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Abstract

Although the number of available protein sequences is growing exponentially, functional

protein annotations lag far behind. Therefore, accurate identification of protein functions

remains one of the major challenges in molecular biology. In this study, we presented a

novel approach to predict mouse protein functions. The approach was a sequential combi-

nation of a similarity-based approach, an interaction-based approach and a pseudo amino

acid composition-based approach. The method achieved an accuracy of about 0.8450 for

the 1st-order predictions in the leave-one-out and ten-fold cross-validations. For the results

yielded by the leave-one-out cross-validation, although the similarity-based approach alone

achieved an accuracy of 0.8756, it was unable to predict the functions of proteins with no

homologues. Comparatively, the pseudo amino acid composition-based approach alone

reached an accuracy of 0.6786. Although the accuracy was lower than that of the previous

approach, it could predict the functions of almost all proteins, even proteins with no homo-

logues. Therefore, the combined method balanced the advantages and disadvantages of

both approaches to achieve efficient performance. Furthermore, the results yielded by the

ten-fold cross-validation indicate that the combined method is still effective and stable when

there are no close homologs are available. However, the accuracy of the predicted functions

can only be determined according to known protein functions based on current knowledge.

Many protein functions remain unknown. By exploring the functions of proteins for which the

1st-order predicted functions are wrong but the 2nd-order predicted functions are correct, the

1st-order wrongly predicted functions were shown to be closely associated with the genes

encoding the proteins. The so-called wrongly predicted functions could also potentially be

correct upon future experimental verification. Therefore, the accuracy of the presented

method may be much higher in reality.
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1 Introduction

Recent advances in sequencing technology have identified a large number of proteins that per-

form a wide variety of functions in cellular activities. Knowledge of protein function is crucial

to understanding the mechanisms behind cellular processes and preventing and treating dis-

ease. However, most of the proteins identified to date have unknown functions. Approximately

1% of the more than 13 million protein sequences available have been experimentally anno-

tated with essential functions; the remaining proteins have been marked with putative, unchar-

acterized, hypothetical, unknown or inferred functions [1]. Although physical experimental

approaches, including high-throughput screening, are capable of determining the biological

functions of proteins, they are expensive and time-consuming. Additionally, these methods

are aimed at certain functions, which produce one-sided descriptions of protein function [2].

Computational approaches can make up for the deficiencies of experiments. Following the

success of the computational approach in sequence alignment and comparison, many compu-

tational techniques have been presented to determine protein functions during the last decade

[3]. The most commonly applied approach is to transfer functional annotation from the most

similar protein with known functional information. Both sequence and structural similarities

are heavily utilized in this type of homology-based annotation transfer. To infer protein func-

tion, the servers OntoBlast [4] and GoFigure [5] use the sequence alignment tool BLAST [6].

Confunc [7], the protein function prediction (PFP) algorithm [8] and the extended similarity

group method (ESG) [9] employ the sequence alignment tool PSI_BLAST [10]. The Blast2GO

suite is the homology transfer-based functional annotation of the gene ontology vocabulary

[11]. Similar to the sequence similarity-based method, the structure similarity-based approach

generally uses structure alignments via programs such as DaliLite [12–14], STRUCTAL [15],

MultiProt [16], Bioinfo3D [17], and 3DCoffee [18] to measure homology among proteins.

PHUNCTIONER [19] utilizes structural alignment to identify crucial positions in a protein

that might hold clues to specific functions. Pegg et al. [20] constructed a structure-function

link database and used it to correct the errors in the annotation of enzymes. Some researchers

have attempted to combine the sequence and structure similarity approaches to explore pro-

tein function. For example, the FRalanyzer [21] uses sequence-structure alignments to eluci-

date protein function.

Recently, a large body of protein-protein interaction networks has become available to

explore the functional relationships between interacting proteins. There are many computa-

tional models for predicting protein-protein interactions [22–24]. The commonly accepted

hypothesis (called guilt-by-association (GBA) [25]) is that proteins are more likely to share

identical or similar functions with interacting proteins than with non-interacting proteins.

