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Abstract

Across scientific disciplines, thresholded pairwise measures of statistical dependence

between time series are taken as proxies for the interactions between the dynamical units of

a network. Yet such correlation measures often fail to reflect the underlying physical interac-

tions accurately. Here we systematically study the problem of reconstructing direct physical

interaction networks from thresholding correlations. We explicate how local common cause

and relay structures, heterogeneous in-degrees and non-local structural properties of the

network generally hinder reconstructibility. However, in the limit of weak coupling strengths

we prove that stationary systems with dynamics close to a given operating point transition to

universal reconstructiblity across all network topologies.

Introduction

Complex networked systems generate dynamics and thus functions that fundamentally

depend on how their units interact [1–3]. As a consequence, knowing the interaction topology

of such systems is a key towards understanding them [4–12]. Yet, direct access to the topology

of physical interactions is largely limited for many natural systems and across scales, ranging

from metabolic and gene regulatory networks on the subcellular level to neural circuits of mil-

lions of cells, to food webs among organisms and planetary climate networks [10, 13–21].

Thus, measures of pairwise statistical dependencies between time series of the dynamics of

their units are often employed as proxies for physical interactions [15–17, 21–27]. Assuming

sufficiently many and sufficiently accurate data, each such method provides useful information

about how the considered statistical dependency measures vary across pairs of units. The value

of such a statistical measure, thresholded as desired, e.g. for significance against coincident

correlations, may be taken to quantify the interactions among these units. Yet, such measures

themselves do not necessarily provide immediate insights into how the units are directly influ-

encing each other via physical interactions. In particular, what do correlations generally tell us

about direct physical interactions in network dynamical systems? And is it possible to detect
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direct physical interactions among units by thresholding these measures to reconstruct the

topology of the network?

Here, we systematically address this question on a conceptual level and identify limits of

network reconstructibility based on thresholding pairwise measures of statistical dependence.

In general, non-linearities of intrinsic and coupling dynamics, correlated noise sources, het-

erogeneities in time scales and coupling strengths as well as nontrivial network topology jointly

create complex statistical correlation patterns. To reveal principal limits of reconstructibility

originating from network interactions (toplogy and strength), we here focus on systems with

dynamics around a given operating point. More specifically, we analyze the idealized setting of

linearly coupled systems with homogeneous dynamical parameters receiving independent

additive noise inputs and evaluate network reconstruction from thresholding linear correla-

tions obtained from sufficiently long time series. Reconstruction of physical interactions gen-

erally is at least as hard in any more complex setting, e.g., involving non-linear dynamics and

adequate measures of statistical dependence such as mutual information. We explicate limits

of reconstructibility due to local common cause structures, local relay structures, topological

in-degree heterogeneities as well as non-local structural elements. Despite these limitations

our analysis interestingly also reveals that, stationary systems close to operating points exhibit

a transition to universal reconstructibility for sufficiently weak coupling, independent of the

interaction topology.

Model and methods

Consider the dynamics

tgl _xi ¼ � xi þ a
XN

j¼1

Aijðxj � xiÞ þ gZiðtÞ ð1Þ

of network dynamical systems characterized by variables x = (x1, . . ., xN) that interact diffu-

sively with generic coupling strength α> 0 on a network topology given by an adjacency

matrix A. The units are driven by independent white noise ηi(t) of strength γ and relax on a

time scale τgl > 0. The entries of the weighted adjacency matrix are Aij > 0 if unit j physically

acts on i, with all other elements, including the diagonal being Aij = 0. Without loss of general-

ity, we rescale time such that τgl = 1.

The diffusive coupling considered here emerges in approximations of coupled oscillator

networks [28, 29], in population dynamics [30, 31] and in stochastic processes as, e.g., epi-

demic models [32].

Other types of linear coupling (e.g., in [33]) can to the same extent be treated using diffusive

coupling if individual self-coupling terms are introduced (see S1 Supplementary Material).

This study thus also covers networks of the form _xi ¼ � cixi þ a
XN

j¼1

Aijxj þ giZiðtÞ. For the

detailed analysis of factors that hinder reconstructibility we omit individual self-coupling

terms to avoid unequal scaling of correlations to establish ideal conditions for correlation

thresholding.

