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The aggressive growth of cancer cells brings extreme challenges to cancer therapy while
triggering the exploration of the application of multimodal therapy methods. Multimodal
tumor therapy based on photothermal nanomaterials is a new technology to realize tumor
cell thermal ablation through near-infrared light irradiation with a specific wavelength,
which has the advantages of high efficiency, less adverse reactions, and effective inhibition
of tumor metastasis compared with traditional treatment methods such as surgical
resection, chemotherapy, and radiotherapy. Photothermal nanomaterials have gained
increasing interest due to their potential applications, remarkable properties, and
advantages for tumor therapy. In this review, recent advances and the common
applications of photothermal nanomaterials in multimodal tumor therapy are
summarized, with a focus on the different types of photothermal nanomaterials and
their application in multimodal tumor therapy. Moreover, the challenges and future
applications have also been speculated.
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1 INTRODUCTION

Cancer poses a serious threat to human health worldwide, despite the developments in modern
medical technology. Cancer is difficult or impossible to cure because it involves various genetic
changes and cell abnormalities. Moreover, its complexity and heterogeneity promote the aggressive
growth of cancer cells, resulting in significant incidence and mortality rates (1–3). The three
traditional methods of tumor treatment include surgery, radiotherapy, and chemotherapy.
However, due to severe surgical trauma, nonspecific and excessive radiation, and the
irreplaceable defects of these therapies in targeting, bio-compatibility, multidrug resistance, and
drug accumulation, patients may suffer from serious physiological side effects, resulting in poor
quality of life and difficulty in achieving the target treatment effect (4–6).

These treatment deficiencies have inspired the development of new, precise, and more effective
treatment strategies for tumors. For example, several emerging treatment methods, such as
photodynamic therapy (PDT) (7, 8), photothermal therapy (PTT) (9, 10), and photoacoustic
therapy (11, 12) have improved or can potentially improve therapeutic outcomes. Among them,
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PTT is a new type of minimally invasive tumor light therapy that
has developed rapidly in recent years. It mainly uses
photothermal conversion nanomaterials with strong absorption
in the near-infrared light region (wavelength range 700–1300
nm) (13–15) to convert the absorbed light energy into heat
energy effectively under the irradiation of the near-infrared laser,
resulting in an increase in the temperature of local tumor tissues
up to 40–45°C (hyperthermia) or above 45°C (thermal ablation)
(14, 16). This results in degeneration and necrosis of tumor cells
to achieve the goal of tumor therapy. The destruction of tumor
tissue by PTT mainly occurs through killing tumor cells and
destroying tumor blood vessels. The ability of tumor cells to
tolerate high temperatures is much lower than that of normal
cells. Specifically, the thermal lethal temperature of most tumor
cells is between 42 and 43°C, while normal cells can tolerate such
temperatures for a prolonged period. Therefore, the local
hyperthermia produced by PTT can selectively kill tumor cells
and cause irreversible damage, while normal cells are not
damaged. Regarding blood vessels, compared with the blood
vessels of normal tissue, those of tumor tissue have abnormal
morphological growth, imperfect tissue and function, and are
prone to rupture when the temperature and pressure increase.
This causes tumor tissue to be more prone to damage by
hyperthermia. Thus, PTT can effectively destroy tumor blood
vessels, killing tumor cells without damaging normal tissues or
causing systemic toxic reactions. Because PTT has the
advantages of rapid targeted killing, being minimally invasive,
and minimal toxic side effects, it is also known as “green
therapy,” which carries significant potential in the field of
alternative surgical resection (14, 17, 18).

It has been reported that PTT requires a temperature above
50°C to achieve tumor thermal ablation. In addition, cancer
cells treated at low temperatures (around 43°C) may survive
through self-repair of their heat shock proteins (HSPs), which
could lead to treatment resistance and reduce treatment
efficiency (19, 20). In recent years, the great progress in
nanomaterials, medicine, and biology has promoted the
application of nanomaterials in tumor therapy (21, 22).
Moreover, great progress has been made in the construction
of multifunctional photothermal nanomaterials, which can
integrate a variety of treatment modes into a single nano
platform. Compared with monotherapy, the combination of
multiple therapies usually shows superiority in therapeutic
effect. This advanced synergistic therapy can not only
maintain the advantages of non-invasive, low toxicity, and
convenient administration of PTT, but also relieve the
problems of non-selectivity and multidrug resistance of
t rad i t iona l chemotherapy , and has achieved good
therapeutic results (20).

