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For the skin immune system, gd T cells are important components, which help in
defensing against damage and infection of skin. Compared to the conventional ab T
cells, gd T cells have their own differentiation, development and activation
characteristics. In adult mice, dendritic epidermal T cells (DETCs), Vg4 and Vg6 gd T
cells are the main subsets of skin, the coordination and interaction among them play a
crucial role in wound repair. To get a clear overview of gd T cells, this review synopsizes
their derivation, development, colonization and activation, and focuses their function in
acute and chronic wound healing, as well as the underlining mechanism. The aim of this
paper is to provide cues for the study of human epidermal gd T cells and the potential
treatment for skin rehabilitation.
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INTRODUCTION

gd T cells (according to their gd TCR) were first identified as a novel T-cell subset in the mid-1980s
(1). As a gap between innate and adaptive immune response, they participate in regulating
carcinoma (2), maintaining antimicrobial barrier (3), wound healing (4), psoriasis (5) and graft
rejection (6). gd T cells represent less than 5% of peripheral lymphocyte population in mice, human
and rat (7, 8), whereas it constitutes a relatively large fraction of T lymphocytes in chicken, sheep,
cattle and pig (15–50%) (8). In adult mice, gd T cells are unequally distributed (9); there are less than
5% of total T cells in the lung, approximately 20–40% of the intraepithelial T cells of intestinal,
approximately 10–20% of total T cells in the reproductive tracks, approximately 50–70% of skin
dermal T cells and approximately 95% of epidermal T cells. In addition, they are divided into Vg1-7
gd T subsets according to the g chain (10). Almost all gd T cells in epidermis are dendritic epidermal
T cells (DETCs: named by its dendritic morphology), expressing an invariant Vg5Vd1 TCR
(according to Tonegawa’s nomenclature, which is adopted in this paper), equal to Vg3Vd1 TCR
(according to Garman’s nomenclature) (11, 12). They maintain a homeostatic population by self-
renew and can secrete growth factors such as IGF-1 (Insulin-like growth factor 1) and KGF-1/KGF-
2 (keratinocyte growth factor 1/2) etc. (13) Most gd T cells in dermis are Vg4 T and Vg6 Cells, they
can secrete IL-17A (interleukin-17A), IFN-g (interferon-g) and the growth factors (4).

In humans, gd T cells are classified based on the presented Vd gene segment. Until now, there
exists three true Vd genes: Vd1-3; and seven functional Vg gene segments: Vg2-5, Vg8, Vg9, and
Vg11 (14). Vd1 gd T cells primarily colonized in the dermis, and a small population is distributed in
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the epidermis, whereas Vd2 TCRs are mainly distributed in
peripheral blood and dermal (15, 16). Human epidermal gd T
cells play a functionally similar role as DETCs in promoting
wound healing via secreting insulin-like growth factor 1 (IGF-1)
and regulating cutaneous carcinoma (17, 18). However, they are
not called DETCs as they do not possess dendritic morphology
and take different molecular mechanisms in epidermis homing,
antigen recognition and activation.

The skin, which is essential in defencing against external
pathogens and environmental factors such as the microbes
attack, ultraviolet radiation and heat injury (15, 19), serves as
the largest interface between the body and the external
environment. On one side, skin needs enough defending power
to maintain homeostasis; on the other side, it needs fast and
effective responses to repair the injury and restore the integrity
upon injury or inflammation. Wound repair mainly contains
four overlapping stages, which includes hemostasis,
inflammation, proliferation and remodeling (20). Immune cells
manage wound repair by secreting cytokines and chemokines to
induce inflammatory microenvironment and promote re-
epithelialization. DETCs, Vg4 T cells and Vg6 T cells are the
main subsets of skin T lymphocytes and the equilibrium,
coordination and interaction among them significantly affect
their effectiveness in wound repair. This review primarily focuses
on the discussion the rodent and murine gd T cells, including
their development, differentiation, colonization, activation, their
functions and the underlining mechanism in wound healing. In
addition, by consolidating the recent research breakthrough in
the field, perhaps this article may also provide potential cues for
the study of human skin gd T cells and the potential treatment for
skin rehabilitation.
THE DEVELOPMENT AND COLONIZATION
OF gd T CELLS

gd T cells and ab T cells originate from the same progenitor in
the thymus. When bone marrow-derived hematopoietic stem
cells (HSC) migrate into the thymus, Notch receptor 1 (Notch
1) and Delta-like 4 (DLL-4) signaling leads to the generation of
T cell progenitors called double-negative cells expressing CD4-

and CD8- (DNs, CD4- and CD8-) (19, 21, 22), which commit
them to the T-cell fate. Then these immature thymocytes pass
through four developmental stages, from DN1 to DN4 (23, 24).
DN1 cells are uniformly bipotent, they can give rise to both ab
and gdT cells (25); the next DN2 stage initiates the divergence
of ab and gd T cells, and in this stage, cells expressing IL-7R
and SOX13 (one high mobility group (HMG) box TF) and
other unknown factors exhibiting the tendency to gdT cells fate
(26, 27). TCR d, g and b start to rearrange stochastically
(somatic recombination of the V, D, and J genes encoding the
V domain of the corresponding TCR proteins) (28–30), and
then weak signal strength boosts the divergence of ab lineage
(preTCR: consisting of the invariant pTachain paired with a
full-length b chain), while the strong signal enhances the gdT
cells and selectively promotes the precisely rearranged and
Frontiers in Immunology | www.frontiersin.org 2
paired gd chain (TCR gd) (28, 29, 31–33), DETCs, IFN-g-
producing V g1 cells and IL-17A-producing V g6 cells are
markedly depleted in mice with attenuated TCR signaling of
their own (34, 35), this process is called the positive selection.
The invalidly rearranged cells or validly rearranged cells
without sufficient activation signaling from ligand undergo
apoptosis similar to the death of the ab T cells without useful
TCR. Whether this phenomenon leads to the successive
development characteristic of gd T cells has to be verified.
Partial cells of this stage retain bipotency, whereas other cells
just give rise only to ab or gd T cells (36). The divergence of ab
and gd lineage is completed at the DN3 stage, and by this stage,
almost all of the cells complete lineage commitment, with a
major population exhibiting ab lineage restriction (25). But the
precursor cells with type of TCR (preTCR or gd TCR) can’t
dictate the lineage choice, as the gd TCR and ab TCR can
generate ab and gd lineage cells under some special
circumstances, respectively (37–39); transitioning into the
DN4 stage, the TCRa chain gene-rearrangement begins,
which generates double positive(CD4+, CD8+) ab T cells (DP
ab T cells) marking the point of irreversible commitment to the
ab lineage (36, 40). Then the DP ab cells commit the positive
and negative selection and get matured (41). While the subset
of immature gd T cells will develop the effector commitment,
the relatively weaker signals enhance the IL-17–producing gd T
cell subset, and progressively stronger signals promote IFN-g–
producing and innate gd T cells (24). However, there has no
direct evidence whether the stronger or weaker signal leads to
higher productions of IFN-g- or IL-17A- V g4 T cells,
respectively. CD24 or heat-stable antigen (HSA) is recognized
as the marker of gd T cell lineage for irreversible commitment.
The expression of CD24+CD73+ indicates that these cells are
unable to switch to the ab T cells (19, 42). Therefore, the TCR
signaling operates in sequential developmental windows with
distinct outcomes, and it determines the lineage and effector
commitment successively (10). In addition, TCR gd-
independent factors are crucial in gd T cells differentiation,
such as the miRNAs, Sox4/Sox13/RORg axis (SRY-box-
containing gene 4/13/retinoid-related orphan receptor g axis),
and Notch signaling (13, 43, 44). Thus, every subset has its own
development characteristic.