Since Schwikowski et al. [26] pioneered the utility of interaction networks for annotating pro-

tein functions in yeast, numerous interaction-based methods have been proposed to infer the

functions of proteins. Hishigaki et al. [27] presented an improved predictive method called the

Chi-square method to elucidate protein function. Chi et al. [28] used an iterative strategy to

transfer neighboring protein functions. Chua et al. [29] extended the neighborhood to indirect

neighbors, called 2-neighbors. These types of local network predictions mainly transferred

functional annotation from the directly interacting neighborhood. Additionally, some global

optimization techniques have been adopted to elucidate protein function. For example, Deng

et al. [30], Letovsky et al. [31] and Kourmpetis et al. [32] used the Bayesian Markov random

field method to infer protein functions from protein-protein interaction data and functional

annotation of the protein interaction partners. The protein-protein interaction network is

viewed as a graph, where the nodes represent proteins and the edges represent the interactions

between proteins. Some graph-based methods have been presented for function predictions.
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Nabieva et al. [33] modeled the functional annotation from the interaction network as a mini-

mum multiway cut problem and introduced a network-flow algorithm that simulated the

functional flow between proteins. The clustering-based and network alignment-based tech-

niques have been employed to predict protein functions. Altaf-Ul-Amin et al. [34] and Arnau

et al. [35] used different clustering techniques to classify protein functions, whereas Singh et al.
[36] presented a global alignment of multiple protein interaction networks to infer protein

functions. These approaches outperformed sequence similarity and local alignment of net-

works. Some researchers have presented a routine to predict protein function by combining

multiple methods and data sources. For instance, Cozzetto et al. [2] integrated PSI-BLAST,

text-mining, machine learning, and profile-profile comparisons to predict protein functions.

As these authors noted, although considerable progress has been made, the functional annota-

tion of integrative methods can be improved. Most of the above-mentioned networks are

binary (i.e., 1 indicates interaction and 0 indicates no interaction). Additionally, the interac-

tion between proteins can be strong or weak. The STRING database [37] is a protein interac-

tion repository that characterizes each interaction into a weight value based on eight different

lines of evidence. Hu et al. [38] used a weighted interaction to predict protein function and

achieved a promising performance.

Great progress has been made in the computational protein function prediction field,

where state-of-the-art prediction algorithms substantially outperform first-generation meth-

ods and contribute to subsequent experimental studies. However, there still remains consider-

able need for the improvement of the current tools [39]. To this end, we presented an

integrated method to explore mouse protein functions by fusing sequence similarities,

weighted interactions from the STRING database and the pseudo amino acid composition of

proteins. Unannotated proteins were aligned against a database consisting of proteins with

known functions. If the query protein was homologous to well-annotated proteins, the align-

ment scores were used to infer function. If there were no known homologous proteins, we

extracted weighted interactions from the STRING database and used them to predict the

query protein function. For proteins whose functions the previous two approaches could not

predict, we used the pseudo amino acid composition (PseAAC)-based nearest-neighbor

approach to elucidate their function.

2 Data and Methods

2.1 Data

A total of 14,732 mouse protein sequences with their functional annotations were downloaded

from the Mouse Functional Genome Database (MfunGD, http://mips.gsf.de/genre/proj/

mfungd/) [40], which is an important repository of protein sequences that provides high-qual-

ity protein function annotations with respect to cellular function exclusively for mice. To

extensively examine the model for independency of homology, we used the sequence cluster

program CD-HIT [41] to remove or reduce similarities between sequences. We obtained

12,478 proteins with a similarity threshold of 0.7. The mouse proteins in the MfunGD are

annotated using the Functional Catalogue (FunCat) annotation scheme, which is widely used

for the analysis of protein networks [42]. Compared with the GO categories, the FunCat cate-

gory structure is simpler and more hierarchical.

As shown in Table 1, there are a total of 24 functional categories. The balance between the

specificity of the categories, human usability and requirements for subsequent bioinformatic

applications is a general consideration in the design of an annotation scheme [42]. In line with

this notion, the 24-category-scheme for protein function classification is not performed at the

most specific level, but it keeps our system descriptive and compact, which complies with the
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main goal of our study. The fact that the functions outnumber the proteins indicates that some

proteins perform multiple functions. For details, see S1 Table.

Protein-protein interaction pairs in mice were retrieved from STRING (Version 9.1, http://

string-db.org/) [37], which is a protein-protein interaction database that collects known or

predicted, direct (physical) or indirect (functional) associations. STRING quantifies each pair

of protein interactions into a combined score. Currently, STRING contains 5,214,234 proteins

from 1,133 organisms.

Because the manner in which the entries in the MfunGD are numbered differs from the

method in STRING, comparison requires the mapping of associations between them. The

mapping was performed using the BioMart database [43]. A total of 10,539 of the 12,478 pro-

teins in MfunGD were mapped to the proteins in STRING.

2.2 Methods

The aim of this study is to predict the function of a given protein P based on n known-function

proteins P1, P2, . . ., Pn, assuming that the function categories are f1, f2, . . ., f24. One protein

may belong to several function categories (e.g., the protein mc10000007 belongs to categories

f8 ‘REGULATION OF METABOLISM AND PROTEIN FUNCTION’ and f10 ‘CELLULAR

COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM’). Thus, we used a

24-dimensional vector Fi = (d1,i, d2,i, . . ., d24,i) to indicate the function categories of a protein

Table 1. The number of mouse proteins in each category in our dataset.

