuals presenting to clinical settings for COVID-19 testing. This 
experimentation uses COVID-19 test results to distinguish between 
COVID-19 negative and COVID-19 positive patients with the goals of 
identifying the clinical presentation of COVID-19 and investigating the 
predictive power of symptoms. Improved understanding of the clinical 
presentation of COVID-19 has the potential to improve risk stratification 
of patients presenting for COVID-19 testing (by increasing or decreasing 
their pre-test probability), and thus guide diagnostic testing and clinical 
decision making. 

5.1. Data 

An existing clinical data set from the UW from January 2020 through 
May 2020 was used to explore the prediction of COVID-19 test results 
and identify the most prominent predictors of COVID-19. The data set 
represents 230K patients, including 28K patients with at least one 
COVID-19 PCR test result. The data set includes telephone encounters, 

outpatient progress notes, and emergency department (ED) notes, as 
well as structured data (demographics, vitals, laboratory results, etc.). 

For each patient in this data set, all of the COVID-19 tests with either 
a positive or negative result and at least one note within the seven days 
preceding the test result were identified. Only COVID-19 tests with a 
note within the previous seven days are included in experimentation, to 
improve the robustness of the COVID-19 symptomology exploration. 
Each of these test results was treated as a sample in this binary classi-
fication task (positive or negative). The likelihood of COVID-19 posi-
tivity was predicted using structured EHR data and notes within a 7-day 
window preceding the test result. The pairing of notes and COVID-19 
test results was independently performed for each of the note types 
(ED, outpatient progress, and telephone encounter notes). From this 
pool of data, we identified the following test counts by note type: 2,226 
negative and 148 positive for ED; 7,599 negative and 381 positive for 
progress; and 7,374 negative and 448 positive for telephone. Within the 
7-day window of this subset of COVID-19 test results, there are 5.3K ED, 
14.5K progress, and 27.5K telephone notes. This data set has some 
overlap with the data set used in Section 4.1 but is treated as a separate 
data set in this COVID-19 prediction task. The notes in the CACT training 
set are less than 1% of the notes used in this secondary use application. 

5.2. Methods 

Features: Symptom information was automatically extracted from 
the notes using the Span-based Event Extractor trained on CACT.4 The 
extracted symptoms were normalized using the mapping in Table 6 in 
the Appendix. Each extracted symptom with an Assertion value of 
“present” was assigned a feature value of 1. The 24 identified predictors 
of COVID-19 from existing literature (see Section 2) were mapped to 32 
distinct fields within the UW EHR and used in experimentation. Iden-
tified fields are listed in Table 9 of the Appendix. For the coded data (e.g. 
structured fields like “basophils”), experimentation was limited to this 
subset of literature-supported COVID-19 predictors, given the limited 
number of positive COVID-19 tests in this data set. 

Within the 7-day history, features may occur multiple times (e.g. 
multiple temperature measurements). For each feature, the series of 
values was represented as the minimum or maximum of the values 
depending on the specific feature. For example, temperature was rep-
resented as the maximum of the measurements to detect any fever, and 
oxygen saturation was represented as the minimum of the values to 
capture any low oxygenation events. Table 9 in the Appendix includes 
the aggregating function, f , used for each field. 

Where symptom features were missing, the feature value was set to 0. 
For features from the structured EHR data, which are predominantly 
numerical, missing features were assigned the mean feature value in the 
set used to train the COVID-19 prediction model. 

Model: COVID-19 was predicted using the Random Forest frame-
work, because it facilitates nonlinear modeling with interdependent 
features and interpretability analyses (Scikit-learn Python implementa-
tion used [57]). Alternative prediction algorithms include Logistic 
Regression, SVM, and FFNN. Logistic Regression assumes feature inde-
pendence and linearity, which is not valid for this task. For example, the 
feature set includes both the symptom “fever” and temperature 

Table 4 
Symptom Assertion comparison for events with equivalent triggers (exact span 
match).  

Model # Gold P R F1 

MetaMap++ 3,152 0.81 0.81 0.81 
Span-based Event Extractor 4,952 0.95 0.94 0.94  

Table 3 
MetaMapLite++ extraction performance for Symptom trigger and Assertion.  

