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Abstract: Cow’s milk is considered an excellent protein source. However, the digestibility of milk
proteins needs to be improved. This study aimed to evaluate the relationship between the functional
properties of milk proteins and their structure upon microwave, ultrasound, and thermosonication
treatments. The protein content, digestibility, and secondary-structure changes of milk proteins were
determined. The results demonstrated that almost 35% of the proteins in the untreated samples had
a α-helix structure and approximately 29% a β-sheet and turns structure. Regarding the untreated
samples, the three treatments increased the α-helices and correspondingly decreased the β-sheets
and turns. Moreover, the highest milk protein digestibility was observed for the ultrasound-treated
samples (90.20–94.41%), followed by the microwave-treated samples (72.56–93.4%), whereas ther-
mosonication resulted in a lower digestibility (68.76–78.81%). The milk protein content was reduced
as the microwave processing time and the temperature increased. The final milk protein available in
the sample was lower when microwave processing was conducted at 75 ◦C and 90 ◦C compared to
60 ◦C, whereas the ultrasound treatment significantly improved the protein content, and no particular
trend was observed for the thermosonicated samples. Thus, ultrasound processing shows a potential
application in improving the protein quality of cow’s milk.

Keywords: cow’s milk; protein secondary structure; beneficial ultrasound treatment; thermosonication
treatment; protein digestibility

1. Introduction

Cow’s milk is considered an excellent food source for human body growth due its
high content of minerals (calcium and phosphorous) and protein. Cow’s milk can provide
all essential amino acids including a high level of lysine, which can help in synthesizing
important proteins important for human health [1,2]. Milk proteins perform several func-
tions such as immune system stimulation, shielding the human body against different
types of bacteria, viruses, and fungi, and gut development [3,4]. Overall, milk is also found
to have most of the required macro- and micronutrients to provide balanced nutrition,
especially to children and infants [5]. However, the protein quality of cow’s milk still
nees to be improved through various food-processing techniques due to these proteins’
low digestibility and their allergenicity, which could lead to gastrointestinal discomfort,
respiratory failure, as well as anaphylactic shock [6].

Thermal processing of milk aids in the extension of its shelf life and in the reduction
of microbial activity [7]. However, thermal process is known to induce some structural
changes in milk, such as protein denaturation. It can further cause the permanent unfolding
of protein and even might expose hydrophobic groups and reduce disulphide bridges [8,9].
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A study reported that a microwave treatment caused a decrease in the content of lactose, fat,
and protein in cow’s milk, whereas milk’s average density was increased [10]. There was a
decrease inα-helixes andβ-sheets when milk was treated with microwaves above 50 ◦C [11].
In recent years, non-thermal processing has received high attention because it can retain the
original characteristics, freshness, and nutritional value compared to thermal treatment [7].
Studies reported that ultrasounds had a minor effect on the secondary structure and
hydrophobicity of a whey protein concentrate [12]. In sodium caseinate (biochemical name
of casein protein), study also concluded that during ultrasound treatment, there were
no major structural deviations, but a slight deviation was observed for lactoferrin [13].
Moreover, during ultrasonication, there was minimal loss in flavor, and this processing
technique exhibited higher consistency in terms of homogenization and viscosity compared
to other non-thermal techniques [14]. In addition, ultrasound processing has a lower
operating cost and an effective power output [15,16].

However, very limited studies regarding the combination of ultrasound and thermal
treatments have been performed to improve the protein quality of cow’s milk. In the present
study, microwaves, ultrasonication, and thermosonication treatments were conducted to
study the relationship between the functional properties of milk proteins (protein and
in vitro digestibility) and their secondary structure. Nowadays, many food industries
and researchers across the globe are adopting non-thermal technologies for processing
food products. Hence, it will be of great importance to compare the effect of thermal and
non-thermal techniques on the protein structure and digestibility of cow’s milk proteins
after processing.

2. Material and Methods

Raw cow’s milk was collected from the Macdonald dairy farm, McGill University
(Lakeshore Ste Anne de Bellevue, Quebec, Canada), and was stored at refrigerated condi-
tions (4 ◦C) until further processing. All samples were processed within 48 h from collection
from the farm. All chemicals were bought from Sigma-Aldrich, Oakville, ON, Canada.

