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Abstract
Objective: Aiming to improve the feasibility and reliability of using high-
frequency oscillations (HFOs) for translational studies of epilepsy, we present 
a pipeline with features specifically designed to reject false positives for HFOs to 
improve the automatic HFO detector.
Methods: We presented an integrated, multi-layered procedure capable of au-
tomatically rejecting HFOs from a variety of common false positives, such as 
motion, background signals, and sharp transients. This method utilizes a time-
frequency contour approach that embeds three different layers including peak 
constraints, power thresholds, and morphological identification to discard false 
positives. Four experts were involved in rating detected HFO events that were 
randomly selected from different posttraumatic epilepsy (PTE) animals for a 
comprehensive evaluation.
Results: The algorithm was run on 768-h recordings of intracranial electrodes 
in 48 PTE animals. A total of 453 917 HFOs were identified by initial HFO de-
tection, of which 450 917 were implemented for HFO refinement and 203 531 
events were retained. Random sampling was used to evaluate the performance 
of the detector. The HFO detection yielded an overall accuracy of 0.95 ± 0.03, 
with precision, recall, and F1 scores of 0.92 ± 0.05, 0.99 ± 0.01, and 0.94 ± 0.03, 
respectively. For the HFO classification, our algorithm obtained an accuracy of 
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1  |   INTRODUCTION

High-frequency oscillation (HFO), classified as ripples 
(80-240 Hz) and fast ripples (240-500 Hz), is regarded as a 
promising biomarker of epilepsy.1–4 Such biomarkers can 
help localize the epileptogenic zone, the brain region that 
is indispensable for generating seizures in patients with 
drug-resistant epilepsy (DRE).5–10 Yet, the clinical util-
ity of HFOs in the presurgical evaluation of patients with 
DRE is limited. Currently, clinicians perform the detec-
tion of HFO through visual inspection, a process that is 
challenging and time-consuming since artifacts and envi-
ronmental noise often mimic HFOs. A reliable, automated 
computational method is preferred to discard these arti-
facts and extract the true HFOs.

Conventional HFO detection methods implement 
bandpass filters for local field potentials (LFPs) followed 
by multiple thresholding in terms of amplitude and 
power to identify HFOs.11–16 The short-time-energy (STE) 
method proposed by our group17 is one of these meth-
ods, whose main advantages are the low computational 
cost and the short processing time. This method does not 
require a prior information of HFO labels and has been 
shown to be effective for detecting HFOs in animals and 
patients with epilepsy.17–19 However, bandpass filtering 
and the use of amplitude thresholds do not separate true 
HFOs from sharp transients,20 sharp-contoured epilepti-
form spikes,21 and other physiological events. Therefore, 
STE methods still require expert review and manual flag-
ging of true positives from a database, rendering the de-
tection pipeline labor-intensive and not fully automated.

Similar methodological approaches based on filtered 
signals have been proposed aiming to improve the HFO 
detection.21–23 Several research groups have suggested that 
an isolated “island” in the time-frequency plot is the bio-
signature that characterize a true HFO.20,23,24 Yet, nontrue 
HFO events may also present a similar distinct biosigna-
ture,25 making it more challenging to exclude false HFOs 

by using this approach. Moreover, fast brain activities, 
such as the physiological sharp spikes, and transient mo-
tion artifacts also show the “blob-like” feature in the time-
frequency analysis plot.26 Thus, there is an urgent need to 
develop new methodological approaches that discard false 
HFO positives (HFO FPs) in order to improve the reliabil-
ity of the HFO detectors.

To address the above challenges, we proposed here a 
novel HFO fully automated method that combines the 
extraction of HFOs spectral feature with the analysis of 
events morphology.26–29 This method categorized three 
common HFO FPs, including sharp transients, sharply 
contoured epileptiform spikes, and background signals. 
Our main hypothesis is that the rejection of these three 
types of HFO FPs can significantly improve the robust-
ness of the intracranial HFO detection. Here, we ana-
lyzed a dataset of posttraumatic epileptic animals with 
long-term sustained intracranial electrophysiological 
recordings to test the above hypothesis. This algorithm 
was developed as a separate module to reversely reject the 
events after the HFO detection. The module-based design 
provides more step-by-step performance information 
than the integrated pipeline. A comprehensive evaluation 
was designed to evaluate each step of HFO rejection. The 
assessment of the validity and reliability of this new ap-
proach was reported.