The dynamics generated by (1) characterizes linear systems as well as stationary systems

sufficiently close to given operating points.

Can we infer the physical topology from optimally thresholding the matrix C of pairwise

correlations (Fig 1)? The covariance matrix σ defined by the elements

sij ¼ hxixji � hxiihxji ð2Þ
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computed using an unbiased time-average h�i, yields the correlations

Cij ¼
sij
ffiffiffiffiffiffiffiffiffi
siisjj
p ð3Þ

by normalization.

Reconstructing the physical topology implies detecting non-zero elements in the coupling

matrix A. Also, as correlation matrices are symmetric by construction, Cij = Cji, we relax the

problem to the reconstruction of the undirected representation of the physical interaction net-

work. Thus, we aim for the correct reconstruction of the matrix A0 the elements of which are

given by

A0ij ¼
1 if Aij ¼ 1 or Aji ¼ 1

0 otherwise
:

(

ð4Þ

Correlations (3) may be thresholded using a (possibly optimized) threshold θ to yield an esti-

mate Â0 with elements Â0 ij ¼ 1 if Cij > θ and Â0 ij ¼ 0 otherwise. Below we focus on the ques-

tion whether there is any threshold of the correlation matrix (3) that yields a correct estimate

of A0. If there is no such threshold, we call the network non-reconstructible (in this sense).

The theory of Ornstein-Uhlenbeck processes [34] yields an analytical expression for the

covariance matrix

s ¼ g2

Z 1

0

eJteJTt dt: ð5Þ

Fig 1. (color online) Topology-induced limits of reconstructibility. Reconstructing interaction networks

from correlation thresholding may or may not yield correct connectivity pattern. (a)-(d) Successful

reconstruction of a network (N = 15, average degree �k ¼ 5, γ = 1, α = 2, Aij 2 {0, 1} for absent and present

interactions, resp.). (e)-(h) Reconstruction of statistically similar network is unsuccessful for any threshold. (a,

e) Adjacency matrix of original network (black indicated directed interaction, gray undirected network aimed

for). (b,f) Dynamics of the units yielding (c,g) correlation matrices. Thresholding yields (d) correct or (h)

incorrect reconstruction, depending on the exact topology.

https://doi.org/10.1371/journal.pone.0186624.g001
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Here, the matrix J is given by its elements

Jij ¼
� ð1þ a

PN
j¼1

AijÞ if i ¼ j

aAij otherwise:

8
<

:
ð6Þ

The integral (5) can be used to compute the covariance matrix σ of specific network topologies

with special symmetries (see Fig 2 and S1 Supplementary Material). However, numerical com-

putation of (5) for a random network is computationally not practical.

Partial integration of (5) yields the Lyapunov equation

Jsþ sJT þ g2I ¼ 0 ð7Þ

which we solve numerically [35] to obtain the covariance matrix σ for explicit network topolo-

gies (α, γ, A). Again, (7) can be solved analytically if needed [36]. Via the relation (7) and (3),

we thus semi-analytically obtain all the real-valued elements Cij of the correlation matrix with-

out any sampling error.

We order those to determine whether there is a threshold θ separating all existing from all

non-existing links.

Results

Topology-induced limits of reconstructibility

Even under these idealized conditions, physical interactions are in general not reconstructible

from thresholding the correlation matrix C. Whereas some topologies can be reconstructed via

a threshold that separates existing from absent links (Fig 1a–1d), many attempted

Fig 2. (color online) Topological sources of reconstruction errors and impact of coupling strenghts.

(Unspecified parameters as in Fig 1) (a,b) Regions of reconstructible (shaded gray) and non-reconstructible

networks (white shading) are non-linearly separated for (a) common cause structures and (b) relay structures

(Regimes computed by interpolating analytic results using (3) and (5), details see S1 Supplementary

Material). (c) Non-local effect renders larger networks non-reconstructible: Each circle would be

reconstructible alone, but the joint network is not (α = 2).

https://doi.org/10.1371/journal.pone.0186624.g002
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reconstructions yield false positive and false negative predictions of links, independent of the

threshold (Fig 1e and 1f) and are thus intrinsically non-reconstructible by correlation

thresholding.