The development of the gd subset occurs step by step as
follows: T cell commitment–ab/gd lineage commitment–gd
subset commitment–effector commitment (Figure 1);
therefore, the same factor can take different functions during
disparate stages. This theory can reconcile some inconsistent
research results. For instance, IL-7 and the transcription factor
SOX13 promote the survival and development of early precursor
cells and are absolutely required for TCRg gene rearrangement.
However, at the later stage, their function mainly promotes the
IL-17-producing cells (26, 27, 45, 46). Besides, the same factor
can give rise to an identical or a different function for various
subsets at the same cross-section in time, just like the PLZF and
Egr2/3/id3; the former promotes the development of the Vg1+
and Vg6+ cells (47, 48), while the later one takes an opposite
function in IL-17- and IFN-g-producing cells (10).
April 2022 | Volume 13 | Article 875076
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DETCs expressing a canonical Vg5Vd1 TCR are a restricted
antigen repertoire and act exclusively as resident T cells in the
murine epidermis (12). They derive from DETC progenitors
which are restrictedly generated in the embryonic thymus at day
13 to 17 (49), and at E16 and E18 (50), DETCs egress from the
thymus and move to the epidermal layer where they self-renew.
Existing research have confirmed that the development of
DETCs can be influenced by ERK-Egr-Id3 axis (35), Lck (51),
Syk (52), ZAP-70 (53), IL-7R/JAK/STAT pathway (54, 55),
RunX3 (regulating CD103 and CD122) (56), miRNAs
(downregulating CD122/IL-2Rb and CD45RB expression) (43)
and Skint-1 (promoting the selective development of Vg5+
DETC) in the thymus (35, 57); their skin-homing are affected
by the ITK (through promoting CCR10 and S1PR1 expression)
(58, 59), SIPR1 (sphingosine-1-phosphate receptor 1, involved in
thymic egress) (60), GPR15 (orphan G protein-linked
chemoattractant receptor 15, regulating the recruitment of gdT
cells to skin) (61), CD103 (62), E, P-selectins ligands (63)
(Expressed on DETCs, binding to selectins expressed on the
endothelium), CCR10 (64) and CCR4 (63) (binding to CCL27/28
expressed by keratinocytes), Vg5 T cells have low expression in
CCR9 and CCR7, so they will not migrate into lymphoid organ
Frontiers in Immunology | www.frontiersin.org 3
and spleen. Matured DETCs express the markers including
CD27–, CD69+, T-bet+, NKG2D+, JAML+, CD100+, and
CD103+ (15).

Vg4 T cells appearing at the late fetal stage(from E16)and
afterward (49), are the dominant subset of murine peripheral gd
cells. In addition, Vg4 T cells exist in peripheral lymphoid organs,
blood, liver, lung, spleen and dermis (65). They are divided into
two main subsets: IL-17A+Vg4 T cells (CCR6+CD27-), and IFN-
g+Vg4 T cells (CCR6-CD27+) (66). The majority of gd T cells in
lymph node are IL-17A gdT cells, whereas a large population in
splenic is IFN-g gd T cells (67); the mechanism leading to this
biased distribution is unclear. The development of IL-17A
producing cells is also regulated by the comprehensive factors,
such as Sox4/Sox13/RORgt/IL-17 axis (68), Notch signaling/Hes-1
axis (44, 69), Wnt signaling pathway/TCF1 and Lef1 axis (70),
TGF-b (71), Blk (B lymphoid kinase, a Src family kinase) (72) and
IL-7 (45). Moreover, CCR6 is recognized to be critical for their
homing to skin, CCR6-deficiency reduced the number of both Vg4
and Vg6+ cells in the skin (73). Other research reports that thymic
Vg4 requires extrathymic environment for skin homing, such as
getting activated or obtaining CCR6 expression (74). Matured IL-
17 producing Vg4 T cells (thymus-derived) contain variable d
FIGURE 1 | Development of ab and gd T cells. Hematopoietic stem cells migrating into thymus get lymphocytes commitment, the lymphocytes then get ab
commitment and gd commitment. ab cells passing through sequential single positive selection and negative selection get matured. Somatic recombination of V,
D, J genes forms different gd chain, which produces varied gd precursors. Among them, cells with valid gd chain, getting enough stimulation and appropriate
environment get survived, cells with invalid gd chain and getting insufficient ligand stimulation get apoptosis. Survived gd T cells then undertake effector
commitment and get matured.
April 2022 | Volume 13 | Article 875076
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chain. Most of them express CD3+, CD4-, CD8-, CD44+, CD69+,
RORgt+, CCR6+, CD25+, CD27-, Scart2+, CD45RB-, CD122-,
CD27-, NK1.1-, T-bet-, IL-23R (31, 66, 75–80). Recent research
found that some IL-17 producing gd T cells are bone derived, and
they often just have d4 chain. In addition, they express CCR2+ and
require IL-23 and IL-1b for their reprogramming from CD27+ gd
T cells (81, 82). In addition, IFN-g-producing gdT cells are affected
by ERK-Egr-Id3 axis (10, 34), ThPOK/PLZF/T-bet axis (83),
researches have reported thymic gd T cells with antigen-
experience or binding antigen have high affinity in producing
IFN-g (67), matured IFN-g producing Vg4 T cells have variable d
chain. Their expression characteristics are CD3+, CD4-, CD8-,
CD44+, T-bet+, NK1.1+, CCR6-, CD27+, CD45RB+, CD122+(IL-
2/IL-15 receptor b chain) (31, 66, 75–80).