Case Agument P R F1 

Exact trigger match Trigger 0.53 0.54 0.54  
Assertion 0.43 0.44 0.44  

Any triggers overlap Trigger 0.66 0.67 0.66 
Assertion 0.54 0.55 0.54  

3 In the UMLS, 15% of the unique gold symptoms in the CACT training set are 
covered when only the “Sign or Symptom” semantic type is used. The UMLS 
coverage increases to 48% when all semantic types are used, and the unique 
gold symptoms occur in 76 different UMLS semantic types. 

4 Only automatically extracted symptom data were used. No supervised 
(hand annotated) labels were used. 
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measurements (e.g. “38.6◦C”). Model interpretability is less clear with 
SVM, and the number of positive test samples is relatively small for a 
FFNN. 

The relative importance of features in predicting COVID-19 was 
explored using Lundberg et al. [58]’s SHAP (SHapley Additive exPla-
nations) approach, which is implemented in the SHAP Python module.5 

SHAP generates interpretable, feature-level explanations for nonlinear 
model predictions. For each prediction, SHAP feature scores are esti-
mated, where larger absolute scores indicate higher importance, and the 
absolute values of the scores sum to 1.0 for each prediction. 

Experimental paradigm: The available data was split into train/test 
sets using an 80%/20% split by patient, although training and evalua-
tion was performed at the test-level (i.e. each COVID-19 test result is a 
sample). Performance was evaluated using the receiver operating 
characteristic (ROC) and the associated area under the curve (AUC). 
Given the relatively small number of positive samples, the train/test 
splits were randomly created 1,000 times through repeated hold-out 
testing [59]. Kim [59] demonstrated that repeated hold-out testing 
can improve the robustness of the results in low resource settings. For 
each train/test split, the AUC was calculated, and an average AUC was 
calculated across all hold-out iterations. The random holdout iterations 
yield a distribution of AUC values, which facilitate significance testing. 
The significance of the AUC performance was assessed using a two-sided 
T-test. The Random Forest models were tuned using 3-fold cross vali-
dation on the training set and evaluated on the withheld test set. COVID- 
19 prediction experimentation included three feature sets: structured (32 
structured EHR fields), notes (automatically extracted symptoms), and 
all (combination of structured fields and automatically extracted 
symptoms). Separate models were trained and evaluated for each note 
type (ED, progress, and telephone) and feature set (structured, notes, and 
all). The selected Random Forest hyperparameters are summarized in 
Table 10 in the Appendix. 

5.3. Results 

Fig. 7 presents the ROC for the COVID-19 predictors with the average 
AUC across repeated hold-out partitions. The AUC evaluates model 
performance across all operating points, including operating points that 

are not clinically significant, for example extremely low true positive 
rate (TPR). To address this AUC limitation and provide an alternative 
method for comparing feature sets, we selected a fixed operating point 
on the ROC, comparing the false positive rate (FPR) at a specific TPR. We 
selected a TPR (sensitivity) of 80%, as a value that has clinical value for 
identifying individuals with COVID-19, and we examined the FPR 
(specificity) at this fixed TPR. In this use case, we are attempting to see 
how well structured EHR fields and symptoms perform compared to the 
reference standard of a laboratory PCR test. 

Table 5 presents the FPR at TPR=0.80, including the FPR mean and 
standard deviation across the repeated holdout iterations. Lower FPRs 
(better performance) are achieved for all three note types, when auto-
matically extracted symptoms are added to the structured data. We 
would not expect a combination of clinical features to have particularly 
high sensitivity. Smith et al. [60] achieved similar performance in pre-
dicting COVID-19 using clinical prediction rules. While detecting 
COVID-19 in 80% of patients with the disease, the inclusion of auto-
matically extracted symptoms decreases the FPR (the “cost”) by 2-7 
percentage points. For all note types, the inclusion of the automati-
cally extracted symptom information (all feature set) improves perfor-
mance over structured data only (structured-only feature set) for both 
AUC and FPR@TPR=0.80 with significance (p < 0.001 per two-sided T- 
test). The structured features achieve higher performance in the ED note 
experimentation, than experimentation with progress and telephone 
notes, due to the higher prevalence of vital sign measurements and 

Fig. 7. Receiver operating characteristic by note type and feature set combination for repeated hold-out iterations. The solid line indicates the average ROC, and the 
shaded region around the solid line indicates one standard deviation. 

Table 5 
COVID-19 prediction false positive rate at a true positive rate of 80%.  