Topologically induced errors and ultimately the limits in reconstructibility can be of local

or of non-local nature (Fig 2): For instance, common input might cause unconnected units to

be more correlated than connected units, a dilemma known as the common cause effect (Fig

2a inset). Likewise, two units may be strongly correlated if the network provides connectivity

between them across a set of intermediate units, thereby forming a relay structure (Fig 2b

inset). For both settings, reconstructibility non-linearly depends on a combination of overall

coupling strength and the number of interfering units in a systematic way (Fig 2a and 2b,

main panels).

In larger networks with diameter d� 3, additional non-local effects limit reconstructibility

(illustrated in Fig 2c). Differences in the correlation strength may, for instance, be caused by

different link densities in different parts of the network, and imply incorrect link classification.

Universal transition to reconstructibility

The coupling strength α controls the impact of both, local and non-local influences on recon-

structibility. For instance, analytic treatment of a small common cause structure (Fig 3) reveals

that the system becomes reconstructible for all sufficiently small coupling strengths α while it

is non-reconstructibility if α is too large. This systematic transition prevails for any number of

common input units in common cause structures as well as for any number of relay units in

relay structures (See S1 Supplementary Material for detailed derivations).

Interestingly, all topology-induced limits disappear for sufficiently weak coupling, as seen

from the following analytic argument: Rewriting the matrix

J ¼ � ð1þ aLÞ ð8Þ

Fig 3. Transition to reconstructibility for weak coupling. (a) Correlation thresholding yields different

estimators (shaded areas with graphs as insets) for a given topology (adjacency matrix on bottom right)

depending on coupling strength and threshold. For sufficiently small coupling strength α (left of gray dashed

line), there are ideal thresholds yielding perfect reconstruction (green shading). (Analytic results obtained

using (3) and (5).) (b) Fraction of reconstructible networks exhibits transition to full reconstructibility at positive

coupling strength α (inset) and αN (main panel), illustrated for random networks of N 2 {16, 64, 256} units and

link probability p = 0.5. Every arbitrary network exhibits such a transition individually (see text).

https://doi.org/10.1371/journal.pone.0186624.g003
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in terms of the graph Laplacian L with elements

Lij ¼ � Aij þ dij

X

j

Aij ð9Þ

(where δij = 1 if i = j and zero otherwise is the Kronecker-delta) and expanding (5) for α� 1

yields

s ¼
g2

2
1

|{z}
sð0Þ

� a
g2

4
ðLþ L⊤Þ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
sð1Þ

þa2
g2

4
LL⊤ þ

L2 þ L⊤2

2

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sð2Þ

þOða3Þ:

ð10Þ

The term σ(1) on the r.h.s. of (10) does only contribute to entries σij that reflect existing links

because otherwise Lij = Aij = 0. Thus, the covariance of coupled units scales linearly with α
whereas for uncoupled units it scales quadratically. So for sufficiently small coupling strength

α, covariances of coupled units will be larger than those of uncoupled units. This result trans-

fers to the elements of the correlation matrix C in (3) because diagonal elements of the covari-

ance matrix σ are of order

sii ¼ Oða0Þas a ! 0: ð11Þ

Hence, every network topology is reconstructible for sufficiently small coupling strengths.

Our analysis reveals, that the expansion of the covariance matrix σ in the coupling strength

α is an effective separation into contributions of paths through the network with increasing

lengths. The nth summand in the series represents the contribution of paths up to length n.

Similar results have been obtained in mean field models of spiking neuronal networks if the

covariance matrix is self-consistently expanded in the mean neuronal input [37]. The two

expansions of both approaches however differ in the order of the terms. Only expansions in

network coupling strength ensure full reconstructibility of the network connectivity in the

weak coupling limit.

As shown in the supplementary material, this transition to reconstructibility in the weak

coupling limit is not limited to the considered network model and can essentially be found in

all generic linear networks (for more details see S1 Supplementary Material).