0.97 ± 0.02. For the inter-rater reliability of algorithm evaluation, the agreement 
among four experts was 0.94 ± 0.03 for HFO detection and 0.85 ± 0.04 for HFO 
classification.
Significance: Our approach shows that a segregated pipeline design with a focus 
on false-positive rejection can improve the detection efficiency and provide reli-
able results. This pipeline does not require customization and uses fixed param-
eters, making it highly feasible and translatable for basic and clinical applications 
of epilepsy.
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Key Points

•	 A novel algorithm was introduced to reject 
false positives after initial HFO detection.

•	 A high level of accuracy and reliability was 
achieved in the comprehensive evaluation of 
multiple datasets.

•	 Translatable and adaptable to other HFO detec-
tion algorithms.
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2  |   METHOD

2.1  |  Experimental setups

The data pool consisted of 48 male Sprague-Dawley rats 
(300-350 g) that were treated with lateral fluid percussion 
injury (FPI) in a posttraumatic epilepsy model from our 
early studies.19,30–32 The data pool consisted of LFPs re-
corded at depth electrodes with sampling frequencies of 
3000-10 000 Hz. Specifically, 16 electrodes were implanted 
in the following areas: prefrontal cortex, thalamus, trau-
matic brain injury (TBI) areas, and hippocampal. The re-
cordings were selected from the interictal period with a 
length of 3 h. A total of 768 h of LFPs during the epilep-
togenesis were analyzed in this study. Details of the exper-
imental setup and data acquisition have been presented in 
our previous publications.18,32

2.2  |  Data preprocessing

Prior to the HFO analysis, raw data were first down-sampled 
to 3KHz and then manually selected for the interictal pe-
riod. During the data selection, recordings contaminated by 
long-lasting (>5 s) noise, poor connections, or large shocks 
were removed. Instead of using all 16 channels of data, we 
manually identified high-quality 8 channels for data analy-
sis because our electrodes were designed as dual channels at 
each location. The main remaining disturbances of the sig-
nal were background noise and sharp transients that were 
difficult to be removed by visual inspection. Therefore, the 
core algorithm was built aiming to distinguish these two 
types of events from true HFOs. Specifically, eight brain 
regions were selected for our study, including bilateral pre-
frontal cortex (LFC, RFC), striatum (LST, RST), perilesional 
areas (LTBI, RTBI), and hippocampus (LHP, RHP).19,30–32

2.3  |  HFO initial detection

Before we run the algorithm, a HFO initial detection was 
performed based on the two purposes. The first is to pro-
vide the small portion of dataset for feature selection, and 
the second is to include as many potential HFOs as possi-
ble for refinement. In this step, STE method17 was imple-
mented to find all HFO candidates and retrieve a 2-s HFO 
epoch (with HFO peak at the center) for further analysis.

2.4  |  Algorithm Framework

The complete pipeline consists of three major mod-
ules, including: (1) feature selection module, (2) HFO 

detection module, and (3) HFO classification module 
(Figure 1).

2.4.1  |  Module 1: Feature selection

To explore key features that lead to different types of 
events, two experts were invited to review the data-
base generated by the HFO initial detection. Experts 
manually selected 1000 true HFO events, 1000 all ex-
cept sharp transients and true HFOs (AESH), and 1000 
sharp transients (ST). Only events that were agreed by 
both reviewers were used for feature selection. The la-
beled datasets were excluded from the further HFO 
refinement process. The HFO refinement process was 
performed based on the remaining unlabeled datasets 
(n = 450 917) (Figure 1).

The reviewers scored the events by examining the local 
field potential (LFP). Specifically, the reviewers screened 
the LFP raw signal, filtered signal, and the time-frequency 
plot and created the descriptive characteristics of HFOs 
from them. Guided by reviewers' criterions, we analyzed 
the labeled data generated two feature sets and they were 
defined as follows: (1) set A included the normalized av-
erage power and power ratio, and (2) set B included peak 
ratio and the start/end time of the peak. The interpretation 
of constructing two sets was that the reviewers found set 
A to be effective in distinguishing sharp transients from 
the data pool (Figure 2A), and meanwhile set B worked 
in differentiating HFOs from AESH (Figure  2B). Based 
on the analysis of these two numerical distributions, the 
thresholds used to establish the HFO refinement were set, 
and they are as follows: normalized average power: 0.2; 
power ratio: 0.7; peak ratio: 0.6; start time: less than 0; end 
time: greater than 0.

2.4.2  |  Module 2: HFO refinement

To discard HFO FPs from the original database, a multi-
threshold layer was created based on the two feature sets 
generated by feature selection module. There are three 
layers in this section, and the detailed design is described 
below.