This review will focus on the research progress of
photothermal nanomaterials in multimodal tumor therapy and
consists of a brief introduction to the classification of
photothermal nanomaterials and their relative merits.
Subsequently, multimodal treatments of tumors based on
photothermal nanomaterials are clarified in detail. Finally, an
outlook is provided to address recent challenges and suggest
Frontiers in Oncology | www.frontiersin.org 2
better treatment applications and research focuses to pursue new
opportunities ahead.
2 CLASSIFICATION OF PHOTOTHERMAL
NANOMATERIALS

The goal of PTT is to make use of the hyperthermic effect of
photothermal agents (PTAs), which can absorb light energy and
convert it into heat energy, raising the temperature of the lesion site
and ultimately causing the death of tumor cells (23, 24). To reduce
the influence of localized high temperatures on normal tissue, near-
infrared (NIR) light is usually selected for PTT because it has less
tissue absorption and scattering and is able to penetrate deep tissue
(15, 25). In addition, the ideal photothermal material should have
higher photothermal conversion efficiency (PCE) and be
accumulated effectively in tumor tissue (26). With the progress of
PTT research and the rapid development of nanomaterials,
photothermal nanomaterials have been more widely used than
other photothermal materials because of their higher PCE and
ability to be used in a multimodal tumor therapy platform (27–29).
This review summarizes the common photothermal nanomaterials,
which are divided into inorganic, organic, and composite
photothermal nanomaterials (Table 1).

2.1 Inorganic Photothermal Nanomaterials
2.1.1 Precious Metal Nanomaterials
Precious metal nanomaterials, including gold, silver, palladium,
and platinum, are considered to be simple and effective PTAs
(23, 67, 68) due to their strong surface plasmon resonance (SPR),
synthetic tunability, biological imaging potential, and excellent
photothermal properties, such as high PCE in the high-
absorption cross-section and NIR region.

Studies have shown that gold is one of the most popular
nanomaterials for mediating PTT (69, 70), as it has good
biocompatibility and low cytotoxicity (71). The photothermal
conversion phenomenon in gold nanoparticles (GNPs) is based
on the collective oscillation of free electrons on the surface of
GNPs under electromagnetic radiation. The local area around
GNPs is heated by electronic excitation and relaxation, which
leads to the destruction of tumor tissue (72). At present, several
gold nanomaterials with unique size and morphology have been
developed, including nanorods, nanospheres, nanostars,
nanocages, and nanoshells, among others. Choe et al. (30)
loaded high concentration gold nanoparticles into mesoporous
silica nanocapsules to form yolk-shell-structured gold
nanospheres (aAuYSs) to study their photothermal effect on
drug-resistant ovarian cancer cells. Under 808-nm laser
irradiation, the cultured cancer cells were eliminated when the
concentration of aAuYSs was 300 mg/mL. Moreover, in vivo
experiments showed that after the combined treatment of
aAuYSs and doxorubicin (Dox), the tumor volume and size
were significantly reduced, and the number of Ki-67-positive
proliferating cancer cells sharply decreased, indicating that
aAuYSs can be used as a multifunctional photothermal
nanoplatform for PTT and combined therapy.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Shi et al. Photothermal Nanomaterials
Silver nanoparticles (SNPs), another type of precious metal
nanomaterial, have been widely used due to their unique
properties, such as controllable size and shape, easy
modification, and excellent optoelectronic properties. Similar
to GNPs, the SPR of SNPs can be adjusted to the infrared
region by changing their size and shape (73). Additionally,
Kim et al. (31) prepared SNPs coated with bovine serum
albumin (BSA) (BSA-SNPs), which could internalize and kill
melanoma cells by inducing ROS through cell analysis. These
nanoparticles were also found to play a potential role in
inhibiting angiogenesis. In addition, BSA-SNPs showed a
significant increase in the temperature of a suspension under
the irradiation of a laser at 690 nm and had a strong
photothermal conversion capability, which could be used for
photothermal cancer therapy.