Vg6 T cells, which exclusively express the Vd1 TCR chain
(74), are generated solely in the thymic second wave around
embryonic day E14 (up to the birth) (49). In mice, about half of
the dermal gd T cells are the Vg6 T cells, while the rest mainly
express Vg4 TCR (4, 74). Vg6 T cells also localize to uterine
epithelia, tongue and meninges, enthesis, pLNs, testis (79, 84–
86). Conventionally, dermal Vg6 T cells are considered bona fide
tissue-resident cells that do not recirculate out of the skin and
their generation is restricted to the confined window of fetal
development. Furthermore, Vg6 T cells cannot be induced in
adult animals with the phenomenon that Vg6+ gd T cells become
rare in the adult thymus (87, 88). But recent research confirmed
that they have a high mobility and can travel between pLNs and
tissues (79); however, whether the proliferated Vg6+ in pLNs or
thymus refill the pool of terminally differentiated skin Vg6
remains to be tested. Their development is affected by IL-7
(45), TGF-b (71), Blk (72), PLZF (47). Matured Vg6 cells
exhibit the expression characteristics of CD27–, IL-23R+,
RORgt+, CCR6+, CD69+, CD44+, Scart1+, cMAF+, PLZF+,
PD-1 receptor and CCR2 (15, 79).
gd T CELLS IN MAINTAINING
SKIN HOMEOSTASIS

Skin comprises two major compartments, the epidermis and the
dermis. The epidermis is mainly composed of keratinocytes
(~95%) and residing immune cells (~5%, mainly are
Langerhans cells (LC) and T cells) (89). The immune cell
composition is subject to species specific differences. In naïve
wild type (WT) mice, DETCs dominate the epidermal T cell
compartment(~95%). Human epidermis is home to both gd and
ab T cells, while resident T cells in epidermis show effector
functions very similar to that of DETC (90).

The DETCs proliferate and maintain a homeostatic population
by themselves, which cannot be reconstituted with bone marrow
cells or fetal thymocytes (88).Aryl hydrocarbonreceptor (AhR)and
Linker for activation of T cells (LAT) are recognized to be the
important factors in maintaining DETCs proliferative expansion
and self-renewal (91). AHR-KOmice and LAT–deficient mice lack
peripheral DETCs neither through affecting the DETCs generation
nor skin homing (92). DETCs are characterized with lots of
Frontiers in Immunology | www.frontiersin.org 4
dendrites; most of the dendrites anchor to the apical epidermis
where they are immobilized at distal. The remaining dendrites are
positioned within the basal epidermis and are highly mobile (93).
PALPs (containing prominent co-clusters of TCR and proteins
phosphorylated on tyrosine residues) (94) of the apically oriented
dendrites contribute the anchoring of DETCs to the squamous
keratinocyte junctions, E-cadherin receptor integrinaEb7(CD103)
highly enriched at the ends of apical dendrites modulates the
dendrite anchoring, which binds with E-cadherin expressed by
keratinocytes. This structure allows the frequent contact of DETCs
with the neighbouring cells as well as continuous scanning for
antigens in the skin surface (94). Although healthy skin does not
appear to express DETC TCR ligand detectable by soluble Vg5Vd1
TCR tetramers (95), low grade stresses from outside environment
might sustain a basal expression of ligands sufficient for TCR
activation but below the sensitivity of currently existed detection
method. This presence of agonistic TCR-proximal signalsmake the
DETCs to be a semi-activated state via Lck-dependent TCR
activation (94), these semi-activated DETCs establish a polarized
conduit system for transepithelial cargo transport, which
contributes to the accumulation of matured lysosomes and the
probe of the epidermal molecular composition (96). Normally,
semi-activated DETCs express CD122 and CD69 (marker of pre-
activation/semi-activation), their autocrine cytokines can help
maintaining steady state of themselves and other cells (93),
including IL-13, IGF-1, GM-CSF (Table 1). IL-13 plays an
important role in regulating epithelial cells homeostasis and
maintaining skin integrity through promoting EC (Epithelial
cells) maturation and transiting through epidermis, the mice
lacking canonical DETCs or IL-13 shows a higher degree of water
loss, a poorer barrier function and a declined tolerance to damage
compared to the WT skin (97); IGF-1 can protect themselves and
keratinocytes from apoptosis (98), while GM-CSF is crucial for LC
maturation (92). In turn, the paracrine cytokines by neighboring
keratinocytes, fibroblasts and other cells are crucial in keeping the
homeostasis of DETCs (96, 99). IL-7 secreted by keratinocytes and
fibroblast mesenchymal cells serves as a growth factor for DETCs
(100); IL-15 secreted by epithelial cells helps the survival and
proliferation of DETCs via binding IL-15Ra (CD215) expressed
on DETCs (101).

