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Abstract

Background: With the recent completion of numerous sequenced bacterial genomes, notable
advances have been made in understanding the level of conservation between various species.
However, relatively little is known about the genomic diversity among strains. Ve determined the
complete genome sequence of the Florida strain of Anaplasma marginale, and near complete (>96%)
sequences for an additional three strains, for comparative analysis with the previously fully
sequenced St. Maries strain genome.

Results: These comparisons revealed that A. marginale has a closed-core genome with few highly
plastic regions, which include the msp2 and msp3 genes, as well as the aaap locus. Comparison of
the Florida and St. Maries genome sequences found that SNPs comprise 0.8% of the longer Florida
genome, with 33.5% of the total SNPs between all five strains present in at least two strains and
3.0% of SNPs present in all strains except Florida. Comparison of genomes from three strains of
Mpycobacterium tuberculosis, Bacillus anthracis, and Nessieria meningiditis, as well as four Chlamydophila
pneumoniae strains found that 98.8%—100% of SNPs are unique to each strain, suggesting A.
marginale, with 76.0%, has an intermediate level of strain-specific SNPs. Comparison of genomes
from other organisms revealed variation in diversity that did not segregate with the environmental
niche the bacterium occupies, ranging from 0.00% to 8.00% of the larger pairwise-compared
genome.

Conclusion: Analysis of multiple A. marginale strains suggests intracellular bacteria have more
variable SNP retention rates than previously reported, and may have closed-core genomes in
response to the host organism environment and/or reductive evolution.
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Background

While the recent boom in genome sequencing projects
has provided a wealth of information about bacterial
metabolism and evolution, we know little about inter-
strain variation. A firm understanding of the rates and
sites of variation is useful in determining genotypic differ-
ences associated with phenotypic traits and in formulat-
ing control strategies for a number of pathogens. Further,
knowledge about the pan-genome of organisms will aid
in determining the core genomic requirements, as well as
shed more light on events that occur in the various envi-
ronmental niches bacteria occupy.

Most studies of bacterial diversity to date have either uti-
lized specific genomic loci [1,2] or have examined
metagenomics of specific environmental niches [3,4].
While these types of studies help elucidate the extent of
diversity, there is still a key component that has not yet
been investigated - a measurement of diversity within
bacterial species. Obtaining a true measure of species
diversity is difficult, as the strains selected for whole-
genome sequencing are generally chosen to examine a
particular phenotypic trait, subjecting any resultant meas-
ures of diversity to selection bias.

The level of interstrain diversity can have a significant impact
on the direction of research. Selection of pathogen strains for
sequencing is typically based on differences in virulence [5],
host preference [6], or tissue tropism [7]. Using these selec-
tion criteria may artificially skew the level of diversity in the
studied genome sequences, resulting in a biased level of
diversity which does not accurately reflect the true genetic
diversity of the species. However, since the diversity among
strains has only been examined in a small number of species,
determining if there is a skew is difficult. For example, anal-
ysis of several genome sequences of Bacillus anthracis found a
low number of single-nucleotide polymorphisms (SNPs)
[8], which led to development of other techniques for exam-
ining the epidemiology of outbreak strains [9]. B. anthracis is
an example of a "closed core" genome - that is, after
sequencing several strains (four for B. anthracis), no strain-
specific genes are added to the pan-genome [10], which may
be a result of a clonal population split of B. anthracis from B.
cereus. Thus, the closed-core genome may be the result of
small evolutionary distance, and may be a rare finding for
organisms with larger evolutionary distance. The alternative
is an "open core" genome, where each new sequenced strain
adds at least one unique gene to the pan-genome. This is
exemplified by Streptococcus agalactiae, which has approxi-
mately 30 new strain-specific genes for each additional
genome sequenced, regardless of the total number of strains
compared.