Palladium-based nanomaterials, such as palladium
nanosheets (74), porous/hollow palladium nanoparticles (75),
and palladium@M (M=Ag, Au, Pt, SiO2, ZIF-8) (76–80)
Frontiers in Oncology | www.frontiersin.org 3
nanocomposites, also show strong absorption in the NIR
region, as well as ideal PCE, excellent photothermal stability,
and good biocompatibility (81). Therefore, palladium-based
photothermal nanomaterials have become an option for cancer
imaging contrast agents and therapeutic agents. Chen et al. (32)
designed palladium nanosheets with a thickness of 1.8 nm and a
diameter of 5–80 nm to evaluate the effect of size on the
biological behavior of these nanosheets through cell and
animal model experiments. The experimental results showed
that compared with the large palladium nanowires, the smaller
nanowires demonstrated a better photothermal effect under
ultra-low laser irradiation. In addition, in vivo experiments
revealed that 5-nm palladium nanosheets could escape the
reticuloendothelial system with a longer blood half-life and be
excreted from the kidneys, while the large nanosheets
accumulated in the liver and spleen.

As a photothermal nanomaterial, platinum nanoparticles
(PtNPs) slowly and continuously increase the temperature with
TABLE 1 | Summary of photothermal nanomaterials in this review.

PTAs Nanomaterials Wavelength PCE Applications Reference

Inorganic photothermal nanomaterials aAuYSs 808nm - PTT+CT (30)
BSA-Silver NPs 690nm – PTT (31)
Pd nanosheets 808nm - PTT (32)

DPCN 808nm – PTT+CT (33)
USPIO-PEG-sLex 808nm - PTT (34)

FA-BSA-PEG/MoOx@DTX 808nm 43.41% PTT+CT (35)
WO3 nanosheets 808nm 41.6% PTT (36)

Z@CD/P 808nm – PTT+CT (37)
mBMNI NPs 808nm 45.9% PTT+PDT+CDT (38)

NB/CuS@PCM NPs 1060nm – PTT+CDT (39)
MoS2@DOX/MnO2-PEG 808nm 33.7% PTT+CT (40)

TiS2 nanosheets 808nm
1064nm

46.82% (808nm)
45.51% (1064nm)

PTT+IT (41)

HMC-SS-PDA@CDs 808nm 35.9% PTT+CT (42)
CdTeSe/ZnS@QDs 457nm 11% PTT+PDT (43)
CNTs-PS/siRNA 808nm 59.3% (SCNT-PS)

57.8% (MCNT-PS)
PTT+GT (44)

HPP 1064nm 45.1% PTT (45)
mGOG 808nm - PTT+CT (46)

DOX-Fe3O4@CGA 808nm – PTT+CT (47)
Nb2C@PDA-R837@RBC NPs 1064nm 27.6% PTT+IT (48)
BP NS-PAMAM@DOX-HA 808nm – PTT+CT (49)
Co-P@mSio2@DOX-MnO2 808nm - PTT+CT (50)

UCNPs@mSiO2FePc-MC540 808nm PTT+PDT (51)
PCM+PTX@mPBs/PEG 808nm 16,9% PTT+CT (52)

Organic photothermal nanomaterials Cy5.5&ICG@ZIF-8-Dex 780nm 27.9% PTT (53)
PPor NPs 808nm 70% PTT+IT (54)
T-MPs 808nm 16.8% PTT+Operation (55)
BBDP 690nm 54.2% PTT+PDT (56)

DTPADPP/TPADDPP 635nm 48.1% (DTPADPP)
41.7% (TPADDPP)

PTT (57)

CMC/CS@PPy+5Fu NPs 808nm 21.6% PTT+CT (58)
PANITG 808nm 55% PTT+Starvation therapy (59)

NIRb14 NPs 808nm 31.2% PTT (60)
MNP@PEDOT : PSS NPs 808nm – PTT (61)

Cu-PDA-FA NPs 808nm 46.84% PTT+CDT+IT (62)
OMCNs 808nm 37.3% PTT (63)
MNPs 808nm 87.65% PTT+PDT (64)

Organic–inorganic hybrid photothermal
nanomaterials

Fe2O3@PEDOT-siRNA NPs 808nm 54.3% PTT+GT (65)
RCDS@MIL-100 660nm 31.2% PTT+CDT (66)
July 2022 | Volume 12 | Art
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light irradiation, not exceeding 46°C, which can effectively avoid
normal cell damage (82, 83). Apart from good optical and
photothermal stability, PtNPs can also be involved in the
design of multimodal tumor treatment platforms, which can be
used in combination with chemotherapy or radiotherapy (84,
85). Zhou et al. synthesized dendritic platinum-copper alloy
nanoparticles (DPCNs) as a multimodal, therapeutic, tumor
imaging platform (33). The PTT in vitro assay revealed that
DPCNs ingested by PC-9 cells could effectively kill cancer cells
under NIR irradiation. In addition, compared with the control
group treated with DPCNs/NIR or Dox alone, the killing rate of
cancer cells treated with DPCNs/Dox and irradiated with NIR
laser was higher, indicating that DPCNs have potential for
photothermal and chemotherapy.