The immune cells residing in the dermis under homeostasis
include dermal subsets of dendritic cells (DCs), mast cells, T cells
(ab and gd T cells), innate lymphoid cells (ILC), B cells,
macrophages and NK cells (102). gd T cells of dermis mainly
comprised of Vg4 and Vg6 gd T cells. Vg6 gd T cells represent
virtually 100% of the dermal gd T cells in newborn mice, but
comprise only about 40% in adult mice, as the Vg4 gd T cells in the
dermis gradually increase over time (103). The majority of Vg6+ gd
T cells display tissue residency, but may retain the capability to
circulate between tissues, while the Vg4 T cells display the
recirculating characteristic. Recent researches have indicated that
both dermal Vg4 and Vg6 T subsets are radioresistant (74, 104).
Under homeostasis conditions, both subsets can traffic between
tissues and lymph nodes at a slow but steady rate (79, 87, 105, 106);
a substantial flux of gd T cells through the skin to draining LNs is
observed through analysis of skin-draining lymph in cattle (107).
April 2022 | Volume 13 | Article 875076
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It is proposed that CCR6-dependent manner contributes to
homeostatic gdT17 cell trafficking, CCR6 can bind with CCL20
expressed in mucocutaneous sites and subcapsular region of
primate LNs (108), while CCR2-dependent manner dominates
the activated trafficking (73), this trafficking characteristic
facilitates their immune surveillance function. Upon activated by
ligands such as the specific ligands triggered by the imiquimod
treatment, the migration will significantly increase. However, it
seems that theVg4+ dermal cells are able tomigratemore efficiently
than the Vg6+ gdT cells (103, 109). For the resident Vg6gdT cells,
they usually act as persistent effector cells in the skin, high
expressions of the anti-apoptotic BCL2A1 protein protects them
from activation-induced cell death (79). However, whether the
residentVg6+Tcells canbe refilledby theVg6Tcells frompLNand
thymus is uncertain, and interesting to be tested. For the Vg4 cells,
they can be reconstituted by thymic Vg4+ cells and bone marrow,
but they need to go to the periphery andmature beforemigrating to
the dermis (74, 81). The CCR6 expressed on their surface and the
CCL20 expressed by epidermal keratinocytes, endothelial cells, and
dendritic cells are crucial for their recruitment (82).

Collectively, DETCs exist in epidermis, they maintain a
homeostatic population by self-renewal. Under homeostasis,
they secrete IL-13, IGF-1 and GM-CSF to help in epithelial
cells maturation and proliferation. IL-7 and IL-15 secreted by
epithelial cells contribute to the survival and proliferation of
DETCs, PALPs of the apically oriented dendrites contribute to
the anchoring of DETCs to the keratinocyte junctions. Vg4 and
Vg6 T are main subsets in the dermis, they traffic between tissues
and lymph nodes at a slow but steady rate under homeostasis,
CCR6 expressed on their surface combining with the CCL20
expressed in mucocutaneous sites and subcapsular region of
primate LNs is an important pathway (Figure 2).
THE ACTIVATION OF gd T CELLS

gd TCRs have the ability for both innate and adaptive ligand
recognition via either germline-encoded regions of the receptor,
Frontiers in Immunology | www.frontiersin.org 5
resemble the PRRs or adaptive antigen binding via the CDRs,
this pattern seems to be distinguished from ab TCRs (102). Most
ab TCRs bind to MHC I/II (major histocompatibility complexes
I/II) which presents small peptide fragments derived from
pathogens or pathological tissues. Together with co-receptor
engagement of CD4 or CD8 and co-stimulation through
CD28, this elicits ab T-cell activation (110). Similar to ab T
cells, the activation of gd T cells may require the engagement of
both gd TCR and co-receptors, including junctional adhesion
molecule-like protein (JAML) (111), Toll-like receptor (TLR)
(112), the semaphorin CD100 (113) and C-type lectin-like
stimulatory receptor-natural killer group 2D (NKG2D) (114).
As no general restricting molecule could be identified, no
effective methods can assess whether the recognition of certain
antigens by gd TCRs is generalized, and the affinity of TCRs to
their antigens is typically low, the antigens activating the gd TCR
or gdT cells have not yet been clearly identified up to now. Recent
years, many studies have been conducted to explore the antigens.
The antigens activating the gd T cells can be divided into 4
categories (115): First of all, MHC or MHC-like recognition
antigen includes MHC-Ib molecule T10/T22 (116), MART-1
(117), MHC-related protein 1 (MR-1) (118). Secondly, there are
IG-like recognition of antigens, including Annexin A2 (119),
ephrin receptor A2 (EphA2) (120), the human DNA mismatch
repair protein MutS-Homologue 2 (hMSH2) (121), heat shock
protein (HSP) 60 (122), PE(phycoerythrin) (123). Thirdly, this
group contains Phosphoantigen, including 4-hydroxy-3-methyl-
bu t -2 - eny lpyrophosphate (HMBPP) , I sopenteny l
pyrophosphate (IPP) and dimethylallyl pyrophosphate
(DMAPP) (124). Lastly, there are B7 receptor family-like
proteins, including BTNLs (BTNL1 and BTNL6 in mice,
BTNL3 and 8 in human) (125, 126). Furthermore, the antigens
can be categorized into DAMPs and PAMPs (damage associated
molecular patterns and pathogen-associated molecular patterns)
according to their derivation, the former ones are generated
in cell necrosis (often associated with tissue injury), whereas
the controlled cell death, or apoptosis, does not lead to
the generation of DAMPs, the latter ones are elicited by
TABLE 1 | Main cytokines, chemokines, and receptors of DETCs, Vg4 and Vg6 T cells in skin homeostasis and wound healing.

Cytokines Main function Receptors Main function

IGF-1 Binding with IGF-1R, promotes keratinocytes survival and
regulates their differentiation, prevents the apoptosis of DETCs.

CCR10/CCR4 Mediates DETCs migration and location via binding with
CCL27/28.

KGF-1/KGF-2 Induces keratinocytes proliferation, differentiation and migration. CCR6+ Contributes to homeostatic gd T cells trafficking (Vg4 and
Vg6).

IL-13 Regulates skin homeostasis and protects against
carcinogenesis.

CCR2+ Dominates the trafficking of activated gd T lymphocytes
(Vg4 and Vg6).

GM-CSF Is crucial for LC maturation. aEb7(CD103) Contributes to the anchoring of DETCs.
IL-17A Induces and amplifies inflammation, induces the migration of

inflammatory cells.
AhR Maintains DETCs proliferative expansion and self-renewal.

IFN-g Facilitates anti-tumor and anti-infection response. IL-15Ra (CD215) Maintains the survival and proliferation of DETCs and
regulates the production of IGF-1 via binding with IL-15.

Chemokines Main function NCRs (NKG2D, TLR,
CD100, JAML)

Provides costimulatory signals and participates in antigen
recognition and inducing the release of cytokines.

CCL-3/CCL-4/
CCL-5

Induces the migration of inflammatory cells.

Mcp-1 Plays an important role in monocyte migration.
XCL1 Induces migration of lymphocytes via binding with XCR1.
April 2022 | Volume 13 | Article 875076
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pathogens (127). In addition, some papers divide the ligands into
self ligands and non-self ligands (128).