What influences the pan-genome? Is the pan-genome con-
tent fixed, or does it drift with time? Do all non-clonal
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populations have open-core genomes, or is this influ-
enced by the environment a bacterium occupies? While
answering all of these questions will require sequencing
many more genomes, Anaplasma marginale makes an
excellent system for studying the last question for a
number of reasons. A. marginale is a member of the order
Rickettsiales and a well-established obligate intracellular
bacterial model. A. marginale is the most globally preva-
lent vector-borne pathogen of cattle, causing cyclic ane-
mia, decreased production, and possibly death [11]. A
previous genome sequence for the St. Maries strain [11]
establishes that this organism has a small genome size due
to reductive evolution, and is related to several other intra-
cellular pathogens, including those in the genera Ana-
plasma, Ehrlichia, and Rickettsia [12]. In addition, A.
marginale has a number of characterized strains, with each
strain defined by mspl genotype [13,14]. While previous
studies have utilized specific genes to examine differences
between these strains [15-17], no studies have examined
the species diversity of A. marginale. A number of studies
have described strains that vary in geographic location
and phenotypic traits [15,18,19], and these are available
for determination of the true level of genetic diversity in
this species, subsequent analysis of the status of core
genes, and determination if these are correlated with the
intracellular lifestyle, geographic location, tick-transmissi-
ble status, or other characteristics of these organisms.

To answer this question, we obtained genome sequences
for four strains of A. marginale that have differing abilities
to be transmitted by Dermacentor andersoni, with each phe-
notype represented by at least two geographically distinct
isolations. We sequenced the Florida strain to completion
using a BAC-based clone by clone approach, and obtained
high coverage genome sequence data for three additional
strains. The resulting DNA sequences were then analyzed
and compared to both the previously sequenced St.
Maries genome [11], as well as other bacterial species in
the Order Rickettsiales. Further, the genomes of several
other non-rickettsial bacteria were examined with similar
genome comparison techniques to determine if diversity
and pan-genome content are related to pathogenicity or
an intracellular lifestyle.

Results

Microbial genome diversity

Previous studies [6,20] have shown high levels of varia-
tion between the genomes of different strains of obligate
intracellular bacteria. To compare the levels found in A.
marginale to other genomes, similar comparisons were
made for organisms meeting the following criteria: organ-
isms with 1) a single chromosome, 2) more than one
sequenced strain, and 3) assembled and finished genome
sequences deposited in Genbank, including free-living,
facultative intracellular, and obligate intracellular bacteria
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(Figure 1). Single-factor analysis of variance (ANOVA)
finds no significant differences in the level of variation
between obligate intracellular, facultative, and free-living
bacteria. The number of SNPs ranged from 0.00% to
8.00% of the larger genome, with significant intraspecies
and intragenera variation.

General genome features and comparison of the St.
Maries and Florida strains

The Anaplasma marginale Florida strain genome is com-
posed of a single 1,202,435 bp circular chromosome pre-
dicted to contain 942 coding sequences (CDS) (Table 1).
Similar to most other previously sequenced Anaplasmata-
ceae, there are no plasmids and no identifiable insertion
sequences. Compared to the previously sequenced St.
Maries strain genome [11], there are seven fewer CDSs
despite the larger genome size, due primarily to differ-
ences in split open reading frames (ORFs) and annotation
differences. The high degree of synteny between these two
strains is disrupted by two inversions; one approximately
30 kb long is flanked by repeat elements (msp3 pseudo-
genes), while the other is a single gene flanked by short
duplicated hypothetical genes.

Split ORFs were first described in the Rickettsia conori
genome [21], and are postulated to represent genes that
are in the first stage of reductive evolution. The idea that
these ORFs have split recently is consistent with the find-
ings in Anaplasma, as different ORFs are split in the two
completely sequenced strains. The four split ORFs anno-
tated in the St. Maries genome (mutl, murC, aatA, and
aspS) [11] are intact in the Florida genome, and two tan-
dem genes annotated as hypothetical in the St. Maries
genome (AM574 and AM576) are fused in the Florida
genome (AMF_437). Only one split ORF, petA, is found in
the Florida genome. Four small ORFs in the St. Maries
genome (AM380, AM395, AM974, and AM976), ranging
in size from 204 bp to 378 bp are not present in the Flor-
ida genome. These ORFs are flanked by repetitive DNA
sequences, and appear to be missing due to recombina-
tion events.