Functional Number Functional categories Number of proteins

1 METABOLISM 2,401

2 ENERGY 522

3 CELL CYCLE AND DNA PROCESSING 971

4 TRANSCRIPTION 1,921

5 PROTEIN SYNTHESIS 399

6 PROTEIN FATE (folding modification destination) 2,187

7 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic) 7,330

8 REGULATION OF METABOLISM AND PROTEIN FUNCTION 972

9 CELLULAR TRANSPORT TRANSPORT FACILITIES AND TRANSPORT ROUTES 2,078

10 CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM 3,143

11 CELL RESCUE DEFENSE AND VIRULENCE 656

12 INTERACTION WITH THE ENVIRONMENT 1,212

13 SYSTEMIC INTERACTION WITH THE ENVIRONMENT 1,454

14 TRANSPOSABLE ELEMENTS VIRAL AND PLASMID PROTEINS 9

15 CELL FATE 1,180

16 DEVELOPMENT (Systemic) 939

17 BIOGENESIS OF CELLULAR COMPONENTS 769

18 CELL TYPE DIFFERENTIATION 317

19 TISSUE DIFFERENTIATION 313

20 ORGAN DIFFERENTIATION 491

21 SUBCELLULAR LOCALIZATION 8,467

22 CELL TYPE LOCALIZATION 232

23 TISSUE LOCALIZATION 261

24 ORGAN LOCALIZATION 542

Total — 38,766

doi:10.1371/journal.pone.0166580.t001
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Pi, where dj,i is

dj;i ¼

(
1 Pi has function fj
0 Pi does not have function fj

ð1Þ

Three methods were used in this study to achieve this goal.

2.2.1 Sequence similarity-based approach

Proteins with similar sequences likely share the same or similar functions. Therefore, it is pos-

sible to predict protein functions based on sequence similarities. Herein, we used the PSI--

BLAST program (E-value 0.001, iteration 3) to align the given unknown-function protein (P)

against the known-function proteins (P1, P2, . . ., Pn) in our dataset. The alignment score

between P and Pi represents their similarity. This score is denoted as si. The predicted protein

function scores of protein P are given by a 24-dimensional vector W and are calculated by

W ¼

w1

w2

..

.

w24
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ð2Þ

where wj denotes the score of a protein having function fj. Elements in vector W are sorted

from highest to lowest to obtain the predicted functions of protein P. A function receiving a

high score is more likely to be an actual function of a given protein according to GBA [44]

because there are several known proteins similar to the given protein that have this function.

Thus, a function sequence can be constructed according to W. We provide an example to elab-

orate this point. If we obtain w23� w2�. . .� w5, protein P is most likely to have function f23,

followed by function f2 and so forth. The least likely function is f5. For convenience, we call

function f23 the 1st-order prediction, function f2 the 2nd-order prediction and function f5 the

24th-order prediction. This scheme to define the predicted results for multi-label classification

problems has been used in previous studies [38, 45, 46].

2.2.2 Weighted interaction-based approach. Proteins in a cell interact with each other to

perform particular functions. Following the GBA rule [25], interacting proteins may possess

similar functions. We used the combined scores in the STRING database as weighted values

between proteins. These values represent a fusion of eight types of evidence, including co-

expression, gene fusion and experimental evidence. We assume that the combined score

between P and Pi (i = 1,2,� � �,n) is ti. The predictive functional value is given by Y, a 24-dimen-

sional vector computed by

Y ¼

y1

y2

..

.

y24
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ð3Þ

where yj denotes the score of a given protein with function fj. Similar to the sequence similar-

ity-based approach, each element yj in vector Y is sorted from highest to lowest to obtain the

function sequence of protein P. For example, if we obtain y12� y21�. . .� y2, protein P is most

likely to have function f12, followed by f21, and the least likely function is f2. In this study, we
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call function f12 the 1st-order prediction, function f21 the 2nd-order prediction, and function f2
the 24th-order prediction.

2.2.3 PseAAC-based approach. Protein sequences can be characterized by pseudo amino

acid composition, which was proposed by Chou to predict protein subcellular localization [47]

and has become popular in the prediction of post-translational modification sites [48, 49] and

membrane protein types [50–52]. PseAAC maps a protein sequence into a numerical vector. If

a protein sequence is X1X2� � �XN, where Xi is an amino acid residue, then L(X) is the property

value of amino acid X in the physicochemical and biochemical respects. The normalized prop-

erty value is computed by

FðXÞ ¼
LðXÞ � 1

20

X

Y2F

LðYÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

X2F

ðLðXÞ �
1

20

X

Y2F

LðYÞÞ2
.