Note type Feature type FPR @ TPR ¼ 0.80 

ED structured 0.48 ± 0.09   
symptoms 0.63 ± 0.12   
all 0.41 ± 0.10   

Progress structured 0.64 ± 0.05   
symptoms 0.64 ± 0.05   
all 0.58 ± 0.06   

Telephone structured 0.66 ± 0.04   
symptoms 0.71 ± 0.03   
all 0.64 ± 0.05   

5 https://pypi.org/project/shap/ 
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laboratory testing in proximity to ED visits. In ED note experimentation, 
over 99% of samples include vital signs and 72% include blood work. In 
progress and telephone note experimentation, 23-38% of samples in-
cludes vital signs and 19-26% include blood work. The automatically 
extracted symptoms are especially important in clinical contexts, like 
outpatient and tele-visit, where vital signs, laboratory results, and other 
structured data are less available. 

Fig. 8 presents a SHAP value plot for the five most predictive features 
from a single Random Forest model from the ED note experimentation 
with the all feature set. In this SHAP plot, each point represents a single 
test prediction, and the SHAP value (x-axis) describes the feature 
importance. Positive SHAP values indicate support for COVID-19 posi-
tivity, and negative values indicate support for negative test result. The 
color coding indicates the feature value, where red indicates higher 
feature values and blue indicates lower feature values. For example, 
high and moderate basophils values (coded in red and purple, respec-
tively) have negative SHAP values, indicating support COVID-19 nega-
tivity. Low basophils values (coded in blue) have positive SHAP values, 
indicating support COVID-19 positivity. 

Given the relatively small sample size and low proportion of positive 
COVID-19 tests, the SHAP impact values presented in Fig. 8 were 
aggregated across repeated hold-out runs. Fig. 9 presents the averaged 
SHAP values for each repeated hold-out run for the eight most predictive 

features for the all feature set. For each repeated hold-out run, the ab-
solute value of the SHAP values were averaged, yielding a single feature 
score per repetition. The mean SHAP values (x-axis) represents the 
importance of the feature in predicting COVID-19, where positive values 
indicate a positive correlation between the feature values and COVID-19 
positivity and negative values indicate a negative correlation. The most 
predictive features vary by note type, although fever is a prominent 
indicator of COVID-19 across note types. For each note type, the top five 
symptoms indicating COVID-19 positivity include: ED - fever, cough, 
myalgia, fatigue, and flu-like symptoms; progress - fever, myalgia, res-
piratory symptoms, cough, and ill; and telephone - fever, cough, 
myalgia, fatigue, and sore throat. The differences in symptom impor-
tance by note type reflects differences in documentation in the clinical 
settings (e.g., emergency department, outpatient, and tele-visit). 

6. Conclusions 

We present CACT, a novel corpus with detailed annotations for 
COVID-19 diagnoses, testing, and symptoms. CACT includes 1,472 
unique notes across six note types with more than 500 notes from pa-
tients with future positive COVID-19 tests. We implement the Span- 
based Event Extractor, which jointly extracts all annotated phenom-
ena, including argument types and subtypes. The Span-based Event 

Fig. 9. Distribution of averaged SHAP values by note type with the all feature set. The vertical lines in each violin indicate the quartiles. * indicates the feature is an 
automatically extracted symptom. 

Fig. 8. SHAP plot for a single Random Forest model from the ED note experimentation with the all feature set, explaining the importance of features in making 
predictions for the withheld test set. * indicates the feature is an automatically extracted symptom. 

K. Lybarger et al.                                                                                                                                                                                                                               



Journal of Biomedical Informatics 117 (2021) 103761

10

Extractor achieves near-human performance in the extraction of COVID 
triggers (0.97 F1) and Symptom triggers (0.83 F1) and Assertions (0.79 
F1). The performance of several attributes (e.g. Change, Severity, Char-
acteristics, Duration, and Frequency) is lower than that of Assertion. This 
lower performance may partly be due to the focus on COVID-19, where 
clinicians’ notes: (1) are highly structured around the presence/absence 
of a certain set of symptoms, (2) usually describe a single consultation 
per patient within 7 days of COVID-19 testing, and (3) focus on assessing 
the need for COVID-19 testing and in-person ambulatory or ED care. 

