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Abstract

Gram-negative pathogenic bacteria inject type III secreted effectors (T3SEs) into host

cells to sabotage their immune signaling networks. Because T3SEs constitute a meeting-

point of pathogen virulence and host defense, they are of keen interest to host–pathogen

interaction research community. To accelerate the identification and functional

understanding of T3SEs, we present BEAN 2.0 as an integrated web resource to predict,

analyse and store T3SEs. BEAN 2.0 includes three major components. First, it provides

an accurate T3SE predictor based on a hybrid approach. Using independent testing data,

we show that BEAN 2.0 achieves a sensitivity of 86.05% and a specificity of 100%.

Second, it integrates a set of online sequence analysis tools. Users can further perform

functional analysis of putative T3SEs in a seamless way, such as subcellular location

prediction, functional domain scan and disorder region annotation. Third, it compiles a

database covering 1215 experimentally verified T3SEs and constructs two T3SE-related

networks that can be used to explore the relationships among T3SEs. Taken together, by

presenting a one-stop T3SE bioinformatics resource, we hope BEAN 2.0 can promote

comprehensive understanding of the function and evolution of T3SEs.

Database URL: http://systbio.cau.edu.cn/bean/

Introduction

T3SEs are proteins secreted by Gram-negative pathogenic

bacteria to interfere with host immune signaling networks

(1, 2). They are secreted into host cells through type-III se-

cretion systems (T3SSs) (1), which are encoded by animal

and plant pathogenic bacteria, such as Salmonella typhi,

Escherichia coli O157:H7, Yersina enterocolitica,

Pseudomonas syringae pv tomato DC3000 and Ralstonia

solanacearum. By blocking the immune signaling pathways
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at specific subcellular locations, these cytotoxic proteins

are thought to assist pathogenic bacteria in evading the

attacks from immune systems (3, 4). T3SEs have evolved

diverse functional domains (5) to mimic the functions of

host cell proteins or covalently modify them (2, 4).

However, the biochemical mechanism used by T3SEs can

be very different from their counterparts in host cells. For

example, Shigella T3SE OspF can irreversibly remove

phosphate group from phosphothreonine residue in

mitogen-activated protein kinases Erk1/2 or p38 by

converting threonine into dehydrobutyrine (6). This

strategy has not been found in enzymes from eukaryotic

cells. Moreover, the evolution of T3SEs seems also

unusual. A previous study (7) showed that pathogenic

bacteria can generate new T3SEs through terminal

reassortment of existing T3SE sequences, implying

complex evolutionary relationships among T3SEs.

Recently, it has been realized that protein intrinsic disorder

regions, flexible segments without fixed 3D structure, are

evolutionary hallmarks of T3SEs (8).

The unique functions of T3SEs make them not only the

powerful weapons of pathogens but also useful probes for

researchers to investigate mechanisms of host immunity.

Systematical characterization of the repertoires of T3SEs in

pathogenic bacteria is helpful to identify the main virulence

strategy commonly adopted by different pathogenic

bacteria as well as the evolutionary relationships among

different T3SEs (9–11). With the rapid development of

high-throughput sequencing technologies, more and more

genomes of pathogenic bacteria have been fully sequenced

(11). There is an unprecedented requirement for

bioinformatics tools/resources that can accurately identify

and conveniently analyze T3SEs from these genomic data.

To this end, a few state-of-the-art bioinformatics methods

have been developed to predict T3SEs (12–19).

Meanwhile, there also exist several excellent T3SE

databases (e.g. T3SEdb (20), Effective (21) and T3DB

(22)), although they are mainly designed to store/predict

T3SE sequences and provide limited analysis tools to

further annotate T3SEs. Moreover, the relationships

among different T3SEs are hardly explored by them. With

the accumulation of more T3SE data, we anticipate the

development of more comprehensive T3SE web resources

is still highly required.

We previously developed a machine-learning predictor

BEAN (Bacterial Effector ANalyzer) to identify T3SEs

from pathogen genomes. In this predictor, the compos-

itions of evolutionarily conserved amino acid (AA) pairs

(23) were used to represent N-terminal secretion signals in

T3SEs (17). Since BEAN was released in 2013, its web

server has predicted >35 000 protein sequences submitted

by users from �30 countries. Despite BEAN having shown

good performance, there is still room for improvement.

Indeed, some useful information was overlooked in the

original version of BEAN. First, traditional sequence

alignment-based search usually gives a reliable prediction

if the query protein is very similar to a known T3SE.

