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Abstract

Introduction: The pathophysiology and temporal dynamics of affected tissues

in chronic rhinosinusitis (CRS) remain poorly understood. Here, we present a

multiomics‐based time‐series assessment of nasal polyp biopsies from three

patients with CRS, assessing natural variability over time and local response to

systemic corticosteroid therapy.

Methods: Polyp tissue biopsies were collected at three time points over two

consecutive weeks. Patients were prescribed prednisone (30mg daily) for 1 week

between Collections 2 and 3. Polyp transcriptome, proteome, and microbiota were

assessed via RNAseq, SWATH mass spectrometry, and 16S ribosomal RNA and

ITS2 amplicon sequencing. Baseline interpatient variability, natural intrapatient

variability over time, and local response to systemic corticosteroids, were

investigated.

Results: Overall, the highly abundant transcripts and proteins were associated

with pathways involved in inflammation, FAS, cadherin, integrin, Wnt,

apoptosis, and cytoskeletal signaling, as well as coagulation and B‐ and T‐cell
activation. Transcripts and proteins that naturally varied over time included

those involved with inflammation‐ and epithelial–mesenchymal transition‐
related pathways, and a number of common candidate target biomarkers of

CRS. Ten transcripts responded significantly to corticosteroid therapy,

including downregulation of TNF, CCL20, and GSDMA, and upregulation of

OVGP1, and PCDHGB1. Members of the bacterial genus Streptococcus posi-

tively correlated with immunoglobulin proteins IGKC and IGHG1.

Conclusions: Understanding natural dynamics of CRS‐associated tissues is

essential to provide baseline context for all studies on putative biomarkers,

mechanisms, and subtypes of CRS. These data further our understanding of
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the natural dynamics within nasal polypoid tissue, as well as local changes in

response to systemic corticosteroid therapy.
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1 | INTRODUCTION

Chronic rhinosinusitis (CRS) is a debilitating upper re-
spiratory chronic inflammatory condition.1,2 Leading hy-
potheses on the pathophysiology of CRS include deficiencies
in local innate immunity and epithelial dysregulation.3–6

Recent research has also implicated the sinonasal micro-
biota both in driving inflammation and influencing distinct
inflammatory types of CRS.7–11 Nonetheless, the mechan-
isms underlying the etiology and ongoing pathophysiology
of CRS remain poorly understood.

CRS is traditionally divided into two forms depending
on the presence of nasal polyposis.1 More recently, CRS is
increasingly thought of as a range of distinct conditions
sharing similar clinical presentation, but with different
underlying inflammatory mechanisms.3,9,12–20 Markers dif-
ferentiating between different putative inflammatory en-
dotypes of CRS have been identified, as well as multiple
concurrent inflammatory types observed in some pa-
tients.9,14,16,19–22 Importantly, very little is known about the
dynamics of processes within the mucosa or nasal polyp
tissue over time. Better understanding the natural variation
in CRS‐associated tissue will be vital for research aimed at
clarifying the molecular mechanisms of CRS and nasal
polyposis, and for informing treatment decisions.

Following the diagnosis of CRS, standard medical man-
agement includes saline irrigation, oral antibiotics, and to-
pical and oral corticosteroids.23–25 While there is little
evidence for the efficacy of topical antibiotics for most CRS
patients,26 the benefits of local and systemic corticosteroid
therapy are well supported, particularly in CRS with nasal
polyps (CRSwNP) patients.2,6,12,26–30 Local corticosteroids are
particularly well tolerated, but limited accessibility to the
inflamed sinonasal mucosa reduces the efficacy of topical
treatments before surgical intervention.31 In comparison,
potential deleterious side effects of long‐term systemic cor-
ticosteroid use limits their recommended application in CRS
to short‐term management of CRSwNP.2,32 It was of interest
to examine the local mechanisms of action of systemic cor-
ticosteroids, with the aim of identifying targets for the de-
velopment of novel therapies that achieve similar patient
benefits without the need for, or sustained use of, systemic
corticosteroids.

The aim of this study was to undertake a comprehensive
multiomics assessment of nasal polyp tissue transcriptome,

proteome, and associated bacterial and fungal microbiota, in
three patients with CRSwNP. For all metrics, baseline in-
terpatient variability, natural intrapatient variability over
time (1 week), local response to systemic corticosteroid
therapy (prednisone, 30mg daily for 1 week), and interac-
tions between the four data sets were investigated.

2 | MATERIALS AND METHODS

2.1 | Patient recruitment and sample
collection

Three patients with CRSwNP listed for bilateral functional
endoscopic sinus surgery for CRS were recruited. All patients
were male, of New Zealand European ancestry, nonsmokers,
aged 46–59 years, and with Lund–Mackay clinical severity
scores ranging 17 to 23 (Table S1). None of the patients had
taken antibiotics or corticosteroids in the 4 weeks before the
study. This study was approved by the New Zealand Health
and Disability Ethics committee (14/NTA/134), and written
informed consent was obtained from all participants.

Samples were collected at three time points over two
consecutive weeks (time points i, ii, and iii; Figure 1A).
Between time points ii and iii, patients were prescribed oral
prednisone (30mg daily) for 1 week. Sample collection was
designed to enable investigation of each of the following: (1)
baseline interpatient variability; (2) natural variability over
time (time points i vs. ii); and (3) treatment effects of corti-
costeroids (prednisone; pretreatment time points vs. post-
treatment [iii]). At each time point, two small adjacent nasal
polyp tissue biopsies (<0.1 g, ~1mm diameter) were col-
lected. One biopsy, intended for human transcriptome and
microbiota analyses, was placed into RNAlater (Life Tech-
nologies). All samples were stored at −20°C until the time of
sample processing.