2.1.2 Transition Metal Dichalcogenide Nanomaterials
Transition metal dichalcogenides (TMDCs) are usually
composed of one layer of transition metal atoms and two
layers of chalcogenide atoms, and their generalized formula is
MX2. M refers to the transition metals of groups 4–10, such as
copper, molybdenum, tungsten, titanium, etc., while X refers to a
chalcogen (86). It has been found that monolayer TMDCs
exhibit strong NIR absorption, good PCE, and excellent
photothermal stability (87, 88), giving TMDCs the potential to
be used as PTAs (89).

In recent years, copper nanomaterials have been widely used
in cancer therapy (90). Among those used in PTT for cancer,
such as copper selenide, copper telluride, and copper oxide,
copper sulfide is the most explored (91). It has been found that as
a P-type semiconductor, copper chalcogenide nanomaterials
have composition-dependent localized SPR and ideal PCE in
the NIR region (92, 93). Moreover, Huang et al. (39) combined
monoterpenoid sensitizer, borneol, and NIR-II PTA copper
sulfide to make thermo-responsive vehicle NB/CuS@PCMNPs.
Under the irradiation of a 1060-nm laser, the high temperature
produced by copper sulfide nanoparticles can be used in PTT.
The results of animal experiments showed that NB/CuS@
PCMNPs could aggregate in the tumor site and significantly
inhibit tumor growth.

Titanium disulfide is another common material for TMDCs
with excellent stability, electrical conductivity, and strong
absorption in the NIR window (41). In addition, due to the
local SPR effect, the absorption peak of these nanosheets can be
shifted from red to the range of 1000–1350 nm by adjusting the
thickness and width of the nanowires (94). Fu et al. (41) made a
multifunctional NIR-II nano-preparation based on titanium
disulfide, which can be used in magnetic targeted NIR-II
photoacoustic/magnetic resonance imaging-guided synergistic
photothermal-immune combination therapy. The results of in
vivo experiments showed that the primary tumors in the group
that underwent PTT combined with immunotherapy
disappeared without recurrence after 16 days of treatment.
This significantly inhibited the tumor growth rate, indicating
that titanium disulfide has great potential in the field of PTT
combined with immunotherapy and imaging.

In addition, the crystal structure of molybdenum disulfide is a
honeycomb, similar to graphene, which can be obtained through
Frontiers in Oncology | www.frontiersin.org 4
stripping or synthesis and has a variety of forms, such as
nanosheets and quantum dots, among others (95–98). It has
been found that molybdenum disulfide nanoparticles have
become commonly used PTAs in cancer treatment due to their
good biocompatibility, strong SPR, excellent PCE, and low
production cost (99). Liu et al. (40) synthesized a mesoporous
core-shell structure with molybdenum disulfide as the core and
manganese dioxide as the shell. This structure was used to wrap
the chemotherapeutic drug, Dox, and then modified with mPEG-
NH2 to prepare MoS2@Dox/MnO2-PEG (MDMP) composite
antitumor nanocomposites. The in vivo and in vitro experiments
showed that MDMP had excellent antitumor activity (tumor
survival rate: 11.8%) and good PCE (33.7%).

2.1.3 Metal Oxide Nanomaterials
In addition to TMDC nanomaterials, nanomaterials containing
transition metal oxides have also received extensive attention in
the field of PTT (100) due to their excellent PCE good
biocompatibility, excellent chemical stability, adjustable band
gap, and low cost. Iron oxide, molybdenum oxide, tungsten
oxide, zinc oxide, and manganese oxide are used as common
metal oxide nanomaterials.