(1) Peak constraint layer
Based on the LFP of labeled dataset, we found that the 
HFOs always represent rapid oscillations around the 
center, which contrasts with the AESH. Consequently, 
it is plausible to assume that the difference in shape be-
tween the true HFOs and AESH will be reflected and 
enhanced after implementing the 80-520 Hz bandpass 
filter on the LFPs. Then, it is also feasible to separate 
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the HFOs from the background noise by quantifying the 
burst of peaks on filtered data. Thus, we calculated the 
ratio between the peaks in the center 0.1  s range and 
the total number of peaks for that event. The ratio is de-
noted as Pd and peaks are defined as follows: if points 
are above or below the mean ± 2 times of standard devia-
tion of the baseline, they will be considered as peaks. We 
set the ratio to 0.6 by looking at the 3D distribution on 
labeled dataset (Figure 2B).

(2) Power thresholding layer
It is worth noting that sharp transients also reflect a 
burst of peaks, inevitably making it hard to differentiat-
ing them from true HFOs. Therefore, adding a layer that 
can distinguish sharp transients is necessary. During the 
feature selection process, the reviewers found that the 
time-frequency maps obtained by Gabor wavelets clearly 
showed differences. Hotspots of ST reflected a thin and 
long candle-shaped contour, while HFOs typically repre-
sent more of a squeezed or orb shape around the center, 
with AESH not indicating any obvious hotspot. Here, we 
introduced a similar approach to quantify the predominant 

characteristic of sharp transients.33 The first property in-
troduced was the average power Z , and the power of the kth 
time window is denoting as: Zk = 1

TF

∑

l

∑tk+1−1

m=tk
Zlm, it was set 

to 
1

TF

∑

l

∑

m
Zlm, which was identical to our previous study.33 

The other was the power ratio HPR, and the ratio of the kth 
window is as follows: HPRk = 1

TF
1T

�

∑tk+1−1

m=tk
Zlm ≥ Zk

�

, which 
was set to 0.7 following the value of previous study.33 
Specifically, the terms T, F, and tk refer to the length of 
the time vector, frequency vector, and start point of the 
kth time window, respectively. Z represents the time-
frequency matrix of an epoch, and 1 is the vector whose 
all entries are 1. Moreover, the length of the time window 
was set to 100 ms, and the stride was set to ensure the 90% 
overlap of two consecutive windows.

(3) Contour morphology layer
The feature Pd demonstrates its effectiveness in separating 
HFOs from background signals. The HFO usually reflects 
the blob shape around the center, while the AESH show no 
sign of energy concentration. The location of hotspot can be 
considered as another key factor to distinguish these two. 
The hotspot was quantified by the contour method,26–29 and 

F I G U R E  1   Schematic diagram of the HFO detection pipeline. In the HFO refinement module, the completeness and alignment 
subsystems are introduced from the previous study. All remaining are the re-combination of features from the feature selection module.
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the contour analysis can be generalized into three aspects. 
The first aspect is the completeness of the contour. In this 
study, only closed-loop contours (CLCs) are included for 
further analysis. Specifically, contours with identical start-
ing and ending points are defined as CLCs, while open-
loop contours (OLCs) refer to the ones that have different 
starting and ending points. The second aspect is the align-
ment. The purpose is to discard epochs that do not follow 
certain rules, and they are defined as follows. (i)  Discard 
the low power-level CLCs by setting the threshold to 
0.6 × (maxZ −minZ) +minZ to make a trade-off between 
too many false positives and too few true HFOs. (ii) Discard 
those groups with the highest energy CLC located in the 
inner circle. (iii) Discard the groups containing less than 3 
CLCs. After the three-step threshold processing, the outer-
most CLC in each group is defined as the boundary of the 
group (BOG) and the CLC with the highest power level is 
defined as the peak of the group (POG). The third aspect 
is the on/offset of the hotspot, and the purpose is to ensure 
the events reflect a blob shape on the time-frequency map. 
The details are described as follows: (i) Find the highest 
power-level POG among all candidates and its BOG. These 
two parameters are denoted as the peak of epoch (POE) and 
boundary of epoch (BOE), respectively. (ii) Denote the left 

and right edge of the POE as the starting and ending points 
of the events. Set the starting points boundary <0 and set the 
ending points boundary >0 (Figure 2). All other parameters 
in this section follow the settings in the previous study.33

Module 3: HFO classification

All unlabeled data were processed according to the pipeline 
to form a refined dataset. The POE of each individual HFO 
was implemented to compute the corresponding weighted 
frequency F, which is defined as: Fij = fD

TZD , where D de-
notes all complete grid cells covered by the POE. The terms 
fD and ZD represent the frequency value and power level of 
a specific grid cell retrieved from the time-frequency ma-
trix. If F is above 240 Hz, then this epoch is classified as a 
fast ripple. Otherwise, it is classified as ripple.