2.1. Microwave Treatment

Microwave processing of cow milk was conducted in a Mini WAVE Digestion Module
(SCP Science, Montreal, Canada) that operates at a frequency of 2.45 GHz. Cow milk
(30 mL) was transferred into a cylindrical quartz reactor vessel (100 mL), and then the milk
was processed inside the Mini WAVE, which included 6 chambers designed to accompany
the vessel. According to preliminary studies (50–100 ◦C, 0–10 min), the Mini WAVE was
operated at 60, 75, and 90 ◦C for 1, 3, and 5 min, respectively (Table 1a). The processing time
and temperature of the samples were monitored by Infrared Radiation (IR) sensors located
at the bottom wall of the treatment chambers. The samples were then freeze-dried (LyoLab
3000, Thermo Scientific, Montreal, Canada) and stored at 4 ◦C until further analysis. All
treatments were carried out in three replicates.

2.2. Ultrasound Treatment

The samples were obtained by transferring raw cow milk (30 mL) into Falcon tubes
(50 mL), and ultrasound treatment was carried out using an ultrasound equipment (25 kHz
and 400 W, Branson Ultrasonic Corp., Danbury, CT, USA). The ultrasonication (probe
diameter, 12.7 mm) treatment was carried out flowing the method described by the previous
study with slight modifications [17]. The treatment was carried out at 1, 3, 5, 7, and
9 min (Table 1b). An ice bath was used to avoid temperature changes during ultrasound
processing. All the experiments were carried out in triplicates. All samples were freeze-
dried after processing and stored at 4 ◦C until further analysis.
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Table 1. Parameters for (a) microwave-processed samples; (b) ultrasound-processed samples, and
(c) thermosonicated samples. Note: MW means microwave processing; US means ultrasound
processing; TS means Thermosonication processing.

(a) Microwave Temperature (◦C)

Time (min) 60 75 90
1 MW 60-1 MW 75-1 MW 90-1
3 MW 60-3 MW 75-3 MW 90-3
5 MW 60-5 MW 75-5 MW 90-5

(b) Ultrasound (c) Thermosonication

Time (min) Samples Time (min) Samples
1 US 1 1 TS 1
3 US 3 3 TS 3
5 US 5 5 TS 5
7 US 7 7 TS 7
9 US 9 9 TS 9

2.3. Thermosonication Treatment

According to the method described by the previous study, 30 mL of raw milk was
transferred to 50 mL Falcon tubes and preheated in a water bath at 90 ◦C [18]. The Falcon
tubes with the samples were taken out of the water bath when the temperature of milk
reached 63 ◦C. The temperature changes were determined using a handheld thermometer.
Then, the heated samples were immediately sonicated with a Branson Sonifier (25 kHz and
400 W, Branson Ultrasonic Corp., Danbury, CT, USA) for 1, 3, 5, 7, and 9 min (Table 1c). The
samples were cooled down to room temperature, kept in the freezer, and freeze-dried for
further analysis. All the experiments were carried out in triplicates.

2.4. Fourier-Transform Infrared Spectroscopy (FTIR)

The FTIR analysis was carried out by a Nicolet iS5 attenuated total reflectance (ATR)-
FTIR spectrometer. The sample in powdered form (1 g) after freeze-drying were kept on the
diamond crystal, and a clamp was used to tighten it for IR analysis. An average of 32 spectra
at 4 cm−1 were taken for all samples (microwave, ultrasound, and thermosonication) to
obtain the final spectrogram. For the background reference, the spectrum of an empty
ATR diamond was obtained. The analysis of the raw data was conducted with OMNIC
software (Version 8, Thermo Nicolet Instrument Corp., Madison, WI, USA), and Origin
Pro (version 9, Origin lab corporation, Northampton, MA, USA) was used to obtain the
area percentages of each secondary structure (beta sheets, alpha helix, beta turns, and
random coils) according to the Amide I frequency range (Table 2). The spectra of treated
and untreated sample were compared. All measurement were performed in triplicate.

2.5. Total Soluble Protein Determination

Two grams of freeze-dried milk samples was extracted with double-distilled water
for 30 min at room temperature, and then the mixture was centrifuged at 5000× g for
10 min, and the supernatant was collected for further analysis. The total soluble protein
content was determined with the Pierce BCA (bicinchoninic acid) protein assay kit, and the
microplate procedure was adopted to analyze the protein content in the samples according
to the instructions provided in the kit manual. The absorbance changes were recorded
at 562 nm, and bovine serum albumin was used to obtain a standard curve. The protein
content is expressed in g/100 g of dry samples.