Second, the unique functional domains harboring

on T3SEs can also be useful to discriminate T3SEs and

non-T3SEs. Third, although the type III secretion signal

(1) is believed to reside within the N-terminal of T3SEs

in most cases, C-terminal is also required for the secretion

of some T3SEs. For example, the C-terminal region

(residues from 321 to 409) of Salmonella T3SE SipC is

essential for its translocation into HeLa cells (24). The

six residues (519–524) of C-terminal is required for

efficient secretion of T3SE Tir in E. coli (EHEC O157:H7)

(25). Other cases include Salmonella T3SEs SifA (26)

and SipB (27).

Here, we developed BEAN 2.0 as an integrative web

resource of T3SEs (Figure 1). In addition to integrating the

above information to improve the accuracy of T3SE

prediction, BEAN 2.0 also provided multiple functional

analysis tools to assist users in annotating putative T3SEs

conveniently. Moreover, BEAN 2.0 compiled 1215 verified

T3SEs from 221 pathogenic bacteria into a database and it

also provided two networks that can be interactively

visualized to explore the relationships among different

T3SEs. Through providing a one-stop bioinformatics

service, we hope BEAN 2.0 can accelerate the

identification and analysis of new T3SEs.

Materials and Methods

Data collection

We collected 1202 T3SEs from the Uniprot database

(version of 2014.01). CD-hit (http://weizhong-lab.ucsd.

edu/cd-hit/) with the sequence identity cutoff of 40% was

used to remove similar sequences. As a result, 249 T3SEs

were retained. Among them, six T3SEs have sequence

lengths <100, which were further skipped. To obtain a

1:2 ratio of positive to negative samples, 486 negative

samples were randomly selected from the non-T3SE data-

set used in our previous work (17), which was compiled

from eight well-studied Gram-negative bacterial prote-

omes by several criteria. The pairwise sequence identity

among negative samples was also controlled as �40%

using CD-hit. Finally, we obtained 243 T3SEs and 486

non-T3SEs, which constitute the major benchmark data-

set in this work. The partition of the benchmark dataset

across 5-fold cross-validation test, the independent test

and the genome-wide test, will be detailed in the follow-

ing sections.
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Overall workflow of T3SE prediction in BEAN 2.0

Using a similar strategy as described by Kumar et al. (28)

in mitochondrial protein prediction, BEAN 2.0 consists of

three components: sequence alignment-based predictor,

domain-based predictor and machine-learning predictor.

The compiled non-redundant benchmark dataset is used to

derive this system.

A query protein sequence will firstly be processed by the

sequence alignment-based predictor. It tries to search for

the most similar sequence of the query one in the training

data using BLAST. If a highly similar sequence is found,

the corresponding label (T3SE or non-T3SE) will be

assigned to the query protein. If no similar sequence is

detected with threshold E-value �0.01, the query protein

will be switched to the domain-based predictor. The

domain-based predictor scans the query protein sequence

(E-value �1e-5) and compares its Pfam domains with the

domains compiled from the training dataset. First, we

collected the Pfam domains of the training dataset. Then

we divided the domains into three types: (i) exclusively

T3SE domains only observed in T3SEs; (ii) exclusively

non-T3SE domains only observed in non-T3SEs and (iii)

shared domains observed in both of T3SE and non-T3SE.

If the query protein harbors T3SE-exclusive domains (non-

T3SE-exclusive domains), it will be predicted as a T3SE

(non-T3SE); otherwise, it will be further processed by the

machine-learning predictor. The parameters used in

BLAST and Pfam scan were preliminarily optimized

according to the suggestions in Kumar et al.’s work (28).

In the machine-learning predictor, the homologs of the

query protein are searched firstly through HHblits (29) for con-

structing a sequence profile. Then, the resulting profile will be

divided into three parts: N-terminal 2–51 AAs, 52–121 AAs

and C-terminal 50 AAs. Since the first N-terminal AA is

methionine in most bacterial protein sequences, it is

ignored in this step. A 1600-dimension feature vector is

extracted using the profile-based k-spaced amino acid pair

composition (HH-CKSAAP) (17) to represent each of the

three parts. The only exception is when the length of the mid-

dle part is <70 AAs, a 1600-dimension zero vector is used to

encode this part. Then, the 4800-dimension feature vector is

input into a linear Support Vector Machine model to predict

the label of the query protein. The linear SVM model was

also learned from the training dataset and the corresponding

SVM parameters were the same as our previous work (17).