20

s ð4Þ

where F is the set of 20 types of amino acids. The correlation factor between residues in the

protein sequence is computed by

Ci ¼
1

N � i

XN� i

k¼1

ððFðXkÞ � FðXkþiÞÞ
2
; i ¼ 1; 2; � � � ; l; l < N ð5Þ

The correlation factors reflect information about the position and category of amino acids in

the protein sequence. The PseAAC of a protein sequence is computed by

vi ¼

fi
X20

j¼1

fj þ$
Xl

k¼1

Ck

1 � i � 20

$Ci� 20

X20

j¼1

fj þ$
Xl

k¼1

Ck

21 � i � lþ 20

ð6Þ

8
>>>>>>>>><

>>>>>>>>>:

where ϖ is the sequence order effects, and fi is the occurrence frequency of amino acids. In

this article, we set λ and ϖ to 50 and 0.15, respectively. Five physicochemical and biochemical

properties of amino acids, i.e., codon diversity, electrostatic charge, molecular volume, polarity

and secondary structure, are used to compute the PseAAC of protein sequences. These proper-

ties are retrieved from references [53–55], as listed in Table 2. For each category of property,

we used the last 50 digits in the formula (6). In addition to the frequencies of 20 amino acids,

we used a 270 (20+5�50)-dimensional vector to represent a protein sequence. The cosine dis-

tance between the query protein P and the known-function proteins Pi is given by

DðPi; PÞ ¼
Vp � VPi

kVpkkVPi
k

ð7Þ

where the operators • and k k indicate the inner product and module of vectors, respectively,

and VP and VPi
are the 270-dimensional PseAACs of proteins P and Pi, respectively. The
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predicted function value of the query protein was computed by

R ¼

r1

r2

..

.

r24
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6
6
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4
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7
7
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¼

d1;1 d1;2 . . . d1;n
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..

. ..
. ..

. ..
.

d24;1 d24;2 . . . d24;n

2

6
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4

3

7
7
7
7
7
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DðP1; PÞ

DðP2; PÞ

..

.

DðPn; PÞ

2

6
6
6
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6
4

3

7
7
7
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5

ð8Þ

Similar to the two above approaches, the elements in the vector R are sorted from high to low,

such as r3 > r12 > � � �> r1, where protein P is most likely to have function f3, second most

likely to have function f12, and least likely to have function f1.

2.3 Cross-Validation and Assessment

We used two cross-validation methods: leave-one-out cross-validation and ten-fold cross-vali-

dation to examine the performance of the presented methods. In the ten-fold cross-validation

method, the original dataset are randomly and equally divided into ten parts. Samples in each

part are singled out as testing samples, while samples in other nine parts are used as training

samples. For the leave-one-out cross-validation approach, each sample in the original dataset

is taken as a testing sample in turn and the remaining samples are used as training samples. To

assess the experimental results, the prediction accuracy for the jth-order prediction is given by

ACCj ¼
1

n

Xn

i¼1

Uj;i; j ¼ 1; 2; � � � ; 24 ð9Þ

where Uj,i = 1 if the function category of the jth-order prediction is actually the function cate-

gory of protein P according to current knowledge. Otherwise, Uj,i = 0.

Table 2. The physicochemical and biochemical properties of the 20 amino acids.

Amino acid Polarity Second structure Molecular volume Codon diversity Electrostatic charge

A -0.591 -1.302 -0.733 1.57 -0.146

C -1.343 0.465 -0.862 -1.02 -0.255

D 1.05 0.302 -3.656 -0.259 -3.242

E 1.357 -1.453 1.477 0.113 -0.837

F -1.006 -0.59 1.891 -0.397 0.412

G -0.384 1.652 1.33 1.045 2.064

H 0.336 -0.417 -1.673 -1.474 -0.078

I -1.239 -0.547 2.131 0.393 0.816

K 1.831 -0.561 0.533 -0.277 1.648

L -1.019 -0.987 -1.505 1.266 -0.912

M -0.663 -1.524 2.219 -1.005 1.212

N 0.945 0.828 1.299 -0.169 0.933

P 0.189 2.081 -1.628 0.421 -1.392

Q 0.931 -0.179 -3.005 -0.503 -1.853

R 1.538 -0.055 1.502 0.44 2.897

S -0.228 1.399 -4.76 0.67 -2.647

T -0.032 0.326 2.213 0.908 1.313

V -1.337 -0.279 -0.544 1.242 -1.262

W -0.595 0.009 0.672 -2.128 -0.184

Y 0.26 0.83 3.097 -0.838 1.512

doi:10.1371/journal.pone.0166580.t002
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3 Results and Discussion