2.5  |  Comprehensive evaluation of the 
HFO detection algorithm

At present, there is little consensus on how HFO detec-
tion algorithms should be comprehensively evaluated.34 

F I G U R E  2   HFO selection process. A, 2D distribution of three types of events based on power ratio HPRk and normalized power Zk, 
with red, blue, and yellow dots representing HFOs, AESH, and sharp transients (ST), respectively. B, The statistical analysis of feature 
set one with respect to HFOs, AESH, and STs. C, 3D distribution of HFO and AESH regards to peak ratio, start/end time of POE. The red 
dots refer to HFOs, while blue dots represent AESH. D. The statistical analysis of feature set two with respect to HFOs and AESH. E. The 
demonstrative events of the ST (top), HFO (middle), and AESH (bottom).
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One of the problems is the difficulty of assembling a team 
of experts in HFO identification. Previous studies have 
found both disagreement35 and relatively good agree-
ment36 among raters on HFO detection. HFO events are 
most often observed in the hippocampal CA1 region and 
the entorhinal cortex.37 However, it is more difficult to 
confidently label HFO events in other brain regions and 
when the recording microelectrodes are away from the 
soma.38–41 In addition, scoring a large sample of events 
is very laborious. To assess the accuracy and reliability of 
the algorithm, we implemented a rating protocol involv-
ing four experts, either clinical epileptologists or neurol-
ogy researchers. Given the very long recordings (nearly 
thousands of hours in total), visual inspection of all HFOs 
was impractical, so a random sampling was introduced for 
evaluation. Specifically, epochs were randomly selected 
among several subjects to create test sets to comprehen-
sively evaluate the HFO detection accuracy and ripple/
fast ripple distinguishability. We constructed four differ-
ent event subgroups in the evaluation dataset, including 
1000 detected HFOs, 1000 rejected HFOs, 500 ripples, 
and 500 fast ripples. Specifically, the 1000 detected HFOs 
used to evaluate HFO detection were separated from the 
500 ripples/fast ripples used to evaluate HFO classifica-
tion. All individual events were independently labeled by 
four experts. No platform/software was given to the re-
viewer, instead we provided the unfiltered LFPs and their 
corresponding time-frequency plots (see Supplementary 
Figure S1) for evaluation.

2.6  |  Statistics

2.6.1  |  Assessing the effectiveness of HFO 
detection and classification

To evaluate the performance of HFO detection, the 
task of the raters was to label: (1) true HFOs from 1000 
detector-dropped HFO events, and (2) false HFOs from 
1000 algorithm-identified HFO events. In the first experi-
ment, the expert labeled HFO events were referred to as 
false negatives (FNs) and the remaining unlabeled events 
were referred to as true negatives (TNs). In the second ex-
periment, expert labeled AEH (all events except HFOs) 
were considered as false positives (FPs) and the remain-
ing unlabeled events were denoted as true positives (TPs). 
The results of evaluation from raters formed a 2-by-2 
confusion matrix that further quantified accuracy (Acc), 
precision (P ), recall (R), and F1 score (F1) according to 
the following equations. (i) Acc = TP+TN

N
; (ii) P =

TP

TP+FP
 ; 

(iii) R =
TP

TP+FN
; (iv) F1 = 2∗P∗R

P+R
. The term N represents the 

total number of samples used for review, which in this 
study corresponds to 2000.

To verify the distinguishability of the HFO classifica-
tion, the rater needs to indicate the source of the error 
from the dataset of 500 detector-identified ripples, 500 
detector-identified fast ripple, and 500 detector-dropped 
events. Specifically, the rater should empirically indicate 
that an incorrectly detected ripple should be classified as a 
fast ripple or as other (either a AESH or a sharp transient). 
Therefore, a 3-by-3 confusion matrix was created to re-
trieve the overall accuracy (Acc), precision, recall, and F1 
score for ripple (Pr ,Rr ,F1r) and fast ripple (Pfr,Rfr,F1fr), 
respectively. Specifically, these parameters were computed 
as follows (i) Acc =

∑

i=jNij
∑3

i=1

∑3
j Nij

; (ii) Pr =
N11

∑3
i=1 Ni1

, Pfr =
N22

∑3
i=1 Ni2

; (iii) 

Rr =
N11

∑3
j=1 N1j

, Rfr =
N22

∑3
j=1 N2j

; (iv) F1r =
2∗Pr∗Rr
Pr +Rr

, F1fr =
2∗Pfr∗Rfr

Pfr +Rfr
. 