Genes mediating genome plasticity

The msp2 superfamily is a group of related A. marginale
genes encoding surface proteins [11]. Msp2 encodes a
highly antigenic protein that varies over time during infec-
tion by gene conversion of functional pseudogenes into a
single expression site, to create new antigenic variants
capable of evading the existing immune response. Com-
pared to the St. Maries genome, the Florida genome has
one additional msp2 functional pseudogene. Of the eight
Florida msp2 functional pseudogenes, four are identical to
those in the St. Maries genome. The Florida genome has
two sets of duplicated functional pseudogenes, TTV 4F15/
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TTV 106 and KAV 4F15/KAV 1F20 (Figure 2); while St.
Maries was found to have duplicated functional pseudo-
genes, this was not noted in a functional pseudogene-tar-
geted examination of other strains [22]. Florida has a set
of duplicated functional pseudogenes in the same
genome positions as St. Maries (2/3H1 in St. Maries, and
KAV 4F15/KAV 1F20 in Florida). As obligate intracellular
bacteria are not thought to undergo lateral gene transfer,
identical functional pseudogenes indicates the sequence is
either evolutionarily conserved or has been selected inde-
pendently in both strains due to a fitness advantage. Inter-
estingly, both copies in Florida have a change encoding 15
amino acids at the 5' end of the hypervariable region com-
pared to their St. Maries counterparts; either both strains
duplicated a functional pseudogene after this change
occurred in an ancestral strain, or both copies in one of
the strains acquired identical changes after the ancestral
strain duplicated the original functional pseudogene. In
contrast, only two of the seven MSP3 functional pseudo-
genes are identical between Florida and St. Maries (msp3
C/msp3-1, and msp3 4L1/msp3 6). The omp1-15 genes are
present in both genomes, with a high degree of conserva-
tion between the predicted amino acid sequences (85.3-
100% identity) as previously reported [17].

Aaap gene family

The aaap gene was first recognized and characterized as an
Anaplasma appendage associated protein [23]. Subse-
quently, additional related genes were identified that
appear to be tandemly-duplicated copies that have
diverged to have relatively low levels of sequence identity
(Table 2). There is expansion of this locus in the Florida
strain relative to the St. Maries strain, with a duplicated
copy of the aaap gene. Because of the repetitive nature of
this gene family, these sequences tend to be missing from
pyrosequenced genome assemblies; therefore, we exam-
ined the status of this locus in several the strains via
Southern analysis, revealing that this locus is highly plas-
tic both within and between strains (Figure 3).