2.6. In Vitro Enzymatic Protein Digestion (IVPD)

The in vitro enzymatic protein digestion was carried out with pepsin (≥2000 units/mg
protein) and pancreatic (≥250 units/mg protein) enzymes [19,20]. The processed cow milk
samples were freeze-dried, and 4 mg milk powder was dissolved in 1 mL of 0.01 M
phosphate buffer. The pH of the solution was adjusted to 1.5 with the help of 1 N HCl.
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A pepsin enzyme solution (5 mg pepsin enzyme/mL in 0.01 N HCl) was then added,
so that the enzyme-to-substrate ratio was maintained at 1:100 (v/v). The solution was
maintained at 37 ◦C in a water bath with continuous stirring for 30 min, after which the
digestion was interrupted by the addition of 1 M NaOH solution which raised the pH to
7.8. A pancreatic solution (5 mg pancreatic enzyme/mL in 0.1 M phosphate buffer) was
added to the previously digested pepsin solution, so that the enzyme-to-substrate ratio was
1:30 (v/v). The samples were kept in a hot water bath, and the temperature was maintained
at 40 ◦C. The digestion was stopped after 60 min with the addition of 150 mM Na2CO3. The
protein content before and after digestion were determined using the Pierce BCA protein
assay kit. The following equation was used to determine the in vitro protein digestion
percentage [20]:

IVPD (%) =
P0 − P1

P0
× 100 (1)

where P0 is the protein content before digestion, and P1 is the protein content after digestion.

2.7. Statistical Analysis

A one-way analysis of variance (ANOVA) was used to analyze the data obtained from
each treatment. The significance was observed at p < 0.05 by Tukey’s test with the SPSS
software. All treatments and measurements were carried out in three replicates.

3. Results and Discussion
3.1. FTIR Analysis

FTIR spectroscopy was used to investigate the structural changes in protein due to
the processing techniques. Among all regions, the Amide I band ranging from 1700 to
1600 cm−1 was chosen for the study, as it is considered a sensitive region for the study
of conformational changes occurring in a protein secondary structure. The Amide I band
consist of C=O stretching vibrations (almost 80%) in addition to C–H stretching modes
and in-plane N–H bending. The C=O stretching vibrations are the result of changes in
the secondary structure of the protein as well as of inter- or intramolecular effects. The
hydrogen bonding pattern and geometry of a molecule are also sometimes responsible
for these vibrations [21,22]. The Amide I band consists of various secondary structural
components such as β sheets, random coils, α helices, and β turns [9]. Table 2 shows
various frequencies assigned to secondary structure components in the Amide I region.

Table 2. Assignment of secondary structure based on Amide I frequency range [22–25].

Amide I Frequency (cm−1) Structure

1624–1639 β-sheets
1642–1645 Random coils
1648–1660 α-helix
1662–1697 β-turns

We observed high peaks at 1624–1639 (β-sheets), 1642–1645 (random coils), 1648–1660
(α helix), and 1662–1697 (turns). The bands at 1611 cm−1 were not considered in this
study, as their absorbance generally began at 1595 cm−1 and hence was not part of the
Amide I region. The FTIR analysis was conducted by using OriginPro (Version 9, Origin
Lab Corporation, Northampton, MA, USA). Figure 1a shows the percentage peak areas
obtained for microwave-processed samples at 60 ◦C, 75 ◦C, and 90 ◦C for 1, 3, and 5 min,
respectively, within the Amide I region. Figure 1b,c shows the peak areas obtained for milk
processed with ultrasonication and thermosonication for 1, 3, 5, 7, and 9 min, respectively.
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The control showed the presence of α-helices, β-sheets, and turns, each for about 30%.
It was observed that approximately 50–60% of the secondary structure was composed of α
helices during microwave processing at 60 ◦C, with a reduction in turns and β-sheets. There
was a decrease in the α helix structure and an increase in turns at 60 ◦C as the processing
time was increased from 1 to 5 min. The same trend was observed at 75 ◦C and 90 ◦C when
the processing time was increased from 1 to 5 min, except for some slight deviations with a
significant increase in random coils in MW 90-5 samples. In all the three temperature–time
combinations, the reported β-sheets were lower than in the control. However, within
each temperature set, they showed an increasing trend with an increase in the processing
time, except for MW 90-5 for which random coils were observed. During all treatments,
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the random coil structure accounted for only 5% of the secondary structure. It can be
inferred from Figure 1a that for each individual sets of temperature, as the treatment time
progressed, an increase in random coil structure was observed at 60 ◦C and 90 ◦C, while
the random coil was hardly found at 75 ◦C.