The term Nij is denoted as the ijth entry of the confusion 
matrix.

2.6.2  |  Assessment of the inter-rater 
reliability

To evaluate the validity of the test and the stability of the 
results, we conducted an inter-rater reliability analysis. 
We chose Cohen's kappa to measure the inter-rater reli-
ability of the scores from the previous step (section 2.5.1). 
For more details on computing Cohen's Kappa, see the 
supplementary materials. In this paper, the conventional 
description of � is implemented, which follows: less than 
0, poor reliability; 0 to 0.2, slight agreement; 0.21 to 0.4, 
fair; 0.41 to 0.6, moderate; 0.61 to 0.8, substantial; 0.81 to 
1, almost perfect agreement.42

3  |   RESULTS

3.1  |  Results of feature selection module

As described in 2.3.1, five features were included in the 
feature library, namely Pd, Zk, HPRk, and onset/offset time 
of POE. Zk and HPRk comprised the feature set 1 and are 
mainly responsible for separating sharp transients from 
the database (Figure 2A). The histogram of Zk and HPRk 
shows statistical differences in distribution among all three 
categories, revealing that the power and shape of the hot-
spot do help to distinguish sharp transients (Figure S2A). 
On the contrary, the Pd and the onset/offset time of POE 
constitute the feature set 2, which aims to distinguish 
HFOs from the background signal. The true HFOs are 
clustered in a certain region of this 3D space, while the 
AESH are sparsely distributed (Figure 2C). The bar plot of 
the three attributes of feature set 2 shows the probability 
distribution of selected features in these two categories, 
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reflecting the more concentrated energy of HFOs com-
pared with the background signals (Figure S2B). Thus, a 
favorable HFO detection pipeline was generated by these 
two feature sets being integrated into the thresholding 
process. The detailed distributions of these five selected 
features across different data types are represented in 
Figure 2B and Figure 2D, and the significant differences 
are listed in Table S1.

3.2  |  Results of HFO detection and 
classification module

To investigate the details of HFO refinement, each pro-
cessing layer of HFO rejection was carefully screened 
(Figure  3). Sharp transients revealed a long and narrow 
hotspot that spans across the entire frequency range, 
which was substantially different from HFOs/AESH, 
suggesting the effectiveness of power and shape of the 
contour in differentiating sharp transients and others 
(Figure 3A&B). Contours were split into OLCs and CLCs, 
and only CLCs with higher power level than the hyperpa-
rameters were kept for the following steps (Figure 3C&D). 
At last, the onset and offset time of POE was implemented 
to check the position of the hotspot with the left dashed 
line representing onset time of the event and the right 
dashed line referring to the offset time (Figure 3E). The 
AESH revealed the off-centered hotspot, which was cap-
tured by this layer and substantializing the effectiveness 
of feature selection layer.

The HFO classification was performed after HFO de-
tection, and weighted frequency was the threshold imple-
mented in this process. In this study, a total number of 
453 917 HFOs candidates in 228 LFP epochs were iden-
tified after HFO rough detection. In total, 250 368 events 
were rejected during the HFO refinement process, in-
cluding 84 320 events deleted in the peak constraint layer, 
15 668 events deleted in the power thresholding layer, 
4492 events deleted in the contour morphology layer, and 
145 906 events deleted at off-center checking layer. After 
the HFO rejection, 203 531 events (44% of total) were re-
tained in the HFO events library.

The data analysis was computed on a 64-core CPU, 
264GB ram Dell Precision 7920 workstation and took 
89.5 h to complete the entire process. The computation 
load was also tested on a conventional computer with 8-
core i7 CPU and 16GB memory capacity. With this build, 
the HFO initial detection ran for 1 min for a 30-min file 
containing 8 channels. For the HFO refinement process, 
the time varied and the average processing time per file 
was 5-10 min.