High density sequence coverage of additional strains

An additional two transmissible strains (Virginia and
Puerto Rico) and one non-transmissible strain (Missis-
sippi) were subjected to genome-scale pyrosequencing
[24] (454 Life Sciences, Branford, CT), which provided at
least 96% genome coverage when compared to either
Florida or St. Maries (Table 3). Most of the missing
sequences corresponded to repetitive regions (such as
msp2 and msp3 pseudogenes and the aaap locus) (Figure
4) [also see additional files 1 and 2], and reflects the lim-
itations of assembling short sequence reads (averaging
approximately 250 bp per read) without additional scaf-
folding. No new genes were detected in the pyrose-
quenced contigs of any of the strains.
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# of
Species Strains Family
% SNPs  S.D.
Homo sapiens
Rhodopseudomonas palustris  5.55 (5) 1.07 —— Bradyrhizobiaceae
Anaplasma marginale 0.80 (2) } Anaplasmataceae
Ehrlichia ruminantium 213 (2)
Rickettsia bellii 0.29 (2) —— Rickettsiaceae
Mycobacterium bovis 0.04 (2) } .
Mycobacterium tuberculosis 0.03 (3) 0.02 Wiyeohastoriscoas
Tropheryma whipplei 0.73 (2) —— Cellulomonadaceae
Bacillus cereus 5.28 (4) 0.90 .
Bacillus thurigiensis 211 (2) }. Bacillaceae
Bacillus anthracis 0.01 (3) 0.00
Listeria monocytogenes 4.72 (2) — Listeriaceae
Staphylococcus aureus 1.02 (13) 0.67 } Staplhylosoceaceas
Staphylococcus epidermidis 0.55 (2)
Clostridium botulinum 0.05 (3) 0.03 o
Clostridium perfringens 1.89 (3) 0.54 } Slastadiales
—— Bacteriodes fragilis 0.63 (2) —— Bacteroidaceae
Chlamydophila pneumoniae 0.05 (5) 0.12 } Chlaraydlales
Chlamydia trachomatis 0.37 (2)
Thermus thermophilus 0.96 (2) =—— Thermaceae
Mycoplasma hyopneumoniae 1.40 (3) 0.12 — Mycoplasmataceae
Prochlorococcus marinus 2.02 (9) 3.01 — Prochlorococcaceae
Synechococcus elongatus 0.08 (2) —— Chroococcales
Desulfovibrio vulgaris 1.00 (2) — Desulfovibrionaceae
Buchnera aphidicola 0.99 (4) 1.75
Escherichia coli 1.65 (9) 0.66
Shigella flexneri 0.07 (2) Enterobacteriaceae
Salmonella enterica 0.00 (2)
Yersinia pestis 0.07 (6) 0.02
Yersinia pseudotuberculosis 0.80 (2)
Haemophilus influenzae 2.39 (4) 0.17 — Pasteurellaceae
Shewanella baltica 2.59 (2) —— Shewanellaceae
—— Pseudomonas aeruginosa 3.78 (3) 2.45
Pseudomonas fluorescens 5.76 (2) } T —
Pseudomonas syringae 8.00 (3) 0.12
Pseudomonas putida 2.28 (2)
Xanthomonas campestris 0.13 (2)
Xanthomonas oryzae 0.26 (2) } Xanthomonadaceae
Xylella fastidiosa 3.46 (2)
Neisseria meningitidis 2.34 (3) 0.04 — Neisseriaceae
Coxiella burnetii 0.36 (2) —— Coxiellaceae
Legionella pneumophila 2.68 (4) 0.28 —— Legionellaceae
Francisella tularensis ss. Holarctica 2.59 (2) }_ Francisellaceae
Francisella tularensis ss. Tularensis 2.59 (2)
Campylobacter jejuni 1.62 (3) 0.12 —— Campylobacteraceae

Helicobacter pylori

4.91 (3)

0.83 — Helicobacteraceae

Comparison of the level of SNP diversity among sequenced genomes. Bacteria listed in blue are obligate intracellular,
while those in red are facultatively intracellular. Each organism lists the average level of SNPs as a percentage of the largest

genome.
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Table I: Comparison of the St. Maries and Florida genome
features

Anaplasma marginale

St. Maries Florida
Genome Size (bp) 1,197,687 1,202,435
CDS features 949 942
GC content (%) 49.86% 49.86%
Coding density (%) 85.40% 85.50%
Average gene length 1078 1091
rRNA genes 3 3
tRNA genes 37 37
Functional pseudogenes 16 17

Diversity of A. marginale strains

Global comparison of all strains with the Florida strain
revealed 20,028 total sites with a single nucleotide poly-
morphism (SNP) in at least one of the compared strains.
Of'these, 511 (2.6%) were different in the Florida genome
and identical in the other four strains, and 13,316
(66.5%) were unique to one of the four strains (Figure 5).
The remaining 30.9% of SNPs represent those SNPs rela-
tive to Florida that were present in two or three of the
strains. There were 9,609 SNPs between the Florida and
St. Maries strains, comprising 0.80% of the larger Florida
genome. The SNPs were distributed evenly throughout the
genome, which is similar to both Ehrlichia ruminantium
and Rickettsia bellii [see additional file 3], and are propor-
tionally distributed throughout coding and non-coding
regions. The numbers of polymorphisms in the Puerto
Rico, Virginia, and Mississippi strains (2,729, 3,868, and
6,773, respectively) are minimums, as the gaps are regions
predicted to have significant numbers of SNPs. When the
genome size was corrected for the gaps in coverage, the
SNP rates for the Puerto Rico, Virginia, and Mississippi
genomes were 0.32%, 0.46%, and 0.73% of the Florida
genome, respectively.