In a COVID-19 prediction task, automatically extracted symptom 
information improved the prediction of COVID-19 test results (with 
significance) beyond just using structured data, and the top predictive 
symptoms include fever, cough, and myalgia. This application is limited 
by the size and scope of the available data. CACT only includes notes 
from early in the COVID-19 pandemic (February-March 2020), and our 
understanding of the presentation of COVID-19 has evolved since that 
time. CACT was annotated for all symptoms described in the clinical 
narrative, not just known symptoms of COVID-19, so the annotated 
symptoms cover most of the symptoms currently known to be associated 
with COVID-19. However, CACT includes infrequent references to losses 
of taste or smell. Additional annotation of notes from later in the 
pandemic is needed to address this gap. 

In future work, the extractor will be applied to a much larger set of 
clinical ambulatory care and ED notes from UW. The extracted symptom 
information will be combined with routinely coded data (e.g. diagnosis 
and procedure codes, demographics) and automatically extracted data 
(e.g. social determinants of health [61]). Using these data, we will 
develop models for predicting risk of COVID-19 infection. These models 
could better inform clinical indications for prioritizing testing, and the 
presence or absence of certain symptoms can be used to inform clinical 
care decisions with greater precision. This future work may also identify 
combinations of symptoms (including their presence, absence, severity, 
sequence of appearance, duration, etc.) associated with clinical out-
comes and health service utilization, such as deteriorating clinical 
course and need for repeat consultation or hospital admission. The use of 
detailed symptom information will be highly valuable in informing these 
models, but potentially only with the level of nuance that our extraction 
models provide. For the COVID-19 pandemic, we anticipate that the 
extraction model presented here will be of increasing value to clinical 
researchers, as the need to distinguish COVID-19 from other viral and 
bacterial respiratory infections becomes more necessary. As the 
pandemic subsides with widespread vaccination, we will return to the 
more typical “winter respiratory infection/influenza” seasons, where 
routine medical care involves differentiating COVID-19 from many 
other types of viral infections and identifying individuals that require 
COVID-19 testing. Symptom extraction models, like the model presented 
here, may provide the data needed to determine risk of certain infections 
and triage the need for testing. 

We intend to explore the value of this symptom annotation scheme 
and extraction approach for clinical conditions where multiple consul-
tations lead to a time point in the diagnosis pathway and symptom at-
tributes, like change and severity, are even more important. We are 
especially interested in medical conditions for which delayed or missed 
diagnoses are known to lead to patient harm [9]. We intend to examine 
data sets associated with other acute and chronic conditions to investi-
gate symptom patterns that could be used to more efficiently and 
accurately identify patients with these conditions. Specifically, we 
intend to further develop the symptom extractor to reduce diagnostic 
delay for lung cancer, which is known to present at a later stage. Lung 
cancer diagnosis often occurs after many consultations in ambulatory 
settings, and there may be opportunities to more quickly identify high- 
risk individuals based on symptoms. 
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Appendix A 

Tables 6–10. 

Table 6 
Expert-derived mapping of symptoms to canonical forms.  

Normalized 
symptom 

Symptom variants 

altered mental 
status 

ams, confused, confusion 

anxiety agitated, agitation, anxious 
arthralgia arthralgias 
bleeding bleed, blood, bloody 
bruising bruise, bruises, ecchymosis 
chest pain cp 
chills chill 
cough c, c., cough cough, coughing, coughs, distress coughing, 

distressed coughing 
cramping cramps 
decreased appetite loss of appetite, poor appetite, poor p.o. intake, poor po 

intake, reduced appetite 
deformities deformity 
dehydration dehydrated 
diarrhea d, d., diarrhea stools, loose stools 
disharge drainage 
distended distention 
dysphagia difficulty swallowing, dysphagia symptoms 
erythema erythematous, redness 
exudates exudate 
fall falls 
fatigue drowsiness, drowsy, fatigued, somnolence, somnolent, tired, 

tiredness 
fever f, f., febrile, fevers 
flu-like symptoms flu - like symptoms, influenza - like symptoms 
gi symptoms abdominal symptoms 
headache ha, headaches 
heartburn gerd symptoms, heartburn symptoms 
hematochezia brbpr 
ill ill - appearing, ill appearing, ill symptoms, illness, sick 
incontinent incontinence 
irritation irritable 
itching itchy 
lethargy lethargic 
lightheadedness dizziness, dizzy, headedness, lightheaded 
myalgia ache, aches, aching, bodyaches, myalgias 
nausea n, n., nauseated, nauseous 
pain discomfort, painful, pains 
pruritus pruritis 
rash rashes 
respiratory 

symptoms 
uri symptoms 

runny nose rhinorrhea 
seizures seizure, seizures 

(continued on next page) 
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Table 6 (continued ) 