3.3  |  Comprehensive evaluation for the 
HFO processing

3.3.1  |  Evaluation of the HFO rejection

The evaluation of HFO detection included data from two 
perspectives: (1) labeling true HFO events from the 1000 
algorithm-discarded HFOs and (2) labeling false HFOs 
from 1000 algorithm-detected HFOs. The confusion 
matrices based on the evaluation of each rater are pre-
sented along with the Acc, P, R, and F1 scores (Table 1). 
Specifically, the highest and lowest F1 scores among all 
raters were 0.99 and 0.92, indicating a solid performance 
in the HFO detection and reliability of features we se-
lected for HFO refinement process. We obtained a P of 
0.92 ± 0.05, R of 0.99 ± 0.01, with the Acc = 0.95 ± 0.03 and 
the F1 score=0.94 ± 0.03.

3.3.2  |  Evaluation of the ripple fast ripple 
classification

Table 2 not only reflects that our model is reliable in terms 
of distinguishing ripples and fast ripples, but more impor-
tantly summarizes the effectiveness of weighted frequen-
cies in determining the category of the events. The overall 
accuracy was 0.97 ± 0.02, revealing the high quality of 
the classifier. Specifically, the overall Pr, Rr, and F1r were 
0.98 ± 0.02, 0.98 ± 0.01, and 0.98 ± 0.01. On the contrary, 
the overall Pfr, Rfr, and F1fr were 0.94 ± 0.05, 0.98 ± 0.01 , 
and 0.96 ± 0.03.

3.3.3  |  Inter-rater reliability of HFO 
identification

As described in section 2.4.3, Cohen's kappa was intro-
duced to analyze the inter-rater reliability. Figure 4A pro-
vides details of raters' decision for each randomly selected 
event in HFO detection. Experts tended to have more dis-
agreements on the incorrectly detected HFOs, indicating 
that raters were more confident in the events that were 
rejected by multi-layers. Strong inter-rater agreement 
was found in the HFO detection section, with an overall 
� of 0.94 ± 0.03 (Figure  4C). Figure  4B documents rater 
disagreements with the detector in HFO classification. 
The raster plot shows that raters disagreed the most on 
the cases in the fast ripple labeling. The overall inter-rater 
reliability was slightly weaker than the HFO classification 
(Figure 4D), with a corresponding � of 0.85 ± 0.04 , but still 
in the range of excellent agreement.
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3.3.4  |  Performance comparison against 
other methods

To further test that our detector accurately selects true 
HFOs and discards false detections, we compared our 
approach with other detectors. As shown in Figure  S4, 
our approach reached the accuracy rate of 0.91 ± 0.049 , 
while the short line detector method43,13 showed a rate of 
0.54 ± 0.082, and the Hilbert approach44 showed an accu-
racy of 0.54 ± 0.08. The details of reviewers' agreements 
have been well documented with each bar representing 

a false positive (Figure S5). It was worth noting that the 
co-occurrence of high rater agreements on wrong detec-
tions and the low agreements on correct identifications 
are due to the inconsistent performance of the detectors. 
In our method, the agreement for detectors to incorrectly 
identify HFO events was 13.5%, while the agreement to 
correctly identify HFOs improved to 85%. In contrast, in 
the Hilbert method, the agreement for incorrect detection 
raised to 35.9%, while the agreement for accurate iden-
tification dropped to 42.3%. Again, the short line length 
method performed similarly to the Hilbert method on this 

F I G U R E  3   Details of HFO rejection. A, Raw plot of selected epochs and the details of peak thresholding layer. UB, upper bound. LB, 
lower bound. Red dots, peaks outside of the boundary. Gray line, epoch declined by thresholding. B, Time-frequency plot. Gray picture, 
epoch failed in sharp transients rejection. C, Decomposed contour plot. Gray contours, contours removed due to low-energy CLCs. D, The 
process of group checking layer. Gray contours, contours less than 4 times CLCs. Black contours, qualified contour. E, Off-center checking 
layer. Red circle, POE. Blue circle, BOE. Gray contour, unqualified POG and BOG.
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metric. Agreement on incorrectly detected events rose to 
29.4%, while agreement on correctly detected HFOs fell to 
36.9% (Figure S6).

We implemented our approach to a new dataset with 
the Kainic Acid animal model of epilepsy18 to evaluate the 
effectiveness of our algorithm. Notably, we did not manu-
ally inspect and remove artifacts in the KA dataset as we 
did in the TBI dataset, and thus, the accuracy on the KA 
dataset should decrease given the variation in data quality. 
Specifically, we randomly selected 500 algorithm-detected 
HFOs on the KA dataset and asked reviewers to mark AEH 

(Figure S7). Our method obtained an accuracy of 0.92 ± 0.05 
and 0.77 ± 0.08 for HFO detection on the TBI dataset and 
KA dataset, respectively. The precision decreased on KA 
dataset, but it still remains at a high level even though the 
recordings were affected by motion artifacts. In terms of 
the recall rate for HFO detection, our method has a solid 
performance, reaching 0.99 ± 0.01 and 1.00 ± 0.00 on TBI 
and KA dataset, respectively. Finally, the F1 score reached 
0.94 ± 0.03 on the TBI dataset and 0.87 ± 0.05 on the KA 
dataset, indicating the reliability and feasibility of the se-
lected feature sets for refinement process (Figure S8).