Evaluation the performance of BEAN 2.0

To assess the performance improvement of the hybrid strat-

egy, we conducted a 5-fold cross-validation test on five

models, including BEAN, BEAN*, BEAN*þBLAST,

BEAN*þPfam and BEAN 2.0. Note that BEAN stands for

Figure 1. Overview of the resources in BEAN 2.0.
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the original BEAN method, BEAN* represents the model

trained by 4800-dimension vectors, BEAN*þBLAST means

the combination of BEAN* and sequence alignment-based

predictor, and BEAN*þPfam indicates the combination of

BEAN* and domain-based predictor. We randomly divided

the benchmark dataset into a training dataset containing

200 T3SEs and 400 non-T3SEs and an independent test set

containing 43 T3SEs and 86 non-T3SEs. The 5-fold cross-

validation test on the training dataset was carried out. We

further compared BEAN 2.0 with four existing T3SE pre-

dictors through the independent test. We trained a BEAN

2.0 model based on the whole training dataset and used it to

predict the independent dataset. The standalone programs

of EffectiveT3 (13), BPBAac (16) and T3_MM (18) were

downloaded from their websites to predict the independent

test dataset. Since the standalone version of ANN (14) is not

available, we used the web server directly to do the

prediction.

We collected the T3SEs on two independent genome

datasets from a plant pathogen Pseudomonas syringae pv.

phaseolicola 1448a (P. syringae) (29) and an animal

pathogen E. coli O157:H7 (E. coli) (30). We chose these

two pathogens because most of T3SEs in their genomes

have been systematically screened. To ensure fair

comparison, we removed the T3SEs of the query species

from our training set. We collected 23 and 48 known

T3SEs in 5045 proteins of P. syringae and 5255 proteins of

E. coli. After removing the protein sequences containing <

100 residues, we obtained 22 and 45 known T3SEs in

4626 proteins of P. syringae and 4475 proteins of E. coli.

The four existing T3SE predictors were also used to screen

T3SEs from these two genomes.

Performance assessment parameters

In the 5-fold cross-validation test or the independent

test, we used five parameters [sensitivity, specificity,

accuracy, F1-score and Matthew correlation coefficient] to

evaluate the performance. These parameters are defined as:

specificity¼ TN

TNþ FP

sensitivity ¼ TP

TPþ FN

accuracy ¼ TPþ TN

TPþ FPþ TNþ FN

F1� score ¼ 2� TP

2� TPþ FPþ FN

MCC ¼ TP� TN� FN� FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTNþ FPÞ � ðTPþ FPÞ � ðTNþ FNÞ

p

where TP, FP, TN and FN stand for the number of true

positives, false positives, true negatives and false negatives.

With respect to genome-wide tests, we mainly used the

median of the known T3SEs’ ranks to compare different

predictors. We also listed the ranks of known T3SEs in the

whole genomes of these two species. For BEAN 2.0, we

prioritized all positive prediction results in the whole

genome as: sequence alignment-based prediction>

domain-based prediction> machine-learning prediction.

The prediction results from the same method were further

sorted according to E-values (sequence alignment-based

prediction, and domain-based prediction) or prediction

scores (machine-learning prediction). For the other four

existing predictors, their output scores were used to rank

prediction results.

Construction of BEAN 2.0 web server

The core algorithm was developed by PERL program and

the construction of web server was based on LAMP

(LinuxþApacheþMySQLþPHP), an open-source software

frequently used to build high-availability websites. The

prediction model used in the website was trained with the

whole benchmark dataset (i.e. all 243 T3SEs and 486 non-

T3SEs). The 1202 T3SEs originally collected for

constructing the BEAN 2.0 model and the other 13 T3SEs

newly collected during the development of the web server

were included in our T3SE database.