Magnetic nanoparticles, mainly including magnetite
(Fe3O4), maghemite (g-Fe2O3), or a combination of the two
(101) show great potential in cancer therapy in the form of
magnetic resonance imaging-guided chemotherapy (102, 103),
PDT (104, 105), and PTT (106, 107) due to their unique
superparamagnetic iron oxide nanoparticles. In addition, iron
oxide nanoparticles show excellent PCE in a biological
environment and have good chemical stability and low
cytotoxicity (108). Moreover, the US Food and Drug
Administration has approved its application in the human
body (109). Liu et al. (34) synthesized USPIO-PEG-sLex,
wh i ch cons i s t s o f nanocompos i t e s o f u l t r a sma l l
superparamagnetic iron oxide nanoparticles coated with
polyethylene glycol (PEG) coupled with Sialyl Lewis X. The
USPIO-PEG-sLex nanoparticles have good photothermal
conversion properties, and the temperature and concentration
of the solution are positively correlated with the power density
of NIR on 808-nm wavelengths. The results of PTT in vitro
showed that as the nanoparticle concentration increased, the
survival rate of 5-8F cells significantly decreased, which could
effectively inhibit the development of tumors (Figure 1).

Molybdenum-based materials can be divided into two
categories: transition metal oxides composed of molybdenum
dioxide and molybdenum trioxide, and TMDCs composed of
molybdenum disulfide. Transition metal molybdenum oxide has
a similar, adjustable, local SPR effect to precious metal
nanomaterials (110). Molybdenum trioxide nanoparticles have
been reported to have excellent light absorption ability in the
NIR region and can produce singlet oxygen under the irradiation
of NIR light. Thus, molybdenum oxide nanomaterials can be
used in PDT or PTT for tumors (111, 112). Qiu et al. (35)
combined folic acid and a-lipoic acid-conjugated mPEG-NH2

(LA-PEG) and modified BSA with molybdenum oxide
nanosheets to prepare multi-functional degradable FA-BSA-
PEG/MoOx nanosheets (Figure 2). The results of in vivo and
July 2022 | Volume 12 | Article 939365
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in vitro anti-tumor experiments showed that FA-BSA-PEG/
MoOx nanosheets significantly increased the temperature of
the tumor site, inducing immunogenic cell death, which
triggered an immune response in vivo through the
combination of PTT and chemotherapy, inhibiting primary
tumor growth (inhibition rate: 51.7%) and lung metastasis
Frontiers in Oncology | www.frontiersin.org 5
(inhibition rate: 93.6%). This novel nanosheet is a promising
avenue for combination therapy for breast tumors.

Tungsten nanomaterials, similar to precious metal
nanomaterials, exhibit a local SPR effect because of their outer-
d valence electrons, which can be used to produce a
photothermal effect (113). The size and shape of the
FIGURE 1 | Schematic diagram of PTT (using animal experimental research as a model) (34). Reproduced with permission from Liu et al., 2021.
July 2022 | Volume 12 | Article 939365
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nanoparticles also play a role in the SPR effect of tungsten
nanomaterials (114, 115). Among tungsten nanomaterials with
different stoichiometry, tungsten oxide nanomaterials are among
the most widely used materials in the biomedical field (116, 117).
In particular, W20O58, W18O49, and W24O68 are more common
PTAs because of their excellent optical absorption capacity in the
NIR region (118). Liang et al. (36) introduced oxygen vacancy
(OV) tuning into oxygen-deficient tungsten trioxide nanosheets
to optimize the chemical and electrical properties. The
experimental results show that under the irradiation of single-
wavelength NIR (808 nm), tungsten trioxide-OVs exhibited good
PCE (41.6%) and an effective tumor inhibition rate (96.8%).

Zinc oxide is a multi-functional material with unique physical
and chemical properties, such as high chemical stability, high
electrochemical coupling coefficient, wide radiation absorption
range, and high light stability (119, 120). Zinc oxide
nanomaterials can appear in one-dimensional (121), two-
dimensional (122), and three-dimensional (123) structures,
providing one of the greatest assortments of particle structures
among all known materials (124). Thus, zinc oxide is a potential
alternative for PTT (72). Deng et al. (37) prepared multifunctional
Frontiers in Oncology | www.frontiersin.org 6
nanoparticles (Z@CD/P) using ZnO@CuS as the carrier, as well as
b-cyclodextrin (b-CD) modified by 2,3-dimethyl maleic anhydride
(DMA) (b-CD-DMA), and mPEG-NH2 modified by DMA (PEG-
DMA) to increase stability. They were loaded with Dox and
pirfenidone (PFD). Zinc oxide and copper sulfide were found to
promote tumor cell death by regulating the pathway of ROS
production as well as that of GSH-GPX4, and their photothermal
conversion ability further promotes the anti-tumor effect.