Predicted 
HFO

Predicted 
AEH ACC P R F1-Score

R1

Labeled HFO 869 13 92.8% 86.9% 98.5% 0.92

Labeled AEH 131 987

R2

Labeled HFO 937 8 96.5% 93.7% 99.2% 0.96

Labeled AEH 63 992

R3

Labeled HFO 983 2 99.1% 98.3% 99.8% 0.99

Labeled AEH 17 998

R4

Labeled HFO 865 11 92.7% 86.5% 98.7% 0.92

Labeled AEH 135 989

T A B L E  1   Confusion matrix of HFO 
detection

T A B L E  2   Confusion matrix of HFO classification

Predicted 
Ripple

Predicted 
Fast Ripple

Predicted 
AEH Acc Pr Rr F1r Pfr Rfr F1fr

R1

Labeled Ripple 495 0 1 99.1% 99% 99.8% 0.994 99.6% 98.6% 0.99

Labeled Fast Ripple 1 498 6

Labeled AEH 4 2 493

R2

Labeled Ripple 499 5 3 97.2% 99.8% 98.4% 0.991 92.8% 99.4% 0.96

Labeled Fast Ripple 1 464 2

Labeled AEH 0 31 495

R3

Labeled Ripple 496 3 0 98.9% 99.2% 99.4% 0.993 97.8% 99.0% 0.98

Labeled Fast Ripple 3 489 2

Labeled AEH 1 8 498

R4

Labeled Ripple 481 6 5 94.5% 96.2% 97.8% 0.97 89.4% 97.6% 0.93

Labeled Fast Ripple 5 447 6

Labeled AEH 14 47 489
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4  |   DISCUSSION

This study presented a novel approach to reliably and ef-
fectively reject HFO FPs, one of the most common prob-
lems that hinders the clinical use of HFO. Our approach 
focused on the analysis of LFPs without machine noise, 
using AESH and sharp transients as the main rejection 
targets. We designed a method based on a library of rele-
vant features, followed by a multi-layer threshold process-
ing method for event rejection. Four experts thoroughly 
evaluated the method and achieved high F1 scores in both 
detection and classification tests, thus confirming the 
feasibility of our method. The stability of this study was 
further validated by high inter-rater reliability, indicat-
ing the advanced nature of our method in improving the 
quality of the HFO database. The highlight of this study 
is the introduction of the multi-layer threshold module. 
Five critical features were selected to distinguish between 

HFOs, background signals, and sharp transients. The ex-
perts marked small portion of events for each category, 
and they empirically evaluated event type from the shape, 
power, and locations of the LFPs and time-frequency 
plots. We used these features and designed the HFO rejec-
tion pipeline that simulates the expert reviewing process. 
Specifically, the peak constraint and morphological iden-
tification layers are responsible for identifying HFOs and 
AESH, while the power thresholding layer aims to distin-
guish sharp transients.

In the HFO initial detection, the main drawback was 
the large number of HFO FPs; specifically, 84% of the de-
tected events were later found to be either background 
noise or sharp transients, which indicated a need for HFO 
FP rejection. In our multi-layer thresholding process, 
33.73% of the HFO FPs were removed by the peak con-
straint layer and 6.28% of sharp transients by the power 
thresholding layer and the remaining 59.98% were rejected 