1 2 9H1
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Discussion

This study illustrates the dangers of drawing universal
conclusions when strains are selected based on specific
criteria, such as phenotypic differences. No two strains in
this study are truly representative of the population as a
whole. Additionally, the large number of differences in
pair-wise comparisons of any two strains illustrates the
difficulty of associating genes with phenotypic differ-
ences, and the utility of sequencing multiple strains to
increase the power of these associations. While our initial
selection of the Florida strain was based on a phenotypic
difference - that of tick transmissibility, the selection of
subsequent strains (PR, VA, and MS) were made to try and
minimize the effect of bias based on that phenotype, as
well as select a wider geographic range of isolates to
increase interstrain diversity. Interestingly, when the pyro-
sequenced strains are compared to Florida, there are more
high-quality polymorphisms (identified when four reads,
each with at least 20 base pairs flanking the polymorphic
site, contain the difference, with at least one read in each
direction) between Florida and the Mississippi strain,
despite the fact that neither is tick-transmissible by D.
andersoni [19,25]. Further, St. Maries appears to be an out-
lier sequence, as there are at least 6,000 differences
between St. Maries and all other sequenced strains.

The level of SNP diversity in these strains coupled with the
high degree of gene content conservation also sheds an
interesting light on the concept of the "core genome",
described for Streptococcus agalactiae [10]. For S. agalactiae,
approximately 90.5% of genes were considered part of the
"core genome", or constant between strains, and each new
strain added additional strain-specific genes to the "pan-
genome". This is contrasted with Bacillus anthracis, which
had no new strain-specific genes after four strains were
compared. The strains of A. marginale sequenced here
present an interesting data point, as A. marginale has not
been hypothesized to be a clonal population derived from
another organism (as has been postulated for B. anthra-

3H1 ES P1 E6/F7 G11

Stm fl | | " | |
| | | |

NAI KAV NAI
4F15 4F15 1011
Figure 2

KAV TTV
1F20 106

ES NAV TTV NAV
2G15 4F15 4F15

Physical map of the MSP2 functional pseudogenes in the St. Maries (StM) and Florida (FL) strains. Vertical bars
indicate relative position of functional pseudogenes in the genome (not to scale). Bars with the same color indicate identical
functional pseudogenes, while similar colors indicate functional pseudogenes with segmental changes. ES represents the msp2

expression site.
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Southern blot of the aaap locus in A. marginale
strains. FL — Florida strain, MS — Mississippi strain, PR —
Puerto Rico strain, StM — St. Maries strain, VA — Virginia
strain. DNA marker sizes are listed in kbp.

cis), and yet has a closed core genome. The accumulation
of large numbers of SNPs might indicate a greater evolu-
tionary distance; however, the closed-core genome could
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Table 2: Identity between deduced AAAP amino acid sequences
from the St. Maries and Florida strains

St. Maries
aaap AM879 AMB880
Florida aaap 45.0% 49.4% 49.6%
alpl 46.1% 73.8% 24.1%
alp2 33.4% 40.3% 58.2%
alp3 11.7% 30.7% 24.6%

be due to other factors. These could include the isolated
nature of the intracellular niche occupied by A. marginale,
causing the organism to undergo reductive evolution to
the point it is approaching the minimal gene comple-
ment, or may be, despite our efforts, related to the strains
selected for sequencing. However, if this is due to long-
term reductive evolution, it calls into question the source
of the six split ORFs between the Florida and St. Maries
genomes, as these are thought to be early reductive
changes. Another possibility is that transmission of the
organism among animals in a relatively restricted geo-
graphic area (i.e., within a herd) promotes a relatively
clonal population of organisms through isolation in a
similar environment.

Analysis of the level of SNP diversity in several bacterial
genomes brings into question previous conclusions about
the variability of obligate intracellular pathogens. Previ-
ous studies [6] have found relatively large numbers of
SNPs between intracellular organisms. It was therefore
hypothesized that the relatively isolated intracellular
niche limits opportunities for genetic exchange and
increased numbers of SNPs provides a compensatory
mechanism for providing diversity to drive evolution. Our
results suggest this is unlikely, as there is no correlation
between intracellular, facultative intracellular, and free-
living organisms and the level of diversity. With few
exceptions, there is a large range in the degree of variabil-
ity in all the strains compared. Additionally, the organ-
isms with the two highest rates of variability, Pseudomonas
syringae and Rhodopseudomonas palustris, are both free-liv-
ing. There is also significant variation at the genus and
family level. These data suggest that the factors for reten-
tion of SNPs leading to bacterial diversity are likely multi-
factorial and complex.