Illustrative example of reconstructibility transition

Furthermore, specific families of networks with homogeneous connectivity are reconstructible

via correlation thresholding for all coupling strengths, weak and strong. As we demonstrate

for illustration, this is the case for directed ring like topologies with �k neighbors. In these net-

works the correlation matrix C is strictly proportional to the covariance matrix σ so that it is

sufficient to show reconstructibility with respect to the covariance matrix. Also, since the

covariance matrix σ is a circulant, it is sufficient to show reconstructibility only for the connec-

tions of one unit. The reconstructibility conditions is identical for all units. For simplicity of

presentation, we take the number N of units to be even.
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We order the units in such a way that it reflects the network topology, i.e.

Ai;ðiþlÞmod N ¼
1 if 1 < l � �k

0 otherwise
;

8
<

:
ð12Þ

and replace J ¼ � ð1þ aAÞ in (7) to obtain

X�k

l¼1

si;iþn� l � 2ð
1

a
þ �kÞsi;iþn þ

X�k

l¼1

si;iþnþl ¼ �
g2

a
di;iþn ð13Þ

as a self-consistency equation for the entries σij of the covariance matrix σ.

Here, the index i indicates the number of the unit in the circle and the integer n refers to

the distance from the diagonal n = j − i. This nomenclature reflects the symmetry of the circu-

lant matrix σ. All indices have been taken modulo the number of units N for simplicity.

Transforming this equation into Fourier space yields

X�k

l¼1

e� 2pi lm
N sm � 2ð

1

a
þ �kÞsm þ

X�k

l¼1

e2p i lm
N sm ¼ �

g2

a
ð14Þ

with solution

sm ¼
g2

a

1

2ð
1

a
þ kÞ � 2

X�k

l¼1

cosð2p
lm
N
Þ

ð15Þ

in Fourier coordinates. An inverse Fourier transformation yields the analytic solution

si;iþn� l ¼
g2

2þ 2a�k þ a
d0n þ

X1

l¼1

alz
�l
�k ;n

ð2þ 2a�k þ aÞ
l

( )

ð16Þ

where the sequences z
�l
�k;n are repeated convolutions of the step sequence

z�k;n ¼

1 if n mod N � �k

2 if N � �k � n mod N

0 otherwise

;

8
><

>:
ð17Þ

i.e.,

z
�l
�k ≔ ðz�k � z

�ðl� 1Þ
�k Þ; z

�1
�k ¼ z�k : ð18Þ

For more detailed derivations, please see the supplementary material.

Since the sequences z
�
�k ;n are monotonically decreasing in the interval n 2 [−N/2, N/2]

covariance only decreases with distance in the circular graph. Because for any given unit i, con-

nected units are closer than non-connected units, for every such network with �k-regular topol-

ogy, a threshold exists that separates existing from absent links, making these networks

reconstructible for arbitrary coupling strengths, for any network size N and for any number of

neighbors �k < N
2
. For �k ¼ N

2
the undirected representation of the network is fully connected

and reconstruction is trivial.
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Which heterogeneities hinder reconstruction?

Given the insights from the ring-like networks, we hypothesized that if topological irregularities

increase, they decrease and ultimately hinder network reconstructibility. To analyze the overall

impact of topology on reconstruction quality, we investigated ensembles of directed networks

in the regime between regular and random, employing a modified Watts-Strogatz small world

model [38]: Starting with a regular ring of N units with each unit receiving directed links from

�k preceding nodes (and thus a mean in- and out-degree of �k) the source and the target of each

link are detached with probability qout and probability qin respectively. The resulting loose ends

are randomly redistributed in the network while avoiding self-loops and multiple links. This

creates networks of mean degree �k whose in-degree distribution pin
k and out-degree distribution

pout
k are altered separately from their original values pin

k ¼ pout
k ¼ dk�k by varying qin and qout. This

random graph ensemble contains networks with unimodal degree distributions (binomial for

qin = qout = 1, �k � N and 1� N) so that the variances of the distributions serve as indicators

for the inhomogeneities in the network.