2.2 | Sample processing

2.2.1 | Transcriptome and microbiota
community sequencing

DNA and RNA were extracted in parallel from polyp
tissue biopsies collected in RNAlater using the Qiagen
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AllPrep DNA/RNA Isolation Kit (Qiagen) as outlined in
Supporting Information S1, Supplementary Methods,
and as per manufacturer's instructions. DNase‐treated
RNA for transcriptome analysis (RNAseq) was sub-
mitted to the sequencing provider (Auckland Genomics
Ltd.) for final sample processing, library preparation,
and sequencing on two lanes of an Illumina HiSeq
machine (150 bp, paired‐end reads; Figure 1B). Ex-
tracted DNA was used for microbial community am-
plicon sequencing (Figure 1B). Bacterial 16S ribosomal
RNA (rRNA) and fungal ITS2 genomic markers were
polymerase chain reaction (PCR)‐amplified in triplicate
using the primers 341F–785R,33 and ITS3–ITS4,34 as
previously described,35,36 and submitted to the sequen-
cing provider (Auckland Genomics Ltd.) for library
preparation and sequenced on the Illumina MiSeq
platform (2 × 300 bp, paired‐end reads).

2.2.2 | Proteome (SWATH‐MS)

Remaining polyp biopsies (those not collected in RNA-
later) were processed and prepared for proteomic analy-
sis as described in Supporting Information S1,
Supplementary Methods. Liquid chromatography with
tandem mass spectrometry (LC‐MS/MS) was conducted
for each sample using SWATH acquisition, with

fragment ion areas (and Benjamini and Hochberg false
discovery rate [FDR] calculations for each ion) calculated
by PeakView (v. 2.2) with the SWATH MicroApp 2.0
(Sciex; Figure 1B).

2.3 | Data processing

2.3.1 | Transcriptome (RNAseq)

Raw RNAseq reads (>185 million/sample) were processed
using BBDuk37 (v. 36.86) to remove sequencing adapters and
low‐quality base calls (Phred score< 10). The high‐quality
reads were then mapped to the Ensembl Human genome
(v. GRCh38)38 using HISAT2 (v. 2.0.5),39 and read counts
allocated to the Ensembl human gene models (GRCh38.94)
by HT‐Seq (v. 0.6.0)40 using the “Union mode.”

2.3.2 | Proteome (SWATH‐MS)

Data for each patient (three samples each) were processed
independently using Excel, as described in Supporting
Information S1, Supplementary Methods. Sums of frag-
ment areas for each peptide were calculated, followed by
peptide area sums for each protein. Protein area sums
were used for all subsequent analyses.

FIGURE 1 Experimental design and sampling. (A) Sample collection was designed to enable investigation of each of the following:
(1) interpatient variability (patients 1 vs. 2 vs. 3); (2) natural temporal variability (time points i vs. ii); and (3) treatment effects of
corticosteroids (prednisone). In total, two biopsies were collected from each patient at each respective time point, resulting in 18 biopsy
samples. (B) At each time point, two nasal polyp biopsies were collected from each patient, with one biopsy placed into RNAlater and one
into an empty collection tube. DNA and RNA were extracted in parallel from biopsies collected in RNAlater and prepared for microbiota
(bacterial 16S ribosomal RNA and fungal ITS2; MiSeq) and transcriptome analyses (RNAseq), respectively. Remaining biopsies were
prepared for proteome analysis (SWATH LC‐MS/MS)
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2.3.3 | Microbiota (16S rRNA and ITS2
marker amplicon sequencing)

Bioinformatics processing of 16S rRNA gene and ITS2
marker amplicon sequences was conducted in USEARCH
(v. 10),41–44 generating taxonomically assigned45,46 zero‐
radius operational taxonomic units (ZOTUs; based on 100%
sequence similarity, and analogous to amplicon sequence
variants), as previously described36,47 (further described in
Supporting Information S1, Supplementary Methods).
Alpha diversity indices (richness, Shannon's diversity, and
Simpson's evenness) were calculated in USEARCH.

2.4 | Data analyses and statistics

An initial exploratory analysis of natural transcript and
protein variability over time was conducted by calculating
ratios of normalized raw read counts between the first and
second time points (times i and ii) for each individual pa-
tient (excluding transcripts with read counts < 1000, as
these can misrepresent the scale of fold differences).

2.4.1 | Transcriptome

The R package DESeq2 (v. 1.14.1)48,49 was used to iden-
tify differentially expressed genes (DEGs) based on the
read count data, as described in the package's vignette.
The following RNAseq comparisons were used: (1) nat-
ural variability (time point i vs. ii); and (2) response to
treatment (ii vs. iii). Reported significant DEGs are based
on FDR‐adjusted p values (α= .05). Ensembl IDs were
converted to HUGO Gene Nomenclature Committee
(HGNC) symbols for ease of interpretation and to stan-
dardize reporting between RNAseq and proteome results.

2.4.2 | Proteome

Log‐transformed (natural log) data were tested for the fol-
lowing: (1) baseline interpatient differences; (2) natural
variability; and (3) treatment effects (prednisone). Linear
models were fitted for each protein, and tested using one‐
way analysis of variance (ANOVA). For “natural varia-
bility” and “treatment” comparisons, linear mixed‐effects
models were fitted with the addition of interpatient differ-
ences fitted as random effects. For “interpatient” (patient 1
vs. 2 vs. 3) and “natural variability” (times i vs. ii vs. iii),
post‐hoc testing of variables with ANOVA p< .05 was
conducted via two‐sample t tests and Tukey's honest sig-
nificant difference tests (Tukey's p value, α= .05). For
“treatment” (“control” vs. “treatment”), ANOVA results are

reported (ANOVA p‐value, α= .05). UniProt IDs were
converted to HGNC symbols to standardize reporting
between proteome and RNAseq results.

2.4.3 | PANTHER analyses and
pathways of interest data subset
(“pathways_subset”)

Molecular pathways and Gene Ontology (GO) terms
enriched for DEGs and proteins (DEG with FDR‐
adjusted p< .1; proteins with Tukey's p< .05) for natural
variability and response to prednisone were identified
using PANTHER (v. 14.0)50,51 via the functional classi-
fication tool and statistical overrepresentation test
(release: 2018‐11‐13; FDR‐adjusted p value, α= .05),
using GO database release 2018‐12‐01.52

To perform more focused subanalyses investigating
biologically relevant mechanisms likely to be involved in
CRS processes, a subset of genes (898 genes) were iden-
tified based on their involvement in a subset of selected
PANTHER pathways of interest (herein referred to as
“pathways_subset”; Table 1). Transcript and protein data

TABLE 1 PANTHER pathways of interest subset
(pathways_subset)

Associated genesa

Apoptosis signaling 118

B‐cell activation 43

Blood coagulation 34

Cadherin signaling 157

Inflammation mediated by chemokine
and cytokine signaling

256

Interferon‐gamma signaling 30

Interleukin signaling 89

T‐cell activation 92

TGF‐beta signaling 99

Toll receptor signaling 57

Wnt signaling 311

Unique genes associated with all
subset pathways

898

Transcriptome pathways_subset 813

Proteome pathways_subset 66

aNumber of genes associated with each of the PANTHER pathways of
interest (filtered by species: Homo sapiens). Unique genes across all
11 pathways of interest are given in bold, together with the number of
matches in the transcriptome and proteome data sets (comprising the final
“transcriptome pathways_subset” and “proteome pathways_subset”
data sets, respectively).
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subsets were established for 813 pathways_subset‐
matching transcripts, and 66 pathways_subset‐matching
proteins, respectively.