Shortly after wounding or inflammation, damaged
keratinocytes closely adjacent to the lesion quickly and transiently
upregulate related stress antigen. The gdT cells of epidermis and
dermis get complete activation via recognizing the antigens byTCR
and co-stimulatory receptors. Activated epidermal gdT cells retract
their dendrites and round up within 24 h after wounding (129).
Within 48 h, epidermal gd T cells secrete cytokines and growth
factors to regulate inflammation and proliferation, such as KGF-1,
KGF-2, IL-13, IFN-g, TNF-a, IGF-1, IL-2, and IL-17 (Table 1),
epidermal gd T cells restore their dendritic morphology 5 days post
wounding (4, 129). For the Vg4 T cells, they are most commonly
found early post wounding, accounting for half of the IL-17A+ cells
on the third day (130), firstly, they get activated, proliferate and
secrete IL-17A, IFN-g, IL-17F, IL-22 andother cytokines to regulate
the inflammationpromptly. Secondly, the keratinocytes close to the
lesion upregulate the production of CCL20, which increases the
epidermal infiltration of dermal gd T cells by binding their CCR6
(130, 131), in the absenceofCCR6, fewer gdTcells is observed at the
wound site leading to 4-day delay in wound closure, this indicates a
key role for CCR6 in efficient wound repair (132). The CCL20–
Frontiers in Immunology | www.frontiersin.org 6
CCR6 axis of dermal T cell recruitment occurs similarly in the
human epidermis, resulting in Th17 cell infiltration (133). Thirdly,
the migration of resident gd T cells into the local draining lymph
nodes increases, the trafficmanner isCCR7-independent (105), and
Vg4+ cells homing from inflamed skin to sLNs during psoriasis
predominantly lack CCR6 expression (109). It likely occurs via
afferent lymph draining from dermis, but the definite pathway
involved is undetermined. Fourthly, the gd T cells specific
expressing Vg4Vd4 in lymph nodes selectively expand promptly
(105, 109), the reason leading to the selective expansion is
uncertain, cytokines may play a crucial role in this process. Lastly,
general gd T cells and expanded Vg4Vd4 gd T cells infiltrate back
into inflammatory skin via S1P1 and CCR2 (82, 134), however,
whetherCCR2up-regulation promotes the recruitment of thymus-
derived Vg4 T cells to inflamed tissue is unclear. Importantly, the
re-filtrated Vg4 Vd4 T cells persist for months and respond more
rapidly like thememory-like cells in the imiquimod (IMQ)-induced
micemodel (82). ActivatedVg6 T cells show very similar traits with
Vg4 T cells, CCR2 and CCR6 expressed on their surface are also
crucial for the migration in homeostasis and inflammation state
(73); however, it seems like their efficiency is lower than the Vg4
cells (135).
FIGURE 2 | gd T cells in maintaining skin homeostasis. DETCs in epidermis proliferate and maintain a homeostatic population by themselves, they secrete IL-13,
IGF-1 and GM-CSF to help keeping steady state of themselves and other cells. IL-7 and IL-15 secreted by epithelial cells contribute to the survival and proliferation
of DETCs, PALPs of the apically oriented dendrites contribute to the anchoring of DETCs to the keratinocyte junctions. Vg4 and Vg6 T subsets in the dermis traffic
between tissues and lymph nodes at a slow but steady rate, CCR6 expressed on their surface combining with the CCL20 expressed in mucocutaneous sites and
subcapsular region of primate LNs is an important pathway.
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Taken together, the antigens activating the gd T cells can be
divided into 4 categories: MHC-like recognition antigens, IG-like
recognition of antigen, phosphoantigen and B7 receptor family-
like proteins; they can also be categorized into DAMPs and
PAMPs. The binding of these antigens with the gd TCR and co-
stimulatory receptors helps in the complete activation of gd T
cells. Activated gd T cells secrete chemokines, cytokines and
growth factors to regulate inflammation and proliferation.
Activated Vg4 T cells migrate to epidermis via CCR6-CCL20
pathway, in addition, the traffic of Vg4 and Vg6 T subsets
between skin and lymph nodes increases, the traffic from skin
to lymph nodes is CCR6/CCR7-independent, while that from
lymph nodes to skin is CCR2-dependent (Figure 3).
gd T CELLS IN ACUTE WOUND HEALING

The skin, the largest organ by surface area is susceptible to injury
in shielding our internal tissues from microbial infection,
temperature variation, radiation and mechanical damage (136).
Recognizing the mechanism underlining the wound healing is
valuable for regulating the healing effectiveness. Theoretically,
both cells residing in skin and cells capable of trafficking to the
Frontiers in Immunology | www.frontiersin.org 7
skin as the keratinocytes, neutrophils, macrophages, T
lymphocytes, mast cells, dendritic cells, endothelial cells,
fibroblasts, myofibroblasts and epidermal stem cells, can
influence the healing result (137–139). To observe their
functions, a great number of surgically constructed models of
skin injury in rodents have been established. In particular,
murine models are used most often. It is well-established that
appropriate inflammation and vigorous re-epithelization are
crucial in wound healing, immune cells are essential in
constructing inflammatory microenvironment and regulating
re-epithelization (140). gdT cells as the major immune cells of
skin, we sought to discuss their significant functions, and the
related mechanism in wound healing below.