While the composition of the gene content of the pan-
genome is obviously important, this study reveals another
characteristic that needs examination: the level of diver-
sity in the pan-genome. The minimum of 20,028 variable
sites found among these five genomes is approximately
1.67% of the estimated size of the pan-genome. The large
number of unique SNPs in each strain (24.1% in the St.
Maries genome, 6.0% in the Puerto Rico genome, 10.8%
in the Virginia genome, and 25.5% in the Mississippi
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Figure 4

Distribution of gaps in the three pyrosequenced genomes. In the outer rings, gaps in the Mississippi sequence are
green, gaps in Puerto Rico are red, and gaps in Virginia are blue. Known repetitive genes are represented by black bars. The
inner rings represent CDSs (blue and green) and functional pseudogenes (shades of grey) in the Florida strain, rRNAs (red) and
tRNAs (purple), and the G-C skew (black graph).

genome) suggests that while A. marginale has a closed core  are unique to an individual strain, while zero SNPs are
genome, the SNP profile of the core genome is moderately ~ common to all four strains. Similarly, 100% of SNPs
"open". When several strains of Streptococcus agalactiae  between three strains of Bacillus anthracis (Ames, Ames
(CJB111, COH1, A909, and 515) are compared to the  Ancestor, and Sterne) and Mycobacterium tuberculosis (F11,
2603 VR strain, 99.18% of the 46,579 total detected SNPs ~ H37Ra, and H37Rv), 98.8% of SNPs between three strains
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Table 3: Pyrosequencing results for three strains of Anaplasma marginale

Puerto Rico Virginia Mississippi
St. Maries Florida St. Maries Florida St. Maries Florida
Number of large contigs 75 59 8l 70 78 82
Bases in large contigs 1,150,801 1,158,530 1,146,893 1,153,875 1,139,486 1,141,520
% Genome coverage 96.89% 97.00% 96.88% 96.77% 96.34% 96.25%
High quality variations 6,038 2,729 6,613 3,868 6,302 6,773

of Neisseria meningitides (FAM18, MC58, and Z2491), and
99.9% of SNPs between four strains of Chlamydophila
pneumoniae (AR39, CWL029, J138, and TW-183) are
unique to one strain. This suggests that these genomes
have open SNP profiles regardless of being open or
closed-core at the genome level. Further, there is no corre-

Puerto Rico

St. Maries

Figure 5

lation between SNP diversity and lifestyle, with high levels
of variation between strains and within genera, with lim-
ited exceptions. However, given that the majority of
strains were selected based on phenotypic traits or previ-
ous work with each strain, it is unlikely that this represents
the true diversity of these organisms. Additionally, the

Virginia

(33)

Distribution of SNPs in four strains compared to the Florida strain. Numbers in parentheses show SNPs that are dif-
ferent from Florida in each strain in the subset, but are not the same in the compared strains.
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majority of organisms have only two sequenced strains,
making analysis of variation within a species impossible
to determine. Additional work will be required to build a
picture of genomic diversity.

The genome of A. marginale is highly recombinogenic,
which, in spite of the highly conserved gene content, leads
to increased plasticity. There are between five and nine
functional msp2 pseudogenes in the strains examined to
date [11,22,26,27], and these can recombine in whole or
in part into the msp2 expression site (or with each other)
to generate new antigenic variants [26,27]. Symmetrical
inversions around the origin are thought to be quite com-
mon in bacteria [28] and have been noted in Anaplasmata-
ceae, often utilizing repeated genes such as msp2 to
mediate the inversion. These inversions are highlighted by
comparisons between A. marginale and Ehrlichia ruminan-
tium [29] and Anaplasma phagocytophilum [30]. Many of
these repetitive sequences flank ori, as does another dupli-
cated gene, tho. While not around the origin, a smaller
scale inversion was found between two strains of A. mar-
ginale flanked by msp3 pseudogenes close to ori. Another
highly plastic genomic region is the AAAP locus [23] that
appears to be expanding and contracting within and
between strains. In addition to changes in gene number,
the sequences are highly variable (Table 2). Further
research will be needed to determine the significance of
these differences, as well as the function of this locus.