Manganese oxide nanomaterials have great potential as PTAs
and signal contrast agents for traditional PTT because of their
excellent T1-weighted contrast signals, low cytotoxicity, and high
PCE (72, 125). Liu et al. (126) proposed for the first time that
ultra-thin manganese dioxide nanosheets have pH and redox
responses as well as T1-weighted magnetic resonance imaging
capabilities. Moreover, photothermal in vivo and in vitro
experiments showed that these nanosheets also had good
photothermal conversion ability (h: 21.4%) and a high
inhibition rate on tumor growth (Figure 3). Xu et al. (38)
designed bismuth/manganese oxide nanoparticles (mBMNI
NPs) for targeting triple-negative breast cancer, which were
encapsulated in the tumor cell membrane and loaded with
FIGURE 2 | The schematic illustration of the multi-strategy for cancer treatment. (A) The preparation route of the FA-BSA-PEG/MoOx@DTX nanosheet and the in
vitro antitumor and degradation experimental design; (B) the elucidation of the mechanism of FA-BSA-PEG/MoOx@DTX + NIR combination therapy for meliorating
tumor immunosuppression, inhibiting distant tumor and lung metastasis (35). Reproduced with permission from (35).
July 2022 | Volume 12 | Article 939365
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indocyanine green. The result of the photothermal experiment
showed that mBMNI NPs absorbed NIR laser efficiently and
generated a large amount of heat for PTT. Apart from high-
efficiency PTT, mBMNI NPs also performed chemodynamic
therapy (CDT) and PDT synergistically through the generated
singlet oxygen and ICG, offering great potential for targeted
triple-negative breast cancer therapy.

2.1.4 Carbon-Based Nanomaterials
In recent years, carbon-based nanomaterials have been widely
studied as inorganic materials for PTT for tumors (100). Many
carbon-based nanostructures have been developed for
biomedical applications, such as carbon dots, quantum dots,
graphene, and carbon nanotubes, among others. The graphitic
structure of carbon-based materials endows them with strong
absorption in the NIR region and good PCE (127, 128). In
addition, the ultra-high surface area of carbon-based materials
enables them to build multifunctional nanoplatforms, which
have optimistic application prospects in tumor therapy (129).

2.1.4.1 Carbon Dots
As a new type of 0 dimensionality material, carbon dots (CDs)
not only inherit the advantages of small molecules (such as
fluorophores) and traditional semiconductors (such as inorganic
quantum dots), but they also have additional properties (130).
For example, CDs have excellent photostability, good
biocompatibility, permeability, low toxicity, low cost, and are
Frontiers in Oncology | www.frontiersin.org 7
easy to prepare (131). However, most CDs usually absorb light in
the short wavelength region due to the p-p* transition of the
C=C bond; therefore, other nanomaterials, such as metal
nanoparticles (132) or semiconducting polymers (133) are
needed as NIR-assisted PTAs (131). Lu et al. (42) assembled
polydopamine (PDA) and carbon points on hollow mesoporous
carbon (HMC) to construct a photothermal enhanced multi-
functional system (HMC-SS-PDA@CDs). The results of in vivo
experiments showed that under low-power, 808-nm laser
radiation of 0.75 W/cm2, the antitumor drug-loaded HMC-SS-
PDA@CDs inhibited tumor growth by 92.6% and significantly
reduced the toxicity of Dox to cells, indicating that Dox/HMC-
SS-PDA@CD nanoparticles have good photothermal
chemotherapeutic synergism and ideal biocompatibility.