F I G U R E  4   Evaluation of our approach. A, Raster plot of HFO algorithm evaluation. The black bars referred to the disputes over HFO 
events rejected by detector and red bars referred to disagreements over the detected HFOs. B, Raster plot of HFO classification evaluation. 
Incorrectly detected ripples: Blue bar from fast ripple, red bar from AESH. Incorrectly detected fast ripples: Black bar from ripple, red bar 
from non-HFO events. Incorrectly deleted HFOs: black bar from ripple, blue bar from fast ripple. C, Correlation matrix of HFO detection 
between four raters, the lighter color the stronger agreement, with the overall 0.94 ± 0.03 �. D, Correlation matrix of HFO detection 
evaluation between four raters, the lighter color the stronger agreement, with the overall 0.85 ± 0.04 �.
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in the morphological identification layer. According to 
the evaluation of HFO detection, our algorithm reached 
the accuracy rate of 92% and a precision rate of 99%. This 
result is close to the machine learning approaches with 
powerful recognition capabilities brought by neural net-
works.45–50 However, the machine learning models hold 
an end-to-end design, which lack the interpretation and 
mathematical description of HFOs important to clinical 
utilization.45–48 The HFO classification module of our 
method distinguished ripples and fast ripples with high ac-
curacy presumably because high-quality HFO candidates 
had already passed through the feature selection module. 
Specifically, our design had the precision rate of 98% and 
94% in ripple and fast ripple classification, and 98% and 
98% in recall rate of ripple and fast ripple, respectively.

It is important to clarify that intracranial EEG imple-
mentations of HFO detection using the topographical 
method consider “candles” as exclusively physiological 
sharp spikes.13,29,34,35 In contrast, in the current LFP im-
plementation, we considered candles as nonphysiological 
sharp transients and sharp spikes. The major difference 
is that in LFP recordings from rodents, sharp transients 
occur frequently and need to be automatically redacted, 
along with sharp spikes (eg, Figure  2E). In the current 
version of the topographic analysis, we do not distinguish 
HFOs on oscillations from HFOs on spikes, but this can 
be implemented in later versions. Other potential issue 
comes from the use of the same parameters for topograph-
ical detection of ripple and fast ripples. In our approach, 
the ripples and fast ripples are processed simultaneously, 
which inevitably introduces bias to contour morphol-
ogy layer and then leading to fewer fast ripples been de-
tected since power level of CLC in high-frequency range 
(>240 Hz) is typically lower than the one in the lower 
frequency region (<240 Hz). Additionally, our algorithm 
identifies only one class of event for each epoch, either 
ripple or fast ripple. It would omit the case when ripples 
and fast ripples occur simultaneously. Under this circum-
stance, our algorithm would be forced to choose the one 
with higher energy even if the power levels of these two 
POGs are similar. The case of “fast ripple on ripple” pro-
vides valuable information in epilepsy assessment14 and 
may not be well addressed in our approach.

In this study, we are still manually selecting thresholds 
in the feature selection process. In future work, as more 
data are visually inspected and more features are added 
to the feature selection process, we hope to establish a 
tree model that selects the most critical features based on 
their importance ranking and then automatically detects 
HFOs without the need to manually set criteria for HFO 
rejection.

Inter-rater reliability test has been implemented in 
many studies and has become a golden standard to justify 

the performance of the automatic detection method. The 
inter-rater agreement was applied to identify interictal ep-
ileptiform discharges (IEDs) and justify the robustness of 
the detection method.51 It was also introduced in seizure 
detection to make a collective clinical decision.52 Former 
studies reported the inter-rater reliability in the HFO anal-
ysis.45,49 However, one of the issues was the difficulties 
to obtain the “ground truth,” especially when the dataset 
was large. In our approach, the deleted epochs were as-
sembled to form the negative dataset. Instead of labeling 
all the data, we reported the true negatives by sampling 
and rating the events from the negative dataset. Our re-
sults indicated a high degree of consistency across raters, 
suggesting that features selected are representative and 
able to generate the detector without instability issues. 
Consequently, the implementation of important features 
and mathematical description of HFOs would be benefi-
cial to HFO study in academic and clinical scenarios.

One issue to note is that we did not test our algorithm 
in a clinical dataset. Considering that common SEEG data 
has hundreds of channels, it is expected to take longer to 
compute compared with the animal data we tested in this 
study. Additional adjustments may be needed because of 
the different sampling rates. In addition, we note that our 
method is not computationally efficient, especially slow in 
computing the morphological layers.

Instead of one-dimensional data, the morphological 
analysis in our algorithm expands the data into a two-
dimensional graph, which increases the computational 
load to a large extent. For the 768-h dataset we tested, it 
took about 90 h to complete the entire process on a 64-core 
Intel workstation. More optimization efforts should be 
implemented in future studies to improve the processing 
efficiency.

5  |   CONCLUSION

In this study, we presented a refined pipeline with a segre-
gated design focused on rejecting false positives for HFOs. 
Through comprehensive expert evaluation, our algorithm 
showed a promising reliability and accuracy in rejecting 
HFO FPs. Future work can focus on refining the algo-
rithm by testing larger populations and different record-
ing environments.
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