Normalized 
symptom 

Symptom variants 

shortness of breath ___shortness of breath, difficult breathing, difficulty 
breathing, difficulty of breathing, distress breathing, 
distressed breathing, doe, dsypnea, dypsnea, dyspnea, 
dyspnea exertion, dyspnea on exertion, increase work of 
breathing, increased work of breathing, out of breath, 
respiratory distress, short of breath, shortneses of breath, 
shortness breath, shortness of breaths, sob, sob on exertion, 
trouble breathing, work of breathing 

sore throat pharyngitis 
soreness sore 
sputum sputum production 
sweats diaphoresis, nightsweats, sweating 
swelling edema, oedema, swollen 
syncope fainting 
tenderness tender 
tremors tremor 
ulcers ulcer, ulceration, ulcerations 
urinary symptoms urinary 
urination urinating 
vomiting emesis, v, v., vomitting 
weakness weak 
wheezing wheeze, wheezes 
wounds wound  

Table 7 
Demographic, vital signs, and laboratory fields that are predictive of 
COVID-19 infection in current literature.  

Parameter Sources 

age [47,48,51,52] 
alanine aminotransferase (ALT) [49,51] 
albumin [50] 
alkaline phosphatase (ALP) [51] 
aspartate aminotransferase (AST) [47,49,51] 
basophils [51] 
calcium [47] 
C-reactive protein (CRP) [47,49,50] 
D-dimer [49] 
eosinophils [49,51] 
gamma-glutamyl transferase (GGT) [51] 
gender [52] 
heart rate [47] 
lactate dehydrogenase (LDH) [49–51] 
lymphocytes [48–52] 
monocytes [51] 
neutrophils [48,49,51,52] 
oxygen saturation [47] 
platelets [51] 
prothrombin time (PT) [49] 
respiratory rate [47] 
temperature [47,48,52] 
troponin [49] 
white blood cell (WBC) count [47,51,52]  

Table 8 
Hyperparameters for the Span-based Event Extractor.  

Parameter Value 

Maximum sentence length, n 30 
Maximum span length, M 6 
Top-K spans per classifier sentence token count 
Batch size 100 
Number of epochs 100 
Learning rate 0.001 
Optimizer Adam 
Maximum gradient L2-norm 100 
BERT embedding dropout 0.3 
bi-LSTM hidden size, vh  200 
bi-LSTM activation function tanh 
bi-LSTM dropout 0.3 
Span classifier projection size, vs  100 
Span classifier activation function ReLU 
Span classifier dropout 0.3 
Role classifier projection size, vr  100 
Role classifier activation function ReLU 
Role classifier dropout 0.3  

Table 9 
Structured fields from UW EHR used to predict COVID-19 infection. f indicates 
the function used to aggregate multiple measurements/values. Fields that 
measure the same phenomena and were treated as a single feature, resulting in 
29 distinct structured EHR fields: {“Temperature - C,” “Temperature (C)”}, 
{“HR,” “Heart Rate”}, and {“O2 Saturation (%),” “Oxygen Saturation”}. All 
fields numerical (e.g. “Temperature (C)” =38.1), except “Troponin I Interpre-
tation” and ”Gender”.  

Parameter Fields in UW EHR f  

age “AgeIn2020” max 
ALT “ALT (GPT)” max 
albumin “Albumin” min 
ALP “Alkaline Phosphatase (Total)” max 
AST “AST (GOT)” max 
basophils “Basophils” and “% Basophils” min 
calcium “Calcium” min 
CRP “CRP, high sensitivity” max 
D-dimer “D_Dimer Quant” max 
eosinophils “Eosinophils” and “% Eosinophils” min 
GGT “Gamma Glutamyl Transferase” max 
gender “Gender” last 
heart rate “Heart Rate” and “HR” max 
LDH “Lactate Dehydrogenase” max 
lymphocytes “Lymphocytes” and “% Lymphocytes” min 
monocyptes “Monocytes” max 
neutrophils “Neutrophils” and “% Neutrophils” max 
oxygen saturation “Oxygen Saturation” and “O2 Saturation (%)” min 
platelets “Platelet Count” min 
PT “Prothrombin Time Patient” and “Prothrombin INR” max 
respiratory rate “Respiratory Rate” max 
temperature “Temperature - C” and “Temperature (C)” max 
troponin “Troponin_I” and “Troponin_I Interpretation” max 
WBC count “WBC” min  
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