Results and Discussion

Accurate prediction of T3SEs using BEAN 2.0

To test the usefulness of the hybrid approach

(Supplementary Figure S1), we compared the performance

of our original BEAN and the prediction models integrating

with sequence alignment, domain information or the se-

quence composition beyond N-terminal. We found these

three types of information can stably improve the sensitivity

of prediction. Further test showed that the performance im-

provement of the hybrid approach should not be attributed

to the similarity of N-terminal sequences in our training

data (Supplementary Table S1).Through the 5-fold cross-

validation test on the training dataset, BEAN 2.0 achieved a

sensitivity of 92.00% and a specificity of 97.00% in com-

parison to the 80.00% and 96.75% of our original BEAN

model (Supplementary Figures S2 and S3). We also demon-

strated there is no significant overfitting caused by the high

feature dimensionality in BEAN 2.0 (Supplementary Figure

S4 and Table S2). Although many existing predictors only

use the N-terminal signal sequence, our results indicate that

from the practical point of view the other sequence regions

can also facilitate the identification of T3SEs.
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The performance of BEAN 2.0 was compared with five

existing methods through the independent dataset

(Figure 2). As shown in Figure 2, BEAN 2.0 achieved the

best accuracy value of 95.35%, which is 13.18%, 7.75%,

10.85%, 12.40% and 3.88% higher than EffectiveT3

(13), BPBAac (16), ANN (14), T3_MM (18) and

BEAN. The good performance of BEAN 2.0 was also

confirmed in other five different independent dataset

selection scenarios (Supplementary Table S3). Generally,

BEAN 2.0 reveals a very stable improvement in specificity

and sensitivity.

Moreover, we tested these methods on two independent

genome datasets from a plant pathogen P. syringae and an

animal pathogen E. coli. For 22 and 45 known T3SEs in

4626 proteins of P. syringae and 4475 proteins of E. coli

(>100 AAs), BEAN 2.0 successfully predicted 21 and 33 of

them in the top 50 ranked candidates according to their

scores. The median of known T3SEs’ ranks in BEAN 2.0

results is 18.5 and 35 for P. syringae and E. coli, respect-

ively. Regarding the other methods, T3_MM gave the se-

cond best result with a median rank of 37.5 in P. syringae,

and BEAN gave the second best result with a median rank

of 132 in E. coli. The obvious advantages shown in the

genome-wide T3SE predictions indicate that BEAN 2.0 has

a practical applicability in T3SE screening (Detailed

comparison results are provided in Supplementary Tables

S4–S6).

The major performance improvement of BEAN2.0, es-

pecially for the increased sensitivity, can be ascribed to the

following two aspects. First, BEAN2.0 takes the sequence

composition of the middle and C-terminal into account

with the purpose of incorporating more possible type-III

secretion-related information, such as chaperone-binding

sites and potential C-terminal secretion signal. The infor-

mation may increase the chance of detecting more T3SEs.

Second, although the overall performance of BEAN is bet-

ter than BLAST or Pfam, it has also some drawbacks.

BEAN tries to model the sequence composition of all the

training data and learns the most stable characteristics that

can be used to distinguish T3SEs and non-T3SEs. This pro-

cess strengthens the common distinctive characteristics,

but it also weakens the ones that can only be observed in a

handful T3SEs. As sequence alignment-based methods, on

the contrary, BLAST and Pfam can sensitively detect some

unique sequence patterns shared by a few T3SE proteins.

Due to the methodological complementary between BEAN

and BLAST/Pfam, the integration of them can result in a

substantial performance improvement.

An integrative T3SE web resource

An integrative analysis platform is valuable to further investi-

gate potential functions of bacterial secretion proteins (31).

Therefore, in addition to T3SE prediction, BEAN 2.0 also

Figure 2. The performance of different T3SE predictors on the independent dataset.
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provides other three types bioinformatics resources to facili-

tate T3SE function research, including a sequence annotation

suite, a curated T3SE database and two functional relation-

ship networks constructed from the known T3SEs.

BEAN 2.0 uses sequences in FASTA format to predict

T3SE candidates. Users can submit 200 sequences in one

job at most. The job name is required and the email ad-

dress is a voluntary choice. If the email address is provided,

BEAN 2.0 will send an email containing the URL of the

prediction result when the job is finished. Generally, it

takes �3 min to conduct T3SE prediction for a query se-

quence. For genome-wide T3SE prediction, a command-

line version can be downloaded and deployed on users’

local machine and run in the multi-threading mode.

The prediction results can be directly transferred to se-

quence annotation suite for subcellular location prediction,

domain annotation or long disorder region detection. The de-

fault subcellular location predictor is the widely used TargetP

(32). But considering only three different location informa-

tion (mitochondrion, chloroplast and secretion proteins) can

be given in TargetP, we also provide an alternative choice

using Cell-PLoc package (33) whose prediction covers up to

22 subcellular locations. For domain annotation and protein

disorder region analysis, Pfam (34) and IUPred (35) were

used. The users are also allowed to submit new sequences in

FASTA format through ‘Analysis’ button. Sequence annota-

tion results will be shown in interactive figures and tables. All

of the results are allowed for downloading. Registered users

can keep their query sequences confidential and manage their

jobs. Although we encourage users to register with BEAN

2.0, the web server also allows anonymous use.