2.1.4.2 Quantum Dots
Compared with traditional fluorescent dyes and proteins,
quantum dots (QDs) have significant advantages, such as
broad luminescence excitation spectra and narrow symmetrical
emission spectra with large Stokes shifts (134, 135). Different
types of quantum dots have varying chemical compositions and
properties, which can affect their potential applications. The new
generation of quantum dots, including non-cadmium and NIR-
II window quantum dots, have excellent optical properties and
biocompatibility required for in vivo applications and good
prospects in the field of tumor therapy and imaging (136–138).
Wang et al. (43) have developed cadmium tellurium selenium/
FIGURE 3 | Schematic illustration of synthetic procedure for MnO2-SPs nanosheets and their specific functions for tumor theranostics with TME sensitivity, including
the acidic/reducing condition-triggered T1-weighted MR imaging and efficient PTT against tumor (126). Reproduced with permission from (126).
July 2022 | Volume 12 | Article 939365
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zinc sulfide core-shell quantum dots with excellent
biocompatibility for PTT and fluorescence imaging of tumors.
After being irradiated with blue light (80 mW/cm2 blue laser) for
20 min, the quantum dots were heated rapidly. Due to their
photothermal and photodynamic effects, the quantum dots
induce complete apoptosis of the Huh7 hepatoma cell line,
providing a new avenue for tumor therapy.

2.1.4.3 Carbon Nanotubes
Carbon nanotubes (CNTs), originally proposed by Iijima (139),
are currently the most widely used carbon-based nanomaterials
in the biomedical field (140, 141). CNTs are divided into two
types according to the number of layers in their structure: single-
walled CNTs (SCNTs), which consist of a single graphene sheet,
and multi-walled CNTs (MCNTs), which consist of several
sheets forming concentric cylinders (142). CNTs have been
reported to have broad NIR absorption and are affected by the
size and shape of the nanomaterials (143). CNTs exposed to NIR
laser absorbs light energy and converts it into thermal energy,
which can be used to ablate cancer cells (144). Zhao et al. (44)
coated SCNTs and MCNTs with peptide lipid and sucrose
laurate, respectively and loaded anti-survivin siRNA to
synthesize a nano-delivery system (denoted SCNT-PS and
MCNT-PS, respectively) with good temperature sensitivity and
photothermal properties for tumor immunity and combination
PTT. The results showed that CNT/siRNA inhibited tumor
growth by silencing the expression of survivin and exhibiting a
photothermal effect under NIR laser. SCNT-PS/siRNA showed
high antitumor activity and had a complete inhibitory effect on
some tumors. Neither SCNT-PS nor MCNT-PS nanoparticles
had obvious cytotoxicity at a concentration of up to 60 mg/mL.

2.1.4.4 Mesoporous Carbon Nanoparticles
Mesoporous carbon nanoparticles (MCNs) or hollow carbon
nanospheres (HCNs) are mesoporous nanomaterials with high
pore volume and specific surface area, which have attracted
attention in recent years (145, 146). It has been found that
MCNs have a unique structure that can load a large number of
hydrophobic drugs as well as excellent biocompatibility, which
makes them an effective drug carrier (147, 148). In addition,
MCNs have high efficiency in converting NIR laser energy into
thermal energy and can be used in tumor PTT (72, 149). Xu et al.
(45) designed polyethylene glycol-graft-polyethylenimine
(HPP)-modified HCNs as NIR-II responsive PTAs. The
experimental results showed that HPP-HCNs have a PCE of
45.1% under 1064nm laser irradiation. The in vivo and in vitro
experiments showed that HPP had limited cytotoxicity to mice
and good photothermal activity towards killing cancer cells in
the xenograft 4T1 tumor-bearing mice model, which
significantly inhibited tumor growth.

2.1.4.5 Graphene-Based Nanomaterials
Graphene, as a common carbon-based nanomaterial, has a wide
range of applications as a biosensor, drug carrier, and tumor
PTA because of its strong NIR absorption (150, 151). However,
graphene has poor dispersibility in physiological fluid and is
considered to have certain biological toxicity (152). To overcome
these limitations, graphene requires surface modification with
Frontiers in Oncology | www.frontiersin.org 8
specific materials (153). Therefore, graphene-based
nanomaterials (GBNs) have received increasing attention (154–
156). For example, GBNs have been found to have a large surface
area and can be used as drug carriers (157). GBNs are also widely
used as PTAs in tumor therapy because of their good
photothermal conversion ability in the NIR region (158, 159).
Generally, GBNs can be divided into several types, including
graphene with varied layers, graphene oxide (GO), and reduced
graphene oxide (rGO) (160).