Recruitment of Inflammatory Cells
Efficient Infiltration of inflammatory cells including neutrophils
and macrophages are crucial for wound repair. Neutrophils are
usually recruited as “first responders” from the bone marrow in
response to “find me” signals on the day following injury, they
clean debris and bacteria to provide a good environment for
wound healing, as well as to modulate inflammation by
producing ROS, chemokines (CXCL2, CXCL8) and MCP-1
(monocyte chemoattractant protein 1), different cytokines
FIGURE 3 | gd T cells in acute wound healing. Upon activation, DETCs and Vg4 T cells secrete chemokines to recruit neutrophils and macrophages into lesion site.
Activated Vg4 T cells migrate to epidermis via CCR6-CCL20 pathway, in addition, the traffic of Vg4 and Vg6 T subsets between skin and lymph nodes increases, the
traffic from skin to lymph nodes is CCR6/CCR7-independent, while that from lymph nodes to skin is CCR2-dependent. Keratinocytes-derived IL-15 and DETCs-
derived IGF-1 forms a positive feedback loop and promotes re-epithelialization. The positive feedback loop between wound-derived IL-1b/IL-23 and Vg4-derived IL-
17 can amplify the local inflammation, the IL-1b/IL-23 suppresses IGF-1 production of DETCs.
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(IL-6, IL-1b, IL-10) (141). The accumulation of macrophages is
usually seen within the 24-48 h at the site of injury, and their
local accumulation actively participates in all stages of wound
healing, including facilitating phagocytosis of bacteria and
damage tissue, determining the duration of inflammation and
promoting keratinocyte migration and ECM synthesis (142).
Studies have confirmed that depletion, deletion, or excessive
infiltration of these cells can result in delayed wound healing,
keloids or hypertrophic scars (137, 143–146). gd T cells
participate in the recruitment of inflammatory cells in skin
wounding. gd TCR-deficient (dTCR-/-) C57 male mice exhibit
reduction in the cellular infiltration upon injury, including
macrophages, ab T lymphocytes, neutrophils (104, 147, 148).
Activated gd T cells, including DETCs and Vg4 T cells express
CCL-3 (MIP-1a), CCL-4 (MIP-1b), CCL5 (Rantes), MCP-1, and
XCL1 (lymphocyte chemokines), IL-17, which induce the
migration of inflammatory cells (19, 106, 149–152). In
addition, they indirectly affect cells infiltration via regulating
other cells, such as DETCs-induced hyaluronan production by
epithelial cells increases the migration of macrophages (153).

Wound-Derived IL-1b/IL-23 and
Vg4-Derived IL-17 Loop for
Inflammatory Responses
As the first line of defense, keratinocytes can recognize ligand by
pattern-recognition receptors (PRRs) (154), which lead to the
subsequent activation of distinct signaling pathways and the
production of different cytokines and chemokines (138). TLR
(Toll-like receptor) activation is a critical element in initiating
and amplifying inflammation after skin injury, including TLR-1,
-2, -3, -4, -5, -6, and -9, which are upregulated inwounds (155), The
activation of keratinocytes increases the production of IL-1b, IL-23,
IL-15, IL-1a, TNF-a, IL-8, CCL2 (156). Together with the IL-1b
produced by platelets, neutrophils and macrophages (157, 158), as
well as the IL-23 produced by LCs andDCs (159), the IL-23 and IL-
1b induce the resident and infiltrated Vg4 T cells secreting IL-17A
(160, 161), which can bind with the up-regulated IL-17RA
expressed on the keratinocytes. The binding enhances the
production of epidermal IL-1b and IL-23 (130). Thus, this
process creates a positive feedback that the IL-1b/IL-23-IL-17
loop amplifies local inflammation after skin injury. IL-17A,
mainly produced by the immune cells, including gdT cells and
Th17 cells, is required for efficient skin wound healing. IL-17a-/-

mice exhibit defects in wound repair (3); however, Rodero et al.
reported that blocking IL-17A with an IL-17A-neutralizing
antibody significantly promotes skin wound repair (162). To
reconcile this conflicting result, Li et al. confirmed that different
IL-17A levels play a distinct role in wound healing; both low and
excessive levels of IL-17A have a negative impact on skin wound
repair, while amoderate level of IL-17A is required for efficient skin
wound healing (130). They concluded that Vg4-derived IL-17A
indirectly delayed thewoundhealing throughupregulating of IL-1b
and IL-23 by keratinocytes, which inhibits IGF-1 production by
DETCs through NF-kB signal pathway (130). However, the
underlining reason of different levels of IL-17A leading to variant
effectiveness was not distinctly explicated in their study.
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As we all know, IL-17A participates in inflammation through
different pathways (163), we propose that the IL-17A—IL-1b/IL-
23—IGF pathway impedes wound healing; whereas the IL-17A
—b-defensin3/S100A8/Reg3g/AMP (3, 164) and other pathways
[through driving the production of VEGF by epithelial and
fibroblastic cells to stimulate angiogenesis (165, 166)] promote
wound healing. Under an excessive expression, the impeding
pathway is markedly activated; therefore, IL-17A hinders the
wound repair. Similarly, in the IL-17A-depleted mice, the
promoting pathway is severely retarded, thus the wound
healing is delayed. However, under a moderate expression, the
promoting pathway is noticeably activated, IL-17A hence
accelerates wound healing. It is worthy to explore these related
molecular mechanisms for the details.

Moreover, we deliberate that these dual roles coexist at the
same time, depending on the concentration gradient between the
central injury tissue and the surrounding wounding tissue,
reminiscent of the oxygen gradient in the wounding site (167).
Moderate accumulation of IL-17A in the peripheries is beneficial
for wound closure; while excessive accumulation of IL-17A at the
excessive level in the center of injury leads to delayed repair,
which leaves adequate time for inflammatory cells to create a
good repair microenvironment. This process confirms the
sequential order in repair, from the bottoms up and from the
peripheries to the center (168). Further research is needed to
justify this inference.

DETCs-Derived IGF-1 and KGF-1-2
for Re-Epithelialization
During homeostasis, DETCs constitutively generate IGF-1,
which binds to IGF-1R (IGF-1 receptor) expressed on
“keratinocytes and DETCs” and triggers phosphoinositide 3-
kinase and mitogen-activated protein kinase pathways to prevent
them from apoptosis (98, 169). Meanwhile, keratinocytes secrete
IL-15, which helps the survival and proliferation of DETCs (170).
Upon injury, the production of IL-15 is upregulated by activated
keratinocytes and Langerhans cells (170, 171), increased IL-15
enhances the IGF-1 production of DETCs through binding to
their IL-15R (IL-15 receptor). The up-regulated IGF-1 causes an
increase in phosphorylated IGF-1R levels at wound margins 24 h
after injury (98). This in addition protects keratinocytes from
apoptosis in damaged areas (98), also directly stimulates
keratinocytes to produce more IL-15, partly through the
mTOR-dependent pathway (172). This positive feedback loop
of keratinocytes-derived IL-15 and DETCs-derived IGF-1
contributes to the significant accumulation of IGF-1, which
exhibits a significant function in promoting re-epithelialization.
Impaired epidermal to DETCs signaling slows wound repair
(173), and it has been found that the insufficient activation of
DETCs upon injury leads to abnormal wound healing in diabetic
mice, the insufficient activation partly attributes to the impaired
production of IGF-1. Exogenous supplement of IL-15 can rescue
the defective IGF-1 expression (93). Whether there is another
feedback loop between DETCs and other cells such as LCs, or
other signaling deeply involved in the regulation of IL-15
expression is still unknown.
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In addition to IGF-1, activated DETCs aid in skin repair by
secreting KGF within 24 hours of injury, including KGF-1 and
KGF-2 (174). However, they don’t secrete KGFs under
homeostasis (129). When binding to the KGF receptor (KGFR)
expressed on keratinocytes, KGF accelerates the migration and
proliferation of keratinocytes by activating the downstream
signaling pathways, including mTOR, ERK-MAPK, P13K/Akt
(87, 96). KGF plays a commendable function in regulating
keratinocytes, but since DETCs do not express KGFR, no
positive feedback loop has been identified.