3.1 Performance of the Simple Approach

The performance of the three approaches for a dataset consisting of 12,478 proteins evaluated

by the leave-one-out method is listed in Table 3. The similarity-based approach yielded the

best accuracy of 0.8756 in the 1st-order prediction but could not predict functions of 2,226 pro-

teins because they have no homologues with annotated proteins in the dataset. The interac-

tion-based approach produced a lower prediction accuracy of 0.7535 than the similarity-based

approach and could not predict the functions of 1,939 proteins that have no interactions with

annotated proteins. The PseAAC-based nearest-neighbor approach performed worst in terms

of the prediction accuracy, but it was able to predict the functions of all the test proteins. The

results indicated that each approach has its strengths and limitations. Table 3 also shows that

the 1st-order prediction performed best, followed by the 2nd-order prediction and the 3rd-

order prediction, indicating the predicted function sequence for each test protein is quite

reasonable.

The three approaches were compared on different testing datasets in the above paragraph.

For a fair comparison, we generated a common dataset where each protein could be tested by

the leave-one-out method. The common dataset consisted of 8,481 proteins. The accuracies of

the three approaches versus order are plotted in Fig 1. The similarity-based approach per-

formed best, followed by the interaction-based approach and the PseAAC-based nearest-

neighbor approach. The similarity-based approach was much more accurate (by 0.11) than the

interaction-based approach in the 1st-order prediction and more accurate (by 0.07) in the 2nd-

order prediction, while the latter was much more accurate (by 0.09) than the PseAAC-based

approach in the 1st-order prediction and more accurate (by 0.02) in the 2nd-order prediction.

The results confirmed the advantage of the similarity-based approach over the other two

approaches in terms of the prediction accuracy. As mentioned previously, the similarity-based

approach cannot address non-homologous proteins, and the PseAAC-based approach can pre-

dict the functions off all proteins despite the lower prediction accuracy. Therefore, it is wise to

jointly utilize the three methods to predict the protein functions.

3.2 Prediction by the Combined Approach

We combined the three approaches to predict the functions of proteins to make use of

their respective advantages and disadvantages. For a given protein, we first employed the simi-

larity-based approach. If the protein had no homologues, we applied the interaction-based

approach. If the protein could not be predicted by the interaction-based approach, we used the

PseAAC-based nearest-neighbor approach. The performance of the combined approach based

on leave-one-out validation on the 12,478 proteins is shown in the fifth row of Table 3. The

accuracy of the combined method was much higher than the interaction-based and PseAAC-

based approaches and slightly lower than the similarity-based approach. However, the com-

bined approach could predict all proteins, whereas the similarity-based approach could not.

Table 3. Prediction accuracies of three methods and the combined method in the first three order predictions.

Method Number of proteins of testing dataset 1st-order 2nd-order 3rd-order

Similarity-based 10,252 0.8756 0.7132 0.5158

Interaction-based 10,539 0.7535 0.6296 0.5299

PseAAC-based 12,478 0.6786 0.5874 0.2519

Combined 12,478 0.8464 0.6814 0.4996

doi:10.1371/journal.pone.0166580.t003
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Therefore, the combined method has wide application at the cost of reduced prediction accu-

racy. For proteins with no homologues or interactions with annotated proteins, the best alter-

native is to use the combined approach. The contributions of the three approaches to the final

predictive performance are shown in Table 4. The similarity-based approach contributed

most, predicting more than 80% of all proteins and yielding an Acc1 of 0.8756, followed by the

interaction-based approach and the PseAAC-based approach.

To fully indicate the effectiveness of the combined method, we also used ten-fold cross-vali-

dation to examine this method. Because the predicted results yielded by this cross-validation

method may influenced by the division of the dataset, the combined method was executed five

times with different divisions. The prediction accuracies for the 1st-order, 2nd-order and 3rd-

order predictions in each time are listed in Table 5. Compared to the prediction accuracies

yielded by the leave-one-out cross-validation that are listed in Table 3, the performances of

these two cross-validation methods are almost at the same level, which indicates that the com-

bined method is still quite effective when there are no close homologs are available. Further-

more, it can be observed from Table 5 that the standard deviations for the 1st-order, 2nd-order

and 3rd-order predictions are quite low, indicating the stability of the combined method.

3.3 Possible Protein Functions

In this study, the assessment of the predicted results was based on currently annotated pro-

teins. Therefore, "right" and "wrong" predictions were relatively defined. For example, if the

studied protein had function FA and the predicted function was FB, the prediction was not cor-

rect. It is conceivable that with the development of our knowledge, the protein could be found

Fig 1. The prediction accuracies of 24 order predictions for these three methods on the common dataset.

doi:10.1371/journal.pone.0166580.g001
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to possess FB; thus, the prediction could be correct in the future. The currently annotated func-

tions of the proteins are a subset of their actual functions. In this respect, some "wrong" predic-

tions by our method in the current dataset may be correct. Next, we explore these wrong

predictions.