During ultrasound processing, no trend was observed. The α helix structure increased
from 42.65% to 49.21% along with a decrease in turns from 24.56% to 16.30% as the treatment
time increased from 1 to 3 min. There was also a slight increase in β-sheets and random
coils during this time interval. When the treatment time was further increased to 5 min,
turns showed a positive increment of 4.31%, with some slight deviations in α-helices,
β-sheets, and random coils. There was a relocation of random coils as the area decreased
from 10.71% to 1.09% when the processing time was increased to 7 min, with an increase in
the area of turns as well as some variations in β-sheets and α helix, as shown in Figure 1b.
There was again relocation of the α helix structure and an increase in β-sheets and turns
as the processing time increased to 9 min. Overall, ultrasonication resulted in increased α
helices in all ultrasonicated samples compared to the control.

The secondary structure of cow milk treated with combined thermal treatment and
ultrasound waves showed a dominance of α helices and turns throughout the treatment
time. There was a significant increase in the α helix structure (almost 15%) with a significant
decrease in the area of turns and random coils when cow milk was processed for 3 min as
compared to 1 min, as shown in Figure 1c. With a further increase in the treatment time
from 3 min to 5 min and 7 min, there was a decrease in the α helix structure, with an increase
in the area of turns. The β-sheets showed an irregular trend, as their area first decreased
from 11.78% to 10.71% (from 3 to 5 min) and then again increased to 17.2% (from 5 to
7 min). There was a relocation of β-sheets and turns as the area of both structures showed a
downward trend when the cow milk was processed for 9 min. Due to the relocation of both
structures, an increase in the area of α helices was observed (approximately 7%). During
the whole treatment, a non-significant presence of random coils was observed.

The results for thermal treatment showed a decrease in the α helix structure for
all temperature–time combinations and, due to the relocation of the α helix structure,
there was an increase in β-sheets and turns. These trends were also reported in previous
studies [26,27] and suggested that the reduction in α helices exposed the free thiol group,
Cys-121; this group causes aggregation of whey protein, which in turn increases the
viscosity of milk. The increase in turns can contribute to the increased involvement of
casein in forming aggregates, whereas the increase in β-sheets can be due to interactions
between proteins and lipids, which tend to change the physical state of milk fat when
stored at high temperatures [23,28]. Therefore, further research needs to be focused on
the effect of ultrasound and thermosonication on protein structure and allergenicity, as
deviations in protein structural affect functionality and hence allergenicity. Moreover,
more stable α helix structures were found in ultrasonicated and thermo-sonicated samples,
suggesting that non-thermal processing techniques do not affect the stability of proteins’
secondary structure.

3.2. Effect of Processing on Protein Digestibility

In vitro digestion was carried out with pepsin and pancreatic enzymes in microwave-
treated, ultrasound-treated, and thermosonicated samples. Figure 2a–c represents the
soluble protein content of initial, intermediary, i.e., after pepsin digestion, and final, i.e.,
after pancreatic digestion, samples treated with microwaves, ultrasound waves, and a
combination of thermal treatment and ultrasound waves. In Figure 2a, the initial soluble
protein content in microwave-treated samples at 60 ◦C for 1, 3, and 5 min was significantly
higher compared to the initial protein content at 75 ◦C and 90 ◦C. This could be because at
higher temperatures, protein denatures, leading to the release of hydrophobic cores that
expose hydrophobic residues to the surroundings. Furthermore, no trend was observed in
protein content determined after pepsin digestion, but protein content was reduced after
pancreatic digestion at 60 ◦C and 90 ◦C (except for some variations) and increased at 75 ◦C.
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Figure 2. Protein content changes of microwave-processed (a), ultrasound-processed (b), and
thermosonication-processed (c) cow milk under different conditions (pre-digestion, after pepsin
digestion, and after pancreatic digestion).

In Figure 2b, it can be observed that the initial soluble protein content was higher
when the samples were treated with ultrasound compared to untreated samples. The
increase in the soluble protein content could result from cavitation effects which lead to
the transformation between soluble and insoluble proteins during ultrasound processing.
The protein content after pepsin digestion showed an increase when the treatment time
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was increased from 1 min to 3 min, after which there was a slight decrease when the
treatment time was raised to 5 min. The protein content after pepsin digestion again
showed a raise as the treatment time increased to 7 min and 9 min. The final protein
content after pancreatic protein digestion showed a different trend. The protein content
values gradually increased from 1 min to 9 min, with the higher peak observed at 7 min.
Figure 2c shows the pre-digestion, after-pepsin-digestion, and after-pancreatic-digestion
protein content of the thermosonicated samples. It can be observed that the initial protein
content increased after treatment for 1 min to 5 min, after which it showed a decrease at
7 min and a gradual increase at 9 min. The protein content after pepsin digestion showed
an increasing trend, with slight variations when the treatment time was increased from 1 to
9 min. Furthermore, no particular trend was observed in protein content after pancreatic
digestion for all treated samples.