2.4.4 | Combined data

The remaining analyses were conducted in R (v. 3.3.0)48

using log‐transformed normalized read counts for each
data set. The 20 most abundant bacterial ZOTUs and
fungal ZOTUs, and microbiota diversity indices were
compared between (1) patients and (2) time points (i, ii,
and iii) via Kruskal–Wallis tests with FDR adjustment,
with post‐hoc pairwise testing of significant variables via
Dunn's test of multiple comparisons (p values) together
with FDR adjustment (α= .05). Bray–Curtis dissimilarities
were calculated for all data sets using the vegan package
(v. 2.5‐1).53 Hierarchical clustering analyses and ordina-
tion analyses (nMDS, beta‐dispersion, and adonis) were
conducted based on Bray–Curtis dissimilarities. Beta‐
dispersion analyses were calculated separately for each
grouping of “patient” and “treatment” (none were sig-
nificantly differently dispersed [p> .05]). Adonis in-
corporated patient differences first, followed by treatment.

Spearman's correlation analyses were calculated for the
following: (1) the 20 most abundant variables from each
data set; and (2) variables shared between transcriptome
and proteome data sets based on matching HGNC IDs
(proteins with incomplete data sets across all nine samples
were excluded). For the latter, correlation analyses were
conducted for each matching data pair (comparing tran-
scription data with its related protein), with a focus on
negative correlation patterns. Correlation analyses included
pairwise testing of significance via cor_pmat(), as well as
FDR adjustment calculation (α= .05 in both cases).

Heat maps of log‐transformed data were generated
with hierarchical clustering of the variables. Tran-
scriptome and proteome variables were divided into
several clusters (depending on the number of variables)
to simplify the presentation of individual transcripts/
proteins and associated PANTHER pathways. For visual
clarity, figures are color‐coded throughout as follows:
transcriptome data, red; proteome data, purple; bacterial
data, green; fungal data, yellow.

2.5 | Data availability

Transcriptome and microbiota raw sequence data have
been uploaded to the SRA‐NCBI repository (BioProject
accessions: PRJNA60882354 and PRJNA60882155).

Further details on materials and methods are provided
in Supporting Information S1, Supplementary Methods.

3 | RESULTS

3.1 | General overview

In total, 58,734 distinct messenger RNA (mRNA) transcripts
were identified (range, 18,107–24,634/sample). The genes
with the highest normalized read counts in the tran-
scriptome data set encoded members of the prostaglandin‐
endoperoxide synthase family (COX1, COX2, COX3), and
those involved in the electron transport chain (ND1, ND2,
ND4, ND5, CYTB, ATP6; Figure S1). Proteomics data iden-
tified 4345 peptides, comprising 921 proteins. Proteins with
the highest signal in the data (normalized counts) included
the blood protein ALB, globin proteins (HBB and HBA1),
cellular and tissue structural proteins (VIM, COL1A1,
COL1A2, COL6A3, and HIST1H4A), and immunoglobulin
proteins (IGKC and IGHG1; Figure S2). Additional highly
abundant variables of interest included transcripts for the
genes ALOX15, POSTN, S100A11, and CST1, and the pro-
teins COL3A1, COL6A1, FGA, FGB, FGG, FN1, S100A8,
S100A9, and S100A11.

Abundant bacterial genera included Staphylococcus,
Corynebacterium, Dolosigranulum, Anaerococcus, and Pro-
pionibacterium (Figure S3A). The most abundant fungal
genera included Malassezia, Candida, Rhodotorula, and
unclassified members of Malasseziales, Dothideomycetes,
Mycosphaerellaceae, and Phaeophaeriaceae (Figure S3B). In
correlation analyses, a handful of microbial–protein asso-
ciations were observed (Figure 2A). Bacterial ZOTUs of
Corynebacterium and Anaerococcus were negatively asso-
ciated with the proteins VIM, HIST1H4A, ACTB, and
GADPH (−0.9< ρ<−0.7). Two ZOTUs of Anaerococcus
positively correlated with collagen proteins COL6A3 and
COL1A2 (ρ=0.8 and 0.7, respectively), and two ZOTUs of
Streptococcus positively correlated with immunoglobulin
proteins IGKC and IGHG1 (0.8< ρ). Of these microbial
associations, only that between Streptococcus and IGHG1
remained significant after FDR adjustment.

In total, 433 loci were shared between the transcriptome
and proteome data sets. Six pairs of mRNAs and their pro-
teins were significantly moderately or strongly negatively
correlated (−1.0< ρ<−0.5), including ACADM, ALDH1A1,
ATP1B1, CBR1, KRT7, and LCN2 (Figure 2B).

3.2 | Interpatient differences

In pairwise comparisons, 279 proteins significantly differed
between two or more patients at baseline (Collections i and
ii). Notable differences included IGHG3, and the
eosinophilia‐related proteins EPX, PRG2, and RNASE3 (up
to 38–112 times difference between some patients). Patient
1 also had concomitant asthma, and a considerable
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FIGURE 2
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proportion of the significant interpatient comparisons were
in relation to Patient 1 (vs. Patient 2 or 3). Twenty‐six
pathways_subset proteins (as per the pathways of interest
listed in Table 1) were significantly different between
patients in pairwise comparisons, including RNASE3,
COL14A1, ALOX15, and the coagulation factor F13A1
(Table S2). Few interpatient significant differences were
identified for bacterial and fungal community data.