Considering a fixed coupling strength (e.g., α = 1), we quantify reconstructibility by mea-

suring the AUC, the area under the ROC (receiver operating characteristic) curve, generated

by a variable correlation threshold θ. AUC ranges from AUC = 0.5 for random guessing to

AUC = 1 for perfect reconstructibility (see S1 Supplementary Material for an introduction to

ROC curves). For networks that are not densely connected (�k < ðN � 1Þ=2), we find that

reconstruction quality systematically decreases with in-degree heterogeneity, with the AUC

exhibiting a functional dependency on the variance of the in-degree distribution, yet is almost

independent of the variance of the out-degree distribution (compare Fig 4a with Fig 4b). Thus,

the reconstruction error is mainly explained by the in-degree heterogeneity. We obtain quali-

tatively similar results across different average connectivities �k (inset of Fig 4a).

This finding coincides with intuition: Since the influence of a source unit on its target

decreases with the number of additional signals its target receives (see common cause struc-

ture, S1 Supplementary Material), large differences in the in-degree directly correspond to

high variability in pairwise correlations. Correlations in complex networks with inhomoge-

neous in-degree thus strongly depend on the local link density and can therefore not be

Fig 4. (color online) Reconstruction systematically varies with heterogeneities in in-degree, but not in

out-degree. (a) AUC exhibits functional dependency on the variance of the in-degree distribution varin,

regardless of the variance of the out-degree varout. Inset: Qualitative behavior is the same for differnet mean

degrees. (b) No significant dependency of reconstruction quality on out-degree heterogeneity (network size

N = 150 throughout, α = 1, Aij 2 {0, 1}).

https://doi.org/10.1371/journal.pone.0186624.g004
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faithfully reconstructed using a global threshold. In contrast, the number of outgoing connec-

tions does not directly impact pairwise correlations.

Conclusions

In summary, we have systematically investigated reconstructibility of physical interaction net-

works from thresholding statistical correlations. Beyond valuable previous studies which tar-

geted the impact of correlated noise and estimation errors [39, 40], we revealed intrinsic limits

of reconstructibility induced by the strengths of network interactions and their topology. In

particular, a number of distinct topological factors contribute in a systematic way: local com-

mon cause structures, local relay structures, in-degree heterogeneities as well as non-local

structural elements of a network resulting from different link densities in different network

parts. Intriguingly, for stationary dynamics and arbitrary network topologies we uncovered a

transition to full reconstructibility when decreasing the coupling strengths. Whereas the exact

critical coupling strength to transition to reconstructibility depends on the topology, it is

guaranteed to occur for all topologies.

Given the limitations of correlation thresholding, alternate methods of reconstruction from

time series data are required (e.g, [6, 7, 24, 41]). In systems of linearly coupled spiking neurons,

coupling strengths may for example be reconstructed using sparse reconstruction of connec-

tions [42] if connections are sparse or covariance inversion [36, 41] if temporal information is

available.

For systems that are strongly non-linear and non-stationary, the range of inference meth-

ods is currently largely limited to systems with models known a priori. Such non-linear sys-

tems in general pose a number of additional challenges, including that there typically is no

well-defined, temporally constant coupling strength between the units. Future studies would

need to investigate model-independent methods to obtain physical interaction structure from

recorded non-linear dynamics [4–11, 24].

Our main result on full reconstructiblity in the weak coupling limit might provide a useful

initial step towards the reconstruction of non-linear and non-stationary networks: By system-

atically combining localized but faithful reconstructions obtained from an entire set of dynam-

ics around different operation points in weakly coupled networks a global picture of the

underlying interactions and their network state-dependencies could be obtained. Our finding,

that the transition to reconstructibility is observed in all generic linear networks (see S1 Sup-

plementary Material) yields promising perspectives for future investigations.

Our results on topology-induced limits of network reconstructibilty not only further our

theoretical insights about the relations between statistical correlation and physical interaction

networks [23, 24, 43] but also indicate where principal care has to be taken in applications

when analyzing statistical correlation data to reveal aspects of direct physical interactions.

Supporting information

S1 Supplementary Material.

(PDF)
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