Conclusion

Sequencing of multiple strains of bacteria, as well as
sequencing multiple isolates from the same strain, will
yield a tremendous amount of information about natural
rates of variation in bacterial populations, which in turn
will influence our views of bacterial evolution, epidemiol-
ogy, and vaccine strategies. This study reveals that inter-
strain SNP diversity does not appear to be influenced by
the environmental niche an organism occupies, nor is it
generally consistent throughout a specific family or gen-
era. Comparison of multiple strains of A. marginale finds
few changes at the gene level, while there is robust diver-
sity at the nucleotide level. Finally, multistrain SNP anal-
ysis appears to be a more powerful tool for A. marginale
phylogenetic studies than genotyping of the major surface
proteins [15], and this strategy should be useful for epide-
miologic studies of other species of bacteria.

Methods

Experimental approval

All animal experiments described in this paper were
approved by the Washington State University Institu-
tional Animal Care and Use Committee (IACUC), with
approval number 3386.

http://www.biomedcentral.com/1471-2164/10/16

Strains of A. marginale used

The Florida strain [GenBank: CP001079] of A. marginale
was originally isolated from a pool of blood samples col-
lected from cattle in 1955 [16,31,32]. The Mississippi
strain [GenBank: ABOP00000000] was isolated from an
acute clinical case of anaplasmosis [25,33]. Both of these
strains are virulent, and are not transmissible by D. ander-
soni ticks. The Virginia strain [GenBank: ABOR00000000]
was isolated from a cow in Southern Virginia in 1972 [34].
The Puerto Rico strain [GenBank: ABOQ00000000] was
received as a frozen stabilate after isolation from cattle in
Puerto Rico in 1985 [35,36]. Both the Virginia and Puerto
Rico strains are virulent, and are transmissible by D.
andersoni. While passage histories are not well docu-
mented for these strains, all strains have been passaged
multiple times in cattle since isolation. The Florida strain
has the longest passage history, being passed continu-
ously since isolation, and the Puerto Rico strain has only
been passaged once since coming to our laboratory.

DNA isolation for genome sequencing

Blood stabilates from the Florida, Mississippi, Puerto
Rico, and Virginia strains were inoculated into splenect-
omized calves, which were shown to be free of A. margin-
ale  infection via  competitive  enzyme-linked
immunoabsorbent assay (cELISA) [37]. Blood samples
were taken at peak parasitemia, washed seven times in
phosphate buffered saline (137 mM NaCl, 10 mM Phos-
phate, and 2.7 mM KClI), and centrifuged at 1,500 x g for
10 minutes with the removal of the buffy coat after each
spin. Erythrocytes not used immediately were diluted 1:1
in PBS and frozen for later use.

A. marginale preparation

After thawing, lysed erythrocytes were passed over a col-
umn containing loosely-packed CF-11 cellulose (Sigma-
Aldrich Corporation, St. Louis, MO). The column eluate
was washed repeatedly with PBS and centrifuged at
19,000 g for 20 minutes until all remaining hemoglobin
was removed, leaving a pellet of A. marginale initial bodies
and erythrocyte membranes.

Bacterial artificial chromosome (BAC) library construction
and manipulation

The bacterial preparation was embedded into 1% agarose
blocks (A-9539, Sigma Chemical Co., St. Louis, MO), and
cells within the blocks were lysed using proteinase K and
SDS [38]. A. marginale genomic DNA was partially
digested with either HindIll or Mbol, size selected on
pulse-field gels, ligated into the pPBELOBAC11 vector, and
electroporated into Escherichia coli strain DH10B (Ampli-
con Express, Pullman, WA). A total of 3,072 clones (1,536
clones from each restriction enzyme) were arrayed into
384 well plates. The average insert size of the clones was
120 kb.
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Genome sequencing

For the Florida strain, a BAC-based clone-by-clone strat-
egy was adopted. BAC clones were screened using digoxi-
genin (DIG)-labeled (Roche Applied Science) probes to
bovine genomic DNA and several A. marginale genes
(including msp1 , mspl , msp2, msp3, msp4, msp5, dnak,
recA, groEL, and sodB). Selected clones were end-
sequenced and a minimum tiling path was constructed
based on comparison with the previously-sequenced St.
Maries strain. Sequencing of BACs, assembly of completed
sequences, and genome annotation were as described
[11].