T3SE databases and T3SE-related networks

Our database includes 1215 curated T3SEs from 221

pathogenic bacteria (Figure 3A and B), displaying T3SE

name, source organism, sequence length, experimental sta-

tus, Pfam domain and subcellular locations in host. Users

can search them through an interactive Javascript table. To

facilitate the database update, we also encourage users to

contribute newly discovered T3SEs to our database

through ‘Contribution’ dialog box.

In addition, BEAN 2.0 provides the T3SE-specific do-

main information extracted from known T3SE. The infor-

mation is shown in a form, including the exclusively T3SE

Pfam domains and its possible function.

Inspired by a previous study that used protein homology

networks to visualize the evolution of T3SSs (36), we

Figure 3. The composition of T3SE database in BEAN 2.0. (A) The proportion of T3SEs from animal and plant bacteria. (B) The functional categories

of T3SE domains. (C) The T3SE network (i.e. Effector-Net). Two T3SEs are connected if they share a common Pfam domain. T3SEs from plant bacteria

are colored as green, while T3SEs from animal bacteria are colored as purple. (D) T3SEs from both plant and animal bacteria are connected through

YopJ domain (Pfam ID: PF03421).
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constructed two interactive networks (Effector-Net and

Domain-Net) to visualize the relationships among T3SEs

and T3SE domains, respectively (Figure 3C and

Supplementary Figures S5 and S6). In Effector-Net, each

T3SE is represented as a node and two T3SEs are con-

nected if they share a common domain. The nodes marked

in green (purple) represent that they are secreted by plant

pathogens (animal pathogens). The current Effector-Net

covers 261 non-redundant T3SEs and 832 edges. These

261 T3SEs consist of 52 connected subnetworks. In

Domain-Net, each Pfam domain harboring on known

T3SEs is represented as a node and two domains are con-

nected if they concurrence on a T3SE. The current Domain-

Net included 74 different Pfam domains and 59 edges among

them. Most domains do not connect with any other, indicat-

ing that they are exclusively observed in only one non-redun-

dant T3SE. The most highly connected node in Domain-Net

corresponds to a putative Pfam-B domain (Pfam ID:

PB005666), which connects with six domains including

TTSSLRR, NEL, Lipase_GDSL, Sif, Tox_PLDMTX and

Pfam-B domain PB006720. With the accumulation of known

T3SE data, we speculate these networks will be more com-

plete. By combining with network analysis tools, they can be-

come useful tools for analyzing the functional and

evolutionary relationship among T3SEs. For example, even

though most domains are specific to animal or plant patho-

gen T3SEs, there are also some domains such as YopJ domain

(Pfam ID: PF03421), which has a serine/threonine acetyl-

transferase activity and can block host immune signaling by

inhibiting kinase phosphorylation (37), shared by both plant

pathogen and animal pathogen T3SEs (Figure 3D). This ob-

servation suggests that acetylation of host kinase is a preva-

lent strategy used by pathogens.

Conclusions

Here, we present BEAN 2.0 as an accurate, practical and

convenient bioinformatics platform for T3SE research

(Supplementary Figure S7). First, BEAN 2.0 provides a

highly accurate predictor. While machine-learning T3SE

predictors have been developed in the past several years,

we show traditional sequence alignment and domain ana-

lysis can substantially improve prediction accuracy if they

are integrated with machine-learning predictors in a ra-

tional way. Second, BEAN 2.0 integrates with other bio-

informatics tools providing a comprehensive analysis

platform to timely annotate T3SEs in the three most im-

portant aspects: subcellular locations in host cell, disorder

regions and functional domains. Finally, BEAN 2.0 stores

1215 verified T3SEs and allows users to explore their rela-

tionships through two interactive T3SE-related networks.

With the rapid progress of genome sequencing, the

validated T3SEs are accumulating at unprecedented rates.

There is a higher requirement for systematically summariz-

ing these T3SEs and extracting new knowledge about the

evolution of T3SEs. The data resources deposited in BEAN

2.0 represent our first step in the direction.
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