In hierarchical clustering analysis, samples tended to
cluster by patients for protein (including the pathways_-
subset) and bacterial community data (Figure S4), indicating
stronger inter‐ than intrapatient differences over time. In
adonis analyses, interpatient differences significantly ex-
plained 69% and 73% of the protein and pathways_subset
protein data, respectively, and 43% of the bacterial data
(p= .007, .006, and .014, respectively). Patient differences
may also explain up to 30% of the transcriptome data
variability; however, this was outside the significance
threshold (p= .067).

3.3 | Natural variability over time

In one or more patients, the expression of 191 transcripts
and abundances of 24 proteins changed by a ratio of
greater than 5:1 naturally over time (between time points
i and ii; Tables 2 and S3). Markers of note included
transcripts and proteins for CST1 and POSTN; transcripts
for SPRR1A, SPRR1B, SPRR3, KRT6A, DSG3, TCN1,
AQP1, MUC5B, MUC5AC, VIM, S100A2, S100A14, and
LAMB1; and proteins DEFA1, KRT14, FGA, FGB, FGG,
S100A8, S100A9, EPX, CLC, IGHV1‐18, and PRG2. Sev-
eral pathways_subset transcripts (as per the pathways of
interest listed in Table 1) also changed notably (greater
than 3:1) in one or more patients, including CXCL8 (IL‐
8), A2M, CCL18, GDF15, TNFAIP3, and CD14 (Table 2).

Testing across all patients, 162 DEGs and 7 proteins
differed significantly between time points i and ii, in-
cluding the genes IL17RB, BMX, HIF3A, CCL21, LTF, IL‐
19, S100A14, CLDN9, SAA1, SAA2, and CLCNKB, and
proteins APOE, ITIH4, COL18A1, DNM2, SF3B3, MET-
TL7A, and A2M (Figure 3 and Table S4). Significant DEG

between times i and ii from the pathways_subset data
included CCL21, ACTG2, KREMEN2, MYH11, CDH22,
PF4, and CDH16 (Figure S5A).

In PANTHER overrepresentation testing based on
DEG and proteins (each tested separately) that varied
significantly between times i and ii, significantly en-
riched GO terms included a number of processes likely
involved in inflammation or epithelial–mesenchymal
transition (EMT), such as antimicrobial humoral re-
sponse, extracellular matrix organization, extracellular
exosome, cell adhesion, and cornification (Table 3).

Subtle differences were observed in bacterial and fungal
communities within each patient over time (times i vs. ii and
ii vs. iii; Figures S3 and S6). However, in pairwise compar-
isons testing across all patients, there were no significant
temporal differences for the 20 most abundant ZOTUs or
diversity indices for bacterial or fungal community data.

3.4 | Change in response to prednisone
treatment

Transcripts for 724 genes and 26 proteins differed between
pre‐ and post‐corticosteroid (prednisone) treatment (times
ii and iii; unadjusted p< .05). The 50 DEGs with the lowest p
values are presented in Figure 4A. Protein changes included
increases in LAMB2 (2:1), LAMB5 (1.6:1), OGN (3.3:1),
COL14A1 (2.4:1), ACTA2 (2.1:1), and PRELP (3.5:1), and a
decrease in ALOX15 (2.7:1) (unadjusted p< .05; Figure 4B).
Of these, three were also among the pathways_subset pro-
teins (ALOX15, ACTA2, and COL14A1; as per the pathways
of interest subset listed in Table 1).

After FDR adjustment, 10 DEGs (but no proteins) were
significant in response to prednisone treatment, including
downregulation of CCL20 (log2 fold change ratio= 10:1),
TNF (9:1), C2CD4C (9:1), and GSDMA (9:1), and upregula-
tion of OVGP1 (2:1) and PCDHGB1 (4:1; Figure 4A). Of
these, three were also among the pathways_subset tran-
scripts (CCL20, TNF, and PCDHGB1; Figure S5C).

In PANTHER overrepresentation testing based on
DEG with FDR‐adjusted p< .1, no significantly enriched
GO terms were identified after correction for multiple

FIGURE 2 Spearman's correlation analyses. Heat maps of pairwise Spearman's correlation analyses with color coding reflecting
Spearman's correlation coefficient (ρ; blue, −1; red, 1). (A) Correlation analysis including the 20 most abundant variables from each data set
(transcriptome, proteome, bacterial 16S rRNA, and fungal ITS2). All (80) variables were included in the analysis and a subset of significant
correlations is presented. Pairwise correlations were tested via the cor_pmat() function in R, and Benjamin–Hochberg false discovery rate
(FDR) was calculated. Nonsignificant correlations (unadjusted p> .05) are uncolored. X overlay = correlations that were no longer
significant following FDR adjustment (FDR‐adjusted p> .05). #Variables with unadjusted p< .05 and ##FDR‐adjusted p< .05 in testing
between time points i and ii (natural variability). *Unadjusted p< .05 and **FDR‐adjusted p< .05 in testing between time points ii and iii
(response to corticosteroids). (B) Moderate to strong negative associations (−1 < Spearman's ρ<−0.5) between transcripts and the protein
into which they translate (based on matching HGNC ID). Pairwise correlations were tested via the cor_pmat() function. X
overlay = nonsignificant following pairwise significance testing (unadjusted p> .05)
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TABLE 2 Natural intrapatient
transcriptome and proteome variability
over the course of 1 weeka

Ratio difference (time i vs. ii)

Patient 1 Patient 2 Patient 3

Transcriptome (pathways_subset)