Taken together, upon activation, DETCs and Vg4 T cells
secrete chemokines to recruit neutrophils and macrophages into
lesion site. Keratinocytes-derived IL-15 and DETCs-derived
IGF-1 forms a positive feedback loop and promotes re-
epithelialization. The positive feedback loop between wound-
derived IL-1b/IL-23 and Vg4-derived IL-17 can amplify the local
inflammation, whereas the IL-1b/IL-23 suppresses IGF-1
production of DETCs (Figure 3).
gd T CELLS IN CHRONIC
WOUND HEALING

Common features of chronic non-healing wounds include
repeated infection, tissue necrosis, continuous exudation,
defective re-epithelization, reduced angiogenesis and
overproduction of ROS (175, 176). They are usually observed
in elderly people suffering from pathological conditions, like
obesity, diabetes mellitus and vascular disease (177). Chronic
wound healing is characterized by the prolonged presence of
myeloid cell populations, such as macrophages, neutrophils and
monocytes. In the late stage of inflammation (137), incessantly
activated gd T cells participate in the chronic wound healing
through inducing persistent inflammatory microenvironment
via the main pathways ment ioned above . For re-
epithelialization, the robust activation of EPSCs (Epidermal
stem cells) and efficient recruitment of their progeny towards
an epidermal lineage are crucial, a stage which facilitates the re-
establishment of an intact keratinocyte layer during wound
healing (178, 179). For this process, the balance of proliferation
of pluripotent EPSCs and their differentiation into terminally
differentiated cells are pivotal (Figure 4A) (168, 180). In chronic
or refractory wound, persistent inflammatory condition leads to
excessive proliferation and differentiation, with the sacrifice of
subsequent loss of the stem cell reservoir (181–183) and the
balance is broken (Figure 4B). Supplementing sufficient EPSCs
for restoring balance is the effective method to accelerate the
wound healing (184–186). Our previous study found that
DETCs-derived IGF-1 promotes the proliferation of EPSCs
(187), while the IGF-1 secretion is regulated by Vg4-derived
IL-17A (130). So, we therefore hypothesize that the gd T cells
participate in regulating the differentiation and proliferation
balance of EPSCs in refractory wound, the potential
mechanism seems to be the continuous secretion of IL-17A by
Vdifleads sustained inflammation which promotes the excessive
differentiation, while suppresses the level of IGF-1 produced by
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DETCs beneficial for the proliferation of EPSCs (Figure 4C).
Further research needs to be conducted in this regard.

Collectively, the differentiation and proliferation balance of
EPSCs is crucial in wound healing, disordered immune
microenvironment constructed by lymphcytes will break this
balance in chronic and refractory wound. Given that the isolation
and ex vivo expansion of various gd T cell subsets is feasible
(188), upon the molecular and cellular interations between gd T
cells and EPSCs being elucidated, precisely supplementing or
clearing certain gd T cell subsets, cytokines or chemokines in
local will be an effective method to restore balanced
microenvironment, which is expected to improve the
effectiveness of clinical treatments for refractory wounds.
ROLE OF gd T CELLS IN OTHER
SKIN DISEASES

Fibrosis is essential for wound healing and tissue repair, which is
characterized by the accumulation of extracellular matrix (ECM)
components mainly produced by myofibroblasts. T lymphocytes,
macrophages and other inflammation cells cooperatively
regulate fibrotic process (189).

Studies have found gd T cells play critical roles in fibrosis and
fibrotic diseases of many tissues, including hepatic, lung, kidney
and heart. IL-17/IL-22 producing gd T cells can protect the liver
from excessive fibrosis via inducing HSCs (hepatic stellate cells)
apoptosis (190). Besides, IFNg-producing gd T cells also show
protective effect in liver fibrosis, these cells have direct
cytotoxicity against activated HSCs (191). For lung, Vg6Vd1 gd
T cells protect it from pulmonary fibrosis by secreting IL-22
(192). However, some researches demonstrate gd T cells
accumulation tends to promote fibrosis, IL-17-producing gd T
cells induces myofibroblast activation and ECM deposition in
kidney injury model and myocardial infarction model of mice
(193, 194). So, it is more likely that their function in regulating
fibrosis is tissue-specific.

Up to now, researches related to the gd T cells in skin fibrosis
is inadequate, Ohtsuka found the human skin fibroblasts
stimulated by gd T cells supernatant showed elevated
proliferation and collagen synthesis (195), another study
demonstrated the activated gd T cells in systemic sclerosis
(SSc) play an important role on fibrosis (196). In addition,
Meyer demonstrated epidermal gd T cells induces profibrotic
response of fibroblasts via mice in chronic inflammation, this
phenotype of mice lacking fibroblast growth factor bears
continuous inflammatory response (197). Recently, Shook
(198) found CD301b-expressing macrophages activated the
proliferation of wound bed adipocyte precursors (APs) through
IGF-1, these Aps become fibrotic after injury. DETCs secreted
sufficient IGF-1 upon skin injury, whether they can play
equivalent effect deserves further study.