It is worth performing further analysis on the wrongly predicted proteins. Because the 1st-

order prediction is the most important, we investigated proteins with "wrong" 1st-order predic-

tion but with "right" 2nd-order prediction. Because these proteins might possess the predicted

1st-order functions, we called them "false-wrong" 1st-order predicted proteins. As mentioned

above, the combined method was evaluated by both the leave-one-out and ten-fold cross-vali-

dations. Because the predicted results yielded by the ten-fold cross-validations are not unique,

we selected the predicted results yielded by the leave-one-out cross-validation to further ana-

lyze wrongly predicted proteins. In the leave-one-out test on the 12,478 proteins, we identified

966 such proteins: 658 proteins from the similarity-based approach, 258 proteins from the

interaction-based approach and 50 proteins from the PseAAC-based approach. All these pro-

teins are listed in S2 Table.

The goal of this process was to further validate our method. If we found evidence indicating

that any of these proteins possessed the "wrong-predicted" functions, the actual prediction

accuracy of our method would be much higher than presented above. This would allow the

method to be applied to new protein function discoveries, but further experimental validations

may be required for these proteins.

3.4 Possible Function Analysis of Significant "False-Wrong" 1st-Order

Predicted Proteins

We explored the functions of proteins whose predicted 1st-order functions were wrong and

whose predicted 2nd-order functions were correct. There were 966 such proteins. Forty protein

genes were closely related to "false-wrong" 1st-order predicted functions, of which sixteen

were predicted by the similarity-based approach, twenty-two were predicted by the interac-

tion-based approach, and two were predicted by the PseAAC-based approach, as listed in

Table 6, Table 7 and Table 8, respectively.

As shown in Table 6, sixteen significant proteins were predicted by the similarity-based

approach. The proteins MYO1G, NEO1 and SDK1 were predicted to have the 1st-order func-

tion ‘subcellular localization’, suggesting that these gene products have specific cellular

Table 4. Contributions of the three approaches to the predicted results.

Method Number of proteins Proportion Acc1

Similarity-based approach 10,252 82.16% 0.8756

Interaction-based approach 1,876 15.03% 0.7154

PseAAC-based approach 350 2.81% 0.6943

doi:10.1371/journal.pone.0166580.t004

Table 5. Performances of the combined method evaluated by ten-fold cross validation.

Order 1 2 3 4 5 Mean ± std a

1st 0.8429 0.8416 0.8420 0.8440 0.8419 0.8425 ±0.0010

2nd 0.6768 0.6792 0.6781 0.6787 0.6802 0.6786 ±0.0013

3rd 0.5023 0.4972 0.5007 0.4977 0.4998 0.4995 ±0.0021

a: std is the abbreviation of standard deviation.

doi:10.1371/journal.pone.0166580.t005
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localizations. MYO1G has been reported as a hematopoietic-specific myosin that localizes to

the plasma membrane [56]. Moreover, neogenin 1 (NEO1) and sidekick cell adhesion

Table 6. The sixteen significant proteins with "wrong" 1st-order predictions but "right" 2nd-order predictions based on the sequence similarity-

based approach.

Protein ID Name "wrong" predicted function in 1st-order prediction

mc11000118 MYO1G SUBCELLULAR LOCALIZATION

mc9001073 NEO1 SUBCELLULAR LOCALIZATION

mc5002204 SDK1 SUBCELLULAR LOCALIZATION

mc17000153 PLG PROTEIN FATE (folding, modification, destination)

mc2000415 GM711 PROTEIN FATE (folding, modification, destination)

mc15000840 MAPK15 PROTEIN FATE (folding, modification, destination)

mc7000273 PRKD2 PROTEIN FATE (folding, modification, destination)

mc11002342 STRADA PROTEIN FATE (folding, modification, destination)

mc7001424 NTRK3 PROTEIN FATE (folding, modification, destination)

mc14000439 BMPR1A PROTEIN FATE (folding, modification, destination)

mc11001586 KSR1 PROTEIN FATE (folding, modification, destination)

mc6000496 EPHB6 PROTEIN FATE (folding, modification, destination)

mc7000874 KLK9 PROTEIN FATE (folding, modification, destination)

mc15001663 KRT2 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic)

mc17001082 PTK7 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic)

mc1000962 SPEG PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic)

doi:10.1371/journal.pone.0166580.t006

Table 7. The twenty-two significant proteins with "wrong" 1st-order predictions but "right" 2nd-order predictions based on the weighted interac-

tion-based approach.