ENSG00000129538_(RNASE1) 3.0 −24.4 −4.3

ENSG00000169429_(CXCL8) −3.3 13.4 −4.6

ENSG00000175899_(A2M) 1.3 −9.3 −6.3

ENSG00000142156_(COL6A1) −1.4 −11.4 −1.9

ENSG00000175592_(FOSL1) −7.5 2.0

ENSG00000275385_(CCL18) −3.1 −7.3 −1.7

ENSG00000110799_(VWF) 1.4 −6.2

ENSG00000142173_(COL6A2) −3.0 −3.3 −4.3

ENSG00000130513_(GDF15) −2.0 5.4 1.9

ENSG00000184557_(SOCS3) 1.1 −5.1

ENSG00000181085_(MAPK15) 3.6 3.6 1.6

ENSG00000118503_(TNFAIP3) −1.9 4.1 −2.4

ENSG00000170458_(CD14) −1.7 −1.0 −4.9

ENSG00000162552_(WNT4) 3.2 1.9 2.1

ENSG00000122861_(PLAU) −4.2 1.8 1.1

ENSG00000115415_(STAT1) −2.2 3.5 1.3

ENSG00000102908_(NFAT5) −1.3 −3.6 −1.8

ENSG00000181104_(F2R) −1.0 −2.0 3.7

ENSG00000006210_(CX3CL1) 2.4 −3.1 1.1

ENSG00000271503_(CCL5) −1.0 3.1 −2.2

ENSG00000083857_(FAT1) 1.1 −3.9 1.1

ENSG00000011422_(PLAUR) −3.6 1.2 −1.1

Proteome

P59665_(DEFA1)_(defensin alpha 1
(HGNC:2761))

9.5

P49207_(RPL34)_(ribosomal protein L34
(HGNC:10340))

1.6 13.8

P02533_(KRT14)_(keratin 14 (HGNC:6416)) −6.8

P62857_(RPS28)_(ribosomal protein S28
(HGNC:10418))

−5.6

P02675_(FGB)_(fibrinogen beta chain
(HGNC:3662))

−1.0 −13.9 −1.8

P05109_(S100A8)_(S100 calcium‐binding protein
A8 (HGNC:10498))

1.0 −12.2 −2.2

P02671_(FGA)_(fibrinogen alpha chain
(HGNC:3661))

−1.4 −9.6 −1.8

P02679_(FGG)_(fibrinogen gamma chain
(HGNC:3694))

−1.6 −9.1 −2.0

B0YIW2_(APOC3)_(apolipoprotein C3
(HGNC:610))

−1.2 −6.3 −4.9

P00915_(CA1)_(carbonic anhydrase 1
(HGNC:1368))

−8.7 2.1 1.4

P11678_(EPX)_(eosinophil peroxidase
(HGNC:3423))

−1.0 −1.1 9.2

P06702_(S100A9)_(S100 calcium‐binding protein
A9 (HGNC:10499))

1.2 −7.8 −2.2

P02042_(HBD)_(hemoglobin subunit delta
(HGNC:4829))

−7.4 1.7 1.1

(Continues)
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testing. Based on DEG with unadjusted p< .05 from DE-
Seq2 analysis (724 transcripts), significantly enriched GO
terms included predominantly inflammatory mechanisms.
Significantly enriched GO terms associated with proteins
that differed in response to corticosteroids included pre-
dominantly tissue and cellular structural mechanisms,
including laminin‐11 complex, costamere, and cell–matrix
adhesion (Table 4).

Taken together, all data showed signs of change post
corticosteroid (prednisone) treatment. However, the specific
corticosteroid responses of individual patients varied con-
siderably, and there was no obvious posttreatment profile
“type” shared by individuals in the experiment (Figures
S1–S3 and S6). This was further reflected in hierarchical
clustering, where treatment samples did not cluster together
(Figure S4), and adonis analyses, where treatment did not
significantly explain any of the variability in the data.

3.5 | PANTHER pathways

The most abundant transcripts and proteins included
those associated with T‐cell activation, inflammation
mediated by chemokine and cytokine, cadherin, integrin,
and cytoskeletal signaling pathways, as well as Wnt, FAS,

and apoptosis signaling (transcripts), and B‐cell activation
and blood coagulation (proteins; Figures S1 and S2). No-
tably, DEG and proteins that varied naturally over time,
and also those that differed in response to treatment, both
included those associated with inflammation mediated by
chemokine and cytokine, cadherin, integrin, and Wnt
signaling pathways (Figures 3 and 4).

4 | DISCUSSION

Establishing degrees of natural variability over time is
essential to provide context for investigations of putative
mechanisms and biomarkers of disease, and to inform
treatment decisions. This study comprised a comprehen-
sive multiomics analysis of nasal polyp biopsies from three
patients with CRSwNP, assessing natural variability over
time as well as local response to systemic corticosteroids.

4.1 | The transcriptome and proteome
of nasal polyp tissue in CRS

Abundant transcripts and proteins identified in this study
included several involved in inflammation mediated by

Ratio difference (time i vs. ii)

Patient 1 Patient 2 Patient 3

Q05315_(CLC)_(Charcot–Leyden crystal galectin
(HGNC:2014))

1.1 2.2 6.7

P01037_(CST1)_(cystatin SN (HGNC:2473)) −1.2 5.4

P30838_(ALDH3A1)_(aldehyde dehydrogenase 3
family member A1 (HGNC:405))

−2.4 6.2 1.1

P69905_(HBA1)_(hemoglobin subunit alpha 1
(HGNC:4823))

−6.5 1.8 1.1

Q15063_(POSTN)_(periostin (HGNC:16953)) 1.0 7.3 1.1

D6RGG3_(COL12A1)_(collagen type XII alpha 1
chain (HGNC:2188))

−1.5 5.7 1.9

Q8IUX7_(AEBP1)_(AE binding protein 1
(HGNC:303))

−1.2 5.4 2.4

P68871_(HBB)_(hemoglobin subunit beta
(HGNC:4827))

−5.9 1.5 1.1

P08311_(CTSG)_(cathepsin G (HGNC:2532)) −1.0 −5.3 −1.8

A0A0C4DH31_(IGHV1‐18)_(immunoglobulin
heavy variable 1‐18 (HGNC:5549))

1.1 −5.4 1.0

P13727_(PRG2)_(proteoglycan 2, pro eosinophil
major basic protein (HGNC:9362))

1.2 −1.1 5.0

aRatios compare the difference between time points i and ii for each patient individually. Transcriptome
variables from the pathways_subset data set with greater than three times difference within one or
more patients, and proteins with greater than five times difference, are presented. Missing data reflect
transcript comparisons where at least one of the normalized transcript counts was <1000 (which were
excluded from this analysis), or where proteins were not detected in all three time points for that
respective patient (and were excluded from the data). All transcripts with greater than five times
difference in one or more patients are presented in Table S4.