Table 3a–c shows the IVPD (%) for microwave-processed, ultrasound-processed, and
thermosonicated samples. During the thermal treatment, unfolding of tertiary and sec-
ondary structures (protein denaturation) occurs, and this phenomenon generally has a
positive effect on protein digestibility [29]. Non-enzymatic post-transitional changes do
occur in milk and negatively affect its digestibility. The Maillard reaction has the tendency
to change the configuration of the side chain of proteins, particularly the ε-amino groups of
Lysine [30]. Digestion by trypsin and other enzymes is hindered when there is a blockage in
the ε-amino groups of Lysine residues during milk processing, which results in a reduction
of protein digestibility [31–33]. There are other reactions such as β-elimination which
involve cysteine/cystine (Cys) and phosphoserine residues and result in the formation
of dehydroalanine. This product reacts with Cystine and Lysine residues, and new prod-
ucts such as lanthionine and lysinoalanine are formed [34,35], which also hinder protein
digestibility by preventing enzymatic proteolysis [36]. Moreover, there is an interchange of
disulfide bonds between proteins during the thermal treatment [37], and because of this,
some of the resulting non-native complex show resistance to digestion [38]. Similar results
were reported in cow milk proteins treated thermal processing [39,40].

Table 3. In vitro protein digestibility of microwave-processed samples (a), ultrasound-processed
samples (b), and thermosonicated samples (c). Note: The values are the mean with the standard
error. The IVPD (%) of control was 84.42%; small letters indicate the lack of a significant difference at
different processing times (p > 0.05) based on ANOVA and Tukey’s test.

(a) Microwave IVPD (%)

Time (min) 60 75 90
1 74.96 ± 3.08 ab 93.4 ± 4.27 e 78.82 ± 1.52 abcd
3 76.14 ± 4.38 abc 86.06 ± 3.30 cde 79.66 ± 4.65 abcd
5 72.56 ± 1.70 a 73.65 ± 2.62 a 88.63 ± 1.02 de

(b) Ultrasound (c)Thermosonication

Samples IVPD (%) Samples IVPD (%)
US 1 94.41 ± 2.58 b TS 1 68.76 ± 4.4 a
US 3 93.05 ± 4.74 b TS 3 77.47 ± 2.1 abc
US 5 92.48 ± 1.68 b TS 5 76.84 ± 1.76 abc
US 7 90.20 ± 3.94 b TS 7 74.25 ± 2.92 ab
US 9 92.86 ± 2.40 b TS 9 78.81± 1.52 bc

Similarly, ultrasounds did not have any major effect on protein digestibility, as their
effects were almost similar for all the treated samples. For thermosonicated samples,
maximum digestibility was obtained for samples treated for 9 min, followed by samples
treated for 3 min and 5 min. A direct relationship exists between the digestibility of proteins
and their allergenicity [41,42]. In cow milk, studies reported that ultrasound waves have
no effect on the allergenicity of milk samples [43,44]. It can be directly related to the
allergenicity, as changes in digestibility do not reflect any changes in allergenicity. Hence,
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the results obtained are in agreement with those of previous studies conducted on milk
samples treated with ultrasound waves.

4. Conclusions

Secondary structural changes in milk proteins due to microwave processing, ultra-
sonication, and thermosonication were evaluated using Fourier Transform Infrared spec-
troscopy (FTIR). As the applied temperature and time were raised in microwave processing,
rearrangement in α-helices occurred, and as a result there was an increase in turns and
β-sheets in the proteins. The highest protein digestibility was reported when the milk was
treated at 75 ◦C for 1 min. In the case of ultrasonication, no major changes in secondary
structures were observed, except when milk was treated for 9 min, which showed a small
rearrangement of α-helix structures. However, no significant changes were observed in
the in vitro protein digestibility after ultrasound processing. Very few studies have been
conducted on the effect of combined thermal treatment and ultrasound waves, but it is
clear that the thermosonicated samples showed poor digestibility, ranging from 68.76 to
78.81%, compared to the microwave samples (72.56–93.4%) and the ultrasound samples
(90.20–94.41%), which exhibited higher digestibility.
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