Protein ID Name "wrong" predicted function in 1st-order prediction

mc2003319 ADRM1 SUBCELLULAR LOCALIZATION

mc6000275 ATP6V1F SUBCELLULAR LOCALIZATION

mc4002507 AURKAIP1 SUBCELLULAR LOCALIZATION

mc17001119 BYSL SUBCELLULAR LOCALIZATION

mc13001367 DHFR SUBCELLULAR LOCALIZATION

mc1001293 DTYMK SUBCELLULAR LOCALIZATION

mc4000473 GNE SUBCELLULAR LOCALIZATION

mc5001787 HPD SUBCELLULAR LOCALIZATION

mc3000151 HPS3 SUBCELLULAR LOCALIZATION

mc4001314 MAGOH SUBCELLULAR LOCALIZATION

mc9000131 MED17 SUBCELLULAR LOCALIZATION

mc4001915 NUDC SUBCELLULAR LOCALIZATION

mc11000229 PNOL SUBCELLULAR LOCALIZATION

mcx000234 RGN SUBCELLULAR LOCALIZATION

mc9000734 RPS25 SUBCELLULAR LOCALIZATION

mc8000054 SHCBP1 SUBCELLULAR LOCALIZATION

mc6000048 SHFM1 SUBCELLULAR LOCALIZATION

mc2002263 NCAPH PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic)

mc2000861 RIF1 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic)

mc19000070 CDCA5 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic)

mc7001471 PRC1 PROTEIN WITH BINDING FUNCTION OR COFACTOR REQUIREMENT (structural or catalytic)

mc15001589 NPFF CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM

doi:10.1371/journal.pone.0166580.t007
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molecule 1 (SDK1) are likely to localize on the plasma membrane based on their biological

functions. The proteins PLG, GM711, MAPK15, PRKD2, STRADA, NTRK3, BMPR1A, KSR1,

EPHB6 and KLK9 were predicted to have the 1st-order function ‘protein fate (folding/modifi-

cation/destination)’. MAPKs, BMP, KSR1, PRKD2, STRADA, NTRK3 and EPHB6 are respon-

sible for protein phosphorylation and signal transduction [57–63]. KLK9 belongs to the family

of kallikrein-related peptidases (KLKs), which possess trypsin-like proteolytic activity [64, 65].

Plasminogen (PLG) is a precursor of the key enzyme of the fibrinolytic system plasmin, which

serves as a physiological backup enzyme for ADAMTS13 (a disintegrin and metalloproteinase

with a thrombospondin type I motif, member 13) in the degradation of pathological platelet-

VWF (Von Willebrand factor) complexes [66]. KRT2, PTK7 and SPEG were predicted to have

the 1st-order function ‘protein with binding function or cofactor requirement’. Protein tyro-

sine kinase 7 (PTK7) was reported to interact with the Wnt family proteins [67] and play a piv-

otal role in planar cell polarity [68]. The intermediate filament keratin proteins, including

Keratin 2 (KRT2), bind and interact with signaling molecules, such as CFTR [69], trichoplein

[70] and Albatross complexes [71]. SPEG complex locus (SPEG) is a myotubularin (MTM1)-

binding protein, and its deficiency has been proven to cause centronuclear myopathy with

dilated cardiomyopathy [72].

As shown in Table 7, twenty-two significant proteins were predicted by the interaction-

based approach. ADRM1, ATP6V1F, AURKAIP1, BYSL, DHFR, DTYMK, GNE, HPD, HPS3,

MAGOH, MED17, NUDC, PNO1, RGN, RPS25, SHCBP1 and SHFM1 were predicted to have

the 1st-order function ‘subcellular localization’. ATPase, H+ transporting, lysosomal 14 kDa,

V1 subunit F (ATP6V1F) and adhesion regulating molecule 1 (ADRM1) are likely to localize

on the plasma membrane based on their biological functions. Several gene products are specif-

ically localized in the nucleus, including AURKAIP1, DHFR, MAGOH, MED17, NUDC,

PNO1 and RGN. Among them, NUDC is a nuclear movement protein that interacts with

dynein [73]. Mediator complex subunit 17 (MED17) is localized in the nucleus and is involved

in transcription regulation [74, 75]. The Bystin-like (BYSL) protein was reported to colocalize

with trophinin, tastin and cytokeratins in the cytoplasm, forming a complex in trophectoderm

cells that is essential for embryo implantation and ribosomal biogenesis [76]. The ribosomal

protein S25 (RPS25) is also located in the cytoplasm and is responsible for protein synthesis

[77]. The protein 4-hydroxyphenylpyruvate dioxygenase (HPD) is enriched in the liver cell

cytoplasm and encodes an enzyme involved in the catabolic pathway of tyrosine, which cata-

lyzes the conversion of 4-hydroxyphenylpyruvate to homogentisate [78]. SHFM1 (split hand/

foot malformation (ectrodactyly) type 1, also known as DSS1) localizes to proteasomes [79].