TABLE 2 (Continued)
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chemokine and cytokine, FAS, cadherin, integrin, Wnt,
apoptosis, and cytoskeletal signaling, coagulation, and
B‐ and T‐cell activation pathways. Processes associated
with inflammation and tissue structural changes have
similarly been highlighted previously as central

mechanisms underlying CRS and/or nasal polyposis in
CRSwNP, supporting the validity of the transcriptome and
proteome data presented here.

EMT is associated with CRS.6 EMT includes in-
creased production of matrix proteins such as collagens I,

FIGURE 3 Transcriptome (differentially expressed gene [DEG]) and proteome natural temporal variability (time points i vs. ii). Heat
maps of log‐transformed normalized read counts for (A) transcripts (DEG; presented in red), and (B) proteins (presented in blue) that varied
naturally over time (pairwise testing between time points i vs. ii; p< .05). Variables are ordered via hierarchical clustering based on
Bray–Curtis dissimilarity. Variables are divided into clusters (represented by the grayscale color coding at branch tips), and pathways
associated with the variables in each cluster are presented on the right. Samples represent three patients (1, 2, and 3) at three time points
over two consecutive weeks (i, ii, and iii). #Unadjusted p< .05 and ##false discovery rate (FDR)‐adjusted p< .05 in testing between time
points i and ii (natural variability). *Unadjusted p< .05 and **FDR‐adjusted p< .05 in testing between time points ii and iii (response to
corticosteroids)
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III, and IV, as well as fibronectin, laminin, vimentin, and
periostin, and reduction in epithelial markers such as
E‐cadherin.6,56 Transcripts and/or proteins for vimentin
(VIM), collagens COL1A1, COL1A2, CO3A1, COL6A1,
COL6A2, and COL6A3, fibronectin (FN1), and periostin

(POSTN) were all abundant in this study. Proteins in-
volved in the coagulation cascade (including fibrinogen
and fibronectin) have also been implicated in CRSwNP,
with fibrin deposition (coupled with reduced fibrinolysis)
implicated in the pathogenesis of nasal polyposis.57

TABLE 3 PANTHER
overrepresentation testing based on
transcripts (DEG) and proteins that
significantly varied naturally over the
course of 1 week (times i vs. ii)a

Fold enrichment
FDR‐adjusted
p value

Transcriptome

GO biological process complete

Cornification (GO:0070268) 11.2 .001

Antimicrobial humoral response
(GO:0019730)

9.1 .019

Cell adhesion (GO:0007155) 3.3 .003

GO cellular component complete

Endocytic vesicle lumen (GO:0071682) 27.9 .005

Plasma lipoprotein particle
(GO:0034358)

12.9 .034

Cornified envelope (GO:0001533) 11.6 .005

Postsynaptic density membrane
(GO:0098839)

7.9 .046

Ion channel complex (GO:0034702) 4.5 .008

Collagen‐containing extracellular matrix
(GO:0062023)

4.1 .009

Glutamatergic synapse (GO:0098978) 3.8 .025

Cell surface (GO:0009986) 3.2 <.001

Extracellular exosome (GO:0070062) 2.2 .001

Intrinsic component of plasma
membrane (GO:0031226)

2.0 .033

Proteome

PANTHER pathways

Integrin signaling pathway (P00034) 30.1 .020

GO molecular function complete

Protein‐containing complex binding
(GO:0044877)

10.5 .034

GO biological process complete

Substrate adhesion‐dependent cell
spreading (GO:0034446)

>100 .007

Extracellular matrix organization
(GO:0030198)

29.1 .003

GO cellular component complete

Laminin‐11 complex (GO:0043260) >100 .002

Laminin‐10 complex (GO:0043259) >100 .001

Synaptic cleft (GO:0043083) >100 .006

Blood microparticle (GO:0072562) 40.0 .009

Extracellular exosome (GO:0070062) 6.4 .007

Endomembrane system (GO:0012505) 3.4 .047

Abbreviations: DEG, differentially expressed gene; FDR, false discovery rate; GO, Gene Ontology.
aVariables with FDR‐adjusted p< .1 from time i versus ii testing were entered into PANTHER
overrepresentation testing. Significantly enriched GO terms (FDR‐adjusted p< .05) are presented. Where
multiple significant GO terms were hierarchically nested, the lowest rank GO term is presented here.
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Coagulation proteins FGA, FGB, FGG, and fibronectin
(FN1) were all also abundant in nasal polyp biopsies in
this study. These data lend further support to the hy-
potheses that aberrant EMT processes and coagulation
cascade mechanisms play central roles in CRSwNP.6,57

It was also of interest to investigate transcription and
protein patterns in parallel. However, the resolution of each
method differs considerably. In this study, over 58,000
transcripts were identified compared with 921 proteins. Low‐
abundance proteins, including inflammatory cytokine

FIGURE 4 Transcriptome (differentially expressed gene [DEG]) and proteome response to systemic corticosteroid (prednisone) therapy
(time points ii vs. iii). Heat maps of log‐transformed normalized read counts for (A) transcripts (DEG; presented in red), and (B) proteins
(presented in blue) that varied in response to corticosteroid therapy (pairwise testing between time points ii versus iii; p< .05). Variables are
ordered via hierarchical clustering based on Bray–Curtis dissimilarity. Variables are divided into clusters (represented by the grayscale color
coding at branch tips), and pathways associated with the variables in each cluster are presented on the right. Samples represent three
patients (1, 2, and 3) at three time points over two consecutive weeks (i, ii, and iii). #Unadjusted p< .05 and ##false discovery rate (FDR)‐
adjusted p< .05 in testing between time points i and ii (natural variability). *Unadjusted p< .05 and **FDR‐adjusted p< .05 in testing
between time points ii and iii (response to corticosteroids)
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signaling molecules, are generally omitted from the latter.
Nonetheless, patterns were broadly consistent between the
overlapping data sets. Exceptions included significant mod-
erate to strong negative correlations between transcripts and
their respective protein for ATPase Na+/K+ transporting
subunit (ATP1B1), carbonyl reductase (CBR1), keratin
(KRT7), and lipocalin LCN2 (and a similar, but non-
significant, pattern for STAT1 and COL6A1). Posttranscrip-
tional regulation can play important roles in disease,
including some variants of cystic fibrosis58 (which often in-
cludes a CRS component), and maybe a further distin-
guishing factor of some variants of CRS.