For immune-mediated skin diseases, psoriasis, atopic
dermatitis (AD) and contact dermatitis (CD) are all chronic
and prevalent (15). The prevalence of psoriasis is about 2% to 3%
(199), gd17 T cells have been proved to be critical in imiquimod-
April 2022 | Volume 13 | Article 875076

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hu et al. gd T in Wound Healing
(IMQ) or IL-23-induced psoriasis of mice, both Vg6 and Vg4 are
clearly pathogenic in these models (131), memory-like dermal
Vg4 gd17 T cells accumulated in inflamed skin and peripheral
lymph nodes lead to faster and stronger responses upon
secondary challenge (82). STAT 3 and STAT 4 facilitate the
complete effector functions of gd17 T cells (200). PD-1 and
CD109 exert protective role in psoriasis (201, 202), while LAT1
and CD69 exert opposite function (203). In humans, patients
with psoriasis also display increased accumulation of gd T cells
(Vg9Vd2) in the skin, effective therapy can decrease the numbers,
indicating their role in the disease (204). AD is a T cell-mediated
chronic skin disease, affecting up to 20% of children worldwide,
its onset is associated with skin barrier dysfunction and immune
disorder (205), it is characterized by highly expanded dermal ab
T cells which produce IL-17 and IL-22 (206), patients suffered
from AD also present decreased proportion of gd T cells (207).
However, children with AD display higher frequency of Vg9Vd2
T cells (208). So the specific role and underlined mechanism of
gd T cells in AD is worthy to investigate. CD is the most frequent
immune-mediated skin disease, its prevalence is about 95%,
which is caused by chemical and allergens (209). The role of
DETCs in CD is controversial (15), IL-17 secreted by Vn CD is
Frontiers in Immunology | www.frontiersin.org 10
controversialsed by chemicalproinflammatory role (106),
however, their respective role in CD needs to be evaluated
in depth.
DISCUSSION AND CONCLUSION

gd T cells are important components of the skin immune system
and DETCs(Vg5), Vg4 and Vg6 T cells are their major subsets.
DETCs are particularly generated in the embryonic thymus and
implanted in the epidermis where they maintain a homeostatic
population by themselves. Vg4 T cells appearing in the late fetal
stage can be generated in the adult thymus, and they possess the
recirculating characteristic which can be refilled by newly
generated Vg4 cells from thymus and pLN. Vg6 T cells are
generated solely in the thymic second wave around embryonic
day E14 (up to the birth), and they mainly display tissue
residency, but retain circulating capability, whether they can be
refilled by circulating cells is uncertain. The development and
differentiation of gd T cells are regulated by both TCRgd-
dependent and TCRgd-independent factor. The combined
effect of various factors leads to the differentiation of gd T cells.
FIGURE 4 | gd T cells in chronic wound healing. (A) The robust activation of EPSCs and efficient recruitment of their progeny towards an epidermal lineage are
crucial in the re-establishment of an intact keratinocyte layer during wound healing. The balance of proliferation of pluripotent EPSCs (maintaining healing potent) and
their differentiation into terminally differentiated cells (wound healing) are pivotal; (B) In chronic or refractory wound, persistent inflammatory condition leads to
excessive proliferation and differentiation, with the sacrifice of subsequent loss of the stem cell reservoir. (C) In chronic or refractory wound, continuous secretion of
IL-17A by Vg4 leads sustained inflammation which promotes the excessive differentiation, while suppresses the level of IGF-1 produced by DETCs beneficial for the
proliferation of EPSCs, this inference is worthy to be tested.
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Their functional development is accomplished step by step as
follows: T cell commitment–ab/gd lineage commitment–gd
subset commitment–effector commitment.

Under homeostasis, gdT cells participate in maintaining skin
integrity with the help of paracrine and autocrine factors,
traffiking between tissues and lymph nodes of Vg4 and Vg6 T
cells at a slow rate in the steady state which plays an important
role in immune surveillance. Besides, these cells are
radioresistant, for mice receiving lethal irradiation, 100% of
DETCs (V0%+) remained of host origin, while 90% of Vg5-gd
T cells in dermal remained host-derived (104). Upon injury or
inflammation, antigens including MHC-like recognition
antigens, IG-like recognition of antigen, Phosphoantigen or B7
receptor family-like proteins are upregulated. The binding of
these antigens with the gdTCR and co-stimulatory receptors
helps in the complete activation of gdT cells. Initially, activated
gdT cells secrete chemokines to recruit the inflammatory cells,
including neutrophils and macrophages etc. Subsequently, they
secrete IGF-1, KGF-1/KGF-2, IL-17 to regulate inflammation
and re-epithelialization. Injury provide an opportunity for
microorganisms to enter into the wound tissues, including
microorganisms constituting the skin microbiota and residing
in the environment.

It is noteworthy to mention that the positive feedback loop of
DETCs-derived IGF-1 and keratinocytes-derived IL-15 leads to
the accumulation of IGF-1 in wound bed, on one hand, it
protects keratinocytes and epidermal gd T cells from apoptosis,
on the other hand, it exhibits a significant function in promoting
re-epithelialization, gd T cells in the epidermal of both mice and
humans show equivalent function. In the dermal, the wound-
derived IL-1b/IL-23 and Vg4-derived IL-17 feedback loop can
amplify the local inflammation. IL-17A participates in regulating
wound healing by either promoting pathway (like the IL-17A—
IL-1b/IL-23—IGF pathway) or impeding pathway (like the IL-
17A—b-defensin3/S100A8/Reg3g/AMP pathway). Different
doses affect each pathway to different degrees, both low and
excessive levels of IL-17A have a negative impact on skin wound
repair, while a moderate level of IL-17A is required for efficient
skin wound healing, suggesting that IL-17A plays a varied role in
wound healing. For chronic and refractory wounds, they provide
a lot of opportunities for microorganisms to enter into the
wound tissues (210), including commensal microbiota residing
in the skin and microorganisms existed in the environment,
pathogenic interaction of microorganisms with the skin cells will
Frontiers in Immunology | www.frontiersin.org 11
induce pathogenic immune response (177, 211). In this process,
abnormal accumulated gd T cells or their disordered function
contribute to unbalanced immune microenvironment, which
breaks the differentiation and proliferation balance of EPSCs,
restoring balanced microenvironment is expected to improve the
effectiveness of clinical treatments for refractory wounds. Further
research needs to be conducted in this regard.

In addition, gd T cells play critical roles in fibrosis and fibrotic
diseases of many tissues, their protective or deleterious function
in fibrosis is more likely tissue-specific. Up to now, researches
related to the gd T cells in skin fibrosis is inadequate,
investigating their role in keloids and hypertrophic scars
forming is valuable. For immune-mediated skin diseases, both
Vg6 and Vg4 are clearly pathogenic in imiquimod-induced
psoriasis, their function in atopic dermatitis and contact
dermatitis needs to be evaluated in depth.
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