Genomic DNA from the Mississippi, Puerto Rico, and Vir-
ginia strains was extracted from isolated bacteria (pre-
pared as described above) using the Puregene Blood kit
(Qiagen Corporation, Valencia, CA). DNA was then
sequenced on a Genome Sequencer 20 instrument (454
Life Sciences Corporation, Branford, CT), using a pyrose-
quencing protocol [24]. The Newbler program was used
with its default settings to assemble the sequence and to
compare all contigs to the completed Florida and St.
Maries genomes, which revealed the location of gaps in
coverage. High-quality variations were called when four
reads, each with at least 20 base pairs flanking the poly-
morphic site, contain the difference, with at least one read
in each direction. The nucleotide sequences of assembled
contigs were compared to the St. Maries genome using
BLASTn. Any contigs without hits better than 1e-10 were
then compared to the bovine whole genome shotgun
sequence database, to screen for bovine DNA contamina-
tion. Any contigs with no hits to bovine sequence were
then compared to the nt database. Large contigs assem-
bled by Newbler were compared to the Florida genome
using MUMmer v3.1 [39] after filling gaps in the assembly
with the corresponding sequence from the Florida strain.

Genome comparisons

MUMmer v3.1 was used to compare the completed St.
Maries and Florida genomes and the contigs of the Missis-
sippi, Puerto Rico, and Virginia strains, as described [5].
Output from the SNP detection algorithm (show-snps)
was processed using custom scripts (written with Autolt
v3.2.2.0) to determine the number of SNPs per ORF.
Show-snps output was also processed in Excel (Microsoft
Corporation, Redmond, WA) to graph the location of
SNPs throughout the genome. FASTA sequences from sin-
gle-chromosome genomes with multiple strains
sequenced were downloaded from Genbank [see supple-
mentary table 2 for the genomes compared, their sizes,
and Genbank accession numbers]. All strains for a given
species were compared to each other using MUMmer 3.1,
as described above. The number of SNPs per comparison

http://www.biomedcentral.com/1471-2164/10/16

was then divided by the larger of the two compared
genomes to yield the percent SNPs per genome. For spe-
cies with more than two strains sequenced, all percentages
were averaged to give the mean and standard deviation.
The phylogenetic tree was inferred using the Maximum
Parsimony method [40] of MEGA4 [41] comparing con-
catenated sequences from groEL, groES, atpA, and recA. The
bootstrap consensus tree is inferred from 1000 replicates,
and branches corresponding to partitions reproduced in
less than 50% bootstrap replicates are collapsed. There
were a total of 458 positions in the final dataset, out of
which 379 were parsimony informative.

Southern analysis

Genomic DNA from all five strains was digested with Xbal
and Hindlll (New England Biolabs Corporation, Ipswich,
MA), as these enzymes cut within the conserved flanking
genes. Resultant fragments were separated on a 0.8% aga-
rose gel, and subsequently transferred to a charged nylon
membrane and crosslinked with a Stratalinker UV appara-
tus (Stratagene Inc., La Jolla, CA) per the manufacturer's
directions. The blots were prehybridized at 42°C for at
least two hours in Dig Easy Hyb buffer (Roche Corpora-
tion, Indianapolis, IN). Digoxigenin-labeled probes to
aaap were produced using the PCR DIG Probe Synthesis
Kit (Roche Corporation) and hybridized overnight at
42°Cin DIG Easy Hyb buffer. The membrane was washed
three times for 15 minutes in 2 x SSC and 0.1% SDS, with
the first two washes at room temperature and the third at
65°C. A final wash was performed in 0.2 x SSC and 0.1%
SDS at 65°C. Chemiluminescent detection of the probes
was performed using the DIG Wash and Block Buffer Kit
(Roche Corporation) per the manufacturer's directions.
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