4.2 | Microbiota associations

Associations have previously been identified between the
microbiota and inflammatory signaling and subtypes in
CRS.8,9,59–61 In this study, few associations were observed

between microbial data and nasal polyp transcription or
proteins. High inter‐ and intrapatient microbiota variability
is well described in CRS,35,62,63 and this may obscure some
associations.

One association of note was a positive correlation
between ZOTUs of Streptococcus and two im-
munoglobulin proteins (IGKC and IGHG1). Streptococcus
spp. can produce IgG‐cleaving proteases,64,65 and binding
of Streptococcus M‐proteins to fibrinogen (abundant in
nasal polyp tissue in this study) enables further
IgG‐related immune evasion.66 Streptococcus spp. are
known to be commonly associated with the sinonasal
tract,63 however, their specific role in CRS remains un-
clear. Streptococcus‐mediated IgG inflammatory processes
coupled with immune evasion may promote ongoing in-
flammation, while also providing strong selective pressure
on the structure of the associated microbiota. Further
study of possible roles of Streptococcus spp. in the patho-
genesis of nasal polyposis is warranted.

TABLE 4 PANTHER
overrepresentation testing based on
transcripts (DEG) and proteins that
differed significantly in response to
corticosteroid therapy (times ii vs. iii)a

Fold enrichment
FDR‐adjusted
p value

Proteome

PANTHER pathways

Integrin signaling pathway (P00034) 29.8 <.001

GO molecular function complete

Extracellular matrix structural constituent
conferring compression resistance
(GO:0030021)

>100 .004

Protein‐containing complex binding
(GO:0044877)

7.4 .001

GO biological process complete

Pentose biosynthetic process
(GO:0019322)

>100 .050

Platelet aggregation (GO:0070527) 55.1 .046

Nephron development (GO:0072006) 33.7 .006

Cell–matrix adhesion (GO:0007160) 25.8 .048

GO cellular component complete

Laminin‐11 complex (GO:0043260) >100 .002

Synaptic cleft (GO:0043083) >100 .015

Costamere (GO:0043034) 85.0 .020

Stress fiber (GO:0001725) 38.5 .007

Lysosomal lumen (GO:0043202) 25.8 .017

Golgi lumen (GO:0005796) 24.2 .019

Focal adhesion (GO:0005925) 12.0 .002

Secretory granule lumen (GO:0034774) 10.1 .037

Extracellular exosome (GO:0070062) 7.3 <.001

Abbreviations: DEG, differentially expressed gene; FDR, false discovery rate; GO, Gene Ontology.
aVariables with FDR‐adjusted p< .1 from time ii versus iii testing were entered into PANTHER
overrepresentation testing. Significantly enriched GO terms (FDR‐adjusted p< .05) are presented. Where
multiple significant GO terms were hierarchically nested, the lowest rank GO term is presented here.
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4.3 | Interpatient differences

In a stratified cohort of patients (all CRSwNP, adult male,
of New Zealand European ancestry, and nonsmokers),
numerous interpatient differences were observed, includ-
ing prominent inflammation‐related proteins such as the
immunoglobulin protein IGHG3, and the eosinophilia‐
related proteins eosinophil peroxidase (EPX), proteoglycan
2 (PRG2; major basic protein), and eosinophilic cationic
protein (RNASE3).

While corticosteroid therapy offers relief to a great
number of CRSwNP patients, between 20% and 50% of
patients are resistant.12,27,67,68 Mucin 1 (MUC1) down-
regulation, elevated MUC4, and increased neutrophilia are
markers of reduced response to corticosteroids.67,69,70 In
contrast, eosinophilia is an important marker of improved
responsiveness.12 Several markers of eosinophilia were
among those that differed significantly between patients in
this study, and recent studies provide support for distin-
guishing eosinophilic from noneosinophilic CRSwNP
patients.21,22 Concomitant asthma and/or eosinophilia may
be key explanatory factors of interpatient and temporal
intrapatient differences observed here (including response
to treatment), and highlights the importance of the current
focus on improved endotyping of CRS.3,9,12–18,20

4.4 | Natural variability over time

Identifying biomarkers and better delineating endotypes of
CRS is a major focus of current research, and promises im-
proved guidance of treatment decisions.3,9,12,13,15,16 Several
putative biomarkers have been identified.9,16,57,60,71–74 How-
ever, very little is known about natural variability over time
in CRS‐associated tissues. To our knowledge, this is the first
study that has assessed changes occurring naturally over
time in nasal polyp (or mucosal) tissue associated with CRS.

Between the first two time points (before the treatment
phase) there were 162 significant DEGs, suggesting that
many processes involved in CRS may vary substantially over
relatively short time scales in the natural course of the dis-
ease. Numerous targets that may be considered promising
candidates for CRS and/or nasal polyposis biomarkers (due
to their potential roles in inflammation and tissue remodel-
ing) showed natural variation within patients, including
mucins (MUC5B and MUC5AC), cystatin SN (CST1), the
S100 calcium‐binding S100A8, S100A9, and S100A14, alpha
defensin (DEFA1), the eosinophilia‐related eosinophil per-
oxidase (EPX), proteoglycan 2 (PRG2; major basic protein),
and Charcot–Leyden crystal galectin (CLC), coagulation‐
related FGA, FGB, and FGG, claudin 9 (CLDN9), desmoglein
(DSG3), periostin (POSTN), immunoglobulin component
IGHV1, interleukin (IL)‐8 (CXCL8), IL19, IL17RB,

chemokine ligands 18 and 21 (CCL18 and CCL21), serum
amyloids (SAA1 and SAA2), keratin (KRT6A and KRT14),
and vimentin (VIM). A number of these markers have been
highlighted in previous cross‐sectional studies as putative
biomarkers of CRS or subtypes of CRS.9,60,71,75–80

Increased variability in some markers may in itself be
an important factor in CRS, as has been observed already
for bacterial associations with CRS.7,10,35,60,81 It remains
unclear whether the array of CRS subtypes currently
hinted at9,13,16 are in fact distinct types of the condition,
or simply phases of a continuum of varied parallel and
dynamic inflammatory processes.12 Understanding the
natural dynamics of CRS mucosa and nasal polyp tissue
is essential to provide baseline context for all studies on
biomarkers, mechanisms, and subtypes of CRS. To this
end, recent studies identifying noninvasive proxies for
tissue processes75,82 are especially vital, and will enable
large comprehensive time‐series investigation of sinona-
sal tissue processes in both CRS patients and healthy
controls.