Additionally, we predicted the specific subcellular localization of Hermansky-Pudlak syn-

drome 3 (HPS3), which encodes a novel protein with largely unknown function [80], together

with aurora kinase A interacting protein 1 (AURKAIP1), deoxythymidylate kinase (DTYMK),

glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase (GNE), partner of

NOB1 homologue (PNO1), dihydrofolate reductase (DHFR), and SHC SH2-domain binding

protein 1 (SHCBP1). Our data provide clues for the future study of these genes. NCAPH,

RIF1, CDCA5 and PRC1 were predicted to have the 1st-order function ‘protein with binding

function or cofactor requirement’. NCAPH (also known as CAP-H) binds to the chromosome

Table 8. The two significant proteins with "wrong" 1st-order predictions but "right" 2nd-order predic-

tions based on the PseAAC-based approach.

Protein ID Name "wrong" predicted function in 1st-order prediction

mc4000691 AKAP2 SUBCELLULAR LOCALIZATION

mc1001669 KISS1 SUBCELLULAR LOCALIZATION

doi:10.1371/journal.pone.0166580.t008
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and regulates the cell cycle [81]. CDCA5 (also known as SORORIN) binds to sister chromatids

and regulates their separation [82]. Protein regulator of cytokinesis 1 (PRC1) was shown to

bind to several motor proteins, including KIF4, MKLP1 and CENP-E, and play pivotal roles in

the formation of microtubule architecture [83]. Replication timing regulatory factor (RIF1) is

responsible for regulating the replication-timing program in mammalian cells [84]. It was

shown to bind to aberrant telomeres and to align along the anaphase midzone microtubules

[85]. NPFF was predicted to have the 1st-order function ‘cellular communication’. NPFF (neu-

ropeptide FF) is an FMRFamide-like peptide with antiopiate properties that is involved in cel-

lular communication as a part of the neurotransmitter system [86, 87].

As shown in Table 8, two significant proteins were predicted by the PseAAC-based

approach. A-kinase anchor protein 2 (AKAP2) has the known function of ‘protein fate (fold-

ing, modification, destination)’ as it regulates cyclic AMP-dependent protein kinase (PKA)

signaling in both a spatial and temporal manner. The specific subcellular localization of

AKAP2 is closely related to its function [88]. AKAP2 has both cytosolic and endosomal locali-

zations, and a fraction of endosomal AKAP2 is involved in regulating the expression of several

downstream proteins, such as Rab4 and Rab11, and endosomal functions [89]. As another

example, kisspeptins (KISS1) have known functions related to ‘protein with binding function

or cofactor requirement.’ The versatile and complex pathways of KISS1 and their receptors

play essential roles in the development of the brain and the reproductive system [90] and

induce apoptosis in various cancers [91, 92]. Previous publications have shed light on both the

cytosolic and nuclear localization of KISS1 receptors, which were linked to distinct functions,

such as cytosolic calcium elevation and potential nuclear transactivation activity [93, 94].

These lines of evidence support our prediction of the important ‘subcellular localization’ func-

tion of these proteins.

4. Conclusion

The accurate identification of protein functions remains challenging in the post-genomic era.

In this article, we employed protein sequence homology, weighted interactions and pseudo

amino acid composition to explore protein functions. The experimental results indicate that

homologous proteins are more likely to share functions than interacting proteins, which in

turn share more functions than proteins with similar physicochemical and biochemical prop-

erties. Weighted interactions can be used to annotate the functions of proteins with no known

homologues. The PseAAC-based approach was used for the functional annotation of proteins.

These three approaches are complementary and represent an optimal combination for predict-

ing protein functions. Further analyses of wrongly predicted functions will validate the effec-

tiveness of the proposed method.

Supporting Information

S1 Table. The dataset used in this study. The first column of the file is the protein entry ID in

MfunGD. The other columns are the functional categories to which the protein belongs.

(CSV)

S2 Table. The "false-wrong" 1st-order predicted proteins. Proteins with "wrong" 1st-order

function predictions but "right" 2nd-order function predictions in our dataset were called

"false-wrong" 1st-order predicted proteins. There were 658 such proteins based on the similar-

ity-based approach, 258 based on the interaction-based approach and 50 based on the

PseAAC-based approach. These proteins are listed on three separate sheets. The proteins may

possess the function indicated by the 1st-order prediction and are worthwhile subjects for
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