4.5 | Change in response to prednisone
treatment

Oral corticosteroids are recommended for the short‐term
management of CRSwNP, but only as an infrequent re-
course.2 Surprisingly, little is known of the local effects of
systemic corticosteroid treatment on mucosal or nasal
polyp tissue in CRS. The widespread effects observed
here may be central to the efficacy of corticosteroids in
diseases as immunologically complex as CRS. None-
theless, this study has identified some markers and me-
chanisms that warrant investigation as candidates for
targeted therapeutics.

Significant DEG due to treatment effects included
marked downregulation of inflammatory mediators tumor
necrosis factor (TNF), chemokine ligand 20 (CCL20), and
gasdermin A (GSDMA; which is potentially involved in
pyroptosis), and upregulation of markers that may reflect a
reversal of processes of epithelial dysregulation, including
the epithelial‐glycoprotein OVGP1, and cell adhesion mo-
lecule protocadherin gamma (PCDHGB1) transcription.
Multiple changes in both pro‐inflammatory and anti‐
inflammatory transcription have similarly been observed
previously.83 These findings further support the hy-
potheses that aberrant inflammatory processes, epithelial
dysregulation (including EMT), and/or coagulation cas-
cade pathways,5,6,57 are key mechanisms in the patho-
genesis of nasal polyposis. Therapies that target these
specific effects locally, such as TNF inhibitors coupled with
promoters of epithelial repair and differentiation, warrant
further investigation.
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4.6 | Limitations

This study aimed to investigate nasal polyp‐associated
mechanisms over time, including natural variation and
change in response to corticosteroids (prednisone), in a
comprehensive multilayered approach. Nasal polyp tissue
was relatively accessible, enabling biopsy collection in the
routine clinic setting over consecutive weeks. Nonetheless,
patient recruitment for such a study is challenging, and ‐
omics technologies remain relatively cost‐prohibitive for
large cohort studies. As a result, this study is limited to three
patients and is exploratory in nature. Inferences drawn from
comparisons over large numbers of variables in a small pa-
tient group should be interpreted with caution. Furthermore,
the study design was developed to enable repeated mini-
mally invasive sampling in the clinic setting. Nonetheless,
biopsy sampling is inherently invasive, and the local effects
of wounding and wound healing over the course of each
week may influence the degree of variability in tissue pro-
cesses observed here. Results should not be interpreted as
definitive markers of CRS (or response to treatment), but
serve as an important proof of principle, and provide initial
insights into markers worthy of more attention.

Each data set was generated from a single sample per
patient per time point (one biopsy for proteomic analysis,
and one biopsy for transcriptomic and microbiota ana-
lyses). The focus of this study was temporal intrapatient
variability. However, comparably little is known about the
natural spatial variability of processes within nasal polyp
or mucosal tissue in CRS. The collection of additional
biopsy samples at each time point was not feasible in this
study, and it remains unclear whether the observed
variability of some markers may be accounted for by
spatial heterogeneity rather than temporal dynamics. The
natural spatial variability of tissue processes represents an
additional significant knowledge gap in the understanding
of CRS and requires further study.

Considerable interpatient variability was observed in all
four data sets, and generally patient differences more
strongly partitioned the data than changes over time (in-
cluding response to corticosteroid therapy). Interpatient dif-
ferences in baseline local inflammatory mechanisms, and an
individual response to corticosteroids, may have obscured
some genuine associations. The effects of these differences
will be especially pronounced due to the small sample size
(three patients sampled over three time points). This study
provides a template and highlights focal points for sub-
sequent study in larger patient groups. In future, larger co-
hort temporal studies incorporating finer scale resolution of
CRS subtypes (such as inflammatory endotypes) are required
to further resolve genuine patterns of change over time.

Finally, the focus of this study was mechanisms
specific to nasal polyposis within CRSwNP. Findings may

not represent nonpolyp sinonasal mucosa processes in
CRSwNP or chronic rhinosinusitis without nasal polyps
(CRSsNP), and other mucosal markers may better dif-
ferentiate between different variants of CRS.

Despite these limitations, however, this study con-
tributes to several important findings. The observed in-
terpatient variability and intrapatient dynamics both
have implications for the interpretation of studies on
biomarkers and mechanisms of CRS. Additionally, de-
spite this background variability, several specific local
effects of systemic corticosteroids were observed. These
included transcripts and proteins related to several
pathways previously identified as important in nasal
polyp and CRS pathogenesis. Overall, these data provide
further support for current hypotheses of CRS and nasal
polyposis pathogenesis, provide essential temporal con-
text to studies on biomarkers and mechanisms of nasal
polyposis, and highlight areas of focus for future targeted
therapeutic options.

4.7 | Summary and concluding remarks

This study presents a comprehensive multiomic time‐
series analysis of CRS‐associated nasal polyp tran-
scriptome, proteome, and microbiota, in three patients
with CRSwNP. To our knowledge, this is the first study to
investigate natural transcription and protein dynamics in
CRS‐affected tissue over time.

High baseline interpatient variability and differential
changes over time were detected in all metrics. Natural
temporal variability was observed for a number of tran-
scripts and proteins, including likely agents in the pa-
thophysiology of CRS and nasal polyposis. Several
markers that varied naturally over time have been pre-
viously identified as putative biomarkers of CRS, in-
cluding MUC5B, MUC5AC, S100 calcium‐binding
proteins, CST1, EPX, CLC, POSTN, and CXCL8 (IL‐8).
Several markers central to inflammation mediated by
chemokine and cytokine, cadherin, integrin, Wnt, cy-
toskeletal, coagulation, and apoptosis signaling pathways
were abundant in nasal polyp tissue at baseline. These
processes were also often associated with markers that
naturally changed over time, and those that responded to
corticosteroid treatment.

These findings offer promising avenues for future
research and candidate targets for the development of
novel therapeutics addressing the pathophysiology of
nasal polyposis.
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