GO and rGO have great potential in the field of biomedicine,
especially in drug delivery, biosensors, and targeted tumor therapy
because of their tunable physicochemical properties, excellent
biocompatibility, and outstanding photothermal properties (160–
163). Dash et al. (46) modified rGO with citrate-coated magnetic
nanoparticles, coupled with gastrin-releasing peptide receptor-
binding peptide, and loaded Dox through the p-p bond to
synthesize an rGO-based magnetic nanocomposite (mGOG). The
results of the in vitro experiments showed that after being combined
with 808-nm laser irradiation, the 50% inhibiting concentration and
apoptosis rate of tumor cells were 0.19 mg/mL and 76.8%,
respectively. At the same time, the increased expression of heat
shock protein HSP70 confirmed themagnitude of the photothermal
effect of mGOG. In addition, the mouse model experiment showed
that, after 5 min of NIR laser irradiation, the tumor volumes in the
mice in the experimental group were significantly reduced, the
survival time was significantly prolonged, and the antitumor effect
was significant.

With the continuous study of GBNs, graphene quantum dots
(GQDs) first discovered by Ponomarenko and Geim (164), have
undergone vigorous development in the biomedical field. GQDs
exhibit inherent fluorescence properties, low cytotoxicity, stable
photoluminescence, good biocompatibility, and superior
resistance to photobleaching (165). After NIR light irradiation,
GQDs also show excellent photothermal conversion ability (166,
167). These unique physicochemical properties endow GQDs
with excellent potential in tumor therapy. Chen et al. (47)
combined aptamer-modified GQDs with magnetic chitosan to
form novel photothermal-chemotherapy drug delivery
nanosystems (DOX-Fe3O4@CGA). The results of an in vivo
antitumor experiment showed that under NIR laser irradiation,
the temperature of the tumor site in mice increased rapidly to
43–45°C, and the tumor volume and weight significantly
decreased over time. Thus, DOX-Fe3O4@CGA significantly
inhibited tumor growth and prolonged survival time in mice,
demonstrating excellent synergistic therapeutic ability.

2.1.5 Other Inorganic Photothermal Nanomaterials
MXenes refer to a series of carbides, nitrides, and carbonitrides
containing transition metals (mainly from groups 3 and 4), with
unique structure and excellent physicochemical properties (168–
170) (Figure 4). The typical molecular formula is expressed as Mn
+1XnTx (e.g, Ti3C2Tx). Notably, MXenes have good optical
properties for bioimaging and biosensors, and their excellent PCE
and biocompatibility make them ideal candidates as efficient PTAs
(172, 173). Lu et al. (48) coated a layer of red blood cell membrane
on polydopamine-modified niobium carbide nanosheets coated
with immunoadjuvant R837 to synthesize a new type of
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multifunctional niobium carbide nanoparticle (Nb2C@PDA-R837@
RBCNP) for NIR-II PTT combined with immunotherapy. Nb2C@
PDA-R837@RBCNPs exhibited high PCE under 1064-nm laser
irradiation. Additionally, the circulation time in vivo was
significantly prolonged, and the primary tumors were completely
cleared in mice. Finally, the secondary tumor growth inhibition rate
was as high as 89.8% due to the enhanced immune response.

Compared with other two-dimensional nanomaterials, black
phosphorus nanosheets (BPNSs) have a larger extinction
coefficient and higher PCE and are often used as PTAs for
PTT (174–176). In addition, BPNSs have been widely used in
biomedicine because of their large specific surface area, good
biocompatibility, and biodegradability (177). Peng et al. (49)
prepared BPNS-based multifunctional nanocomposites (BPNS-
PAMAM@DOX-HA) by modifying BPNSs with hyaluronic acid
and poly-amidoamine dendrimer and loading them with Dox.
The results of the in vivo and in vitro experiments showed that
BPNS-PAMAM@DOX-HA exhibited excellent tumor
cytotoxicity and cellular uptake efficiency under 808-nm laser
irradiation, significantly inhibited the growth of tumors in mice,
and showed a more significant antitumor effect than
chemotherapy or PTT alone.

Metal phosphorus-based nanomaterials (metal-PNMs)
mainly include metal phosphide nanomaterials (e.g., ferrous
phosphide) (178), metal phosphate nanomaterials (e.g.,
calcium phosphate) (179), and metal-black phosphorous
nanocomposites (180). Among PNMs, metal-PNMs have been
widely studied for tumor diagnosis and treatment due to their
unique advantages such as excellent light absorption, inherent
Frontiers in Oncology | www.frontiersin.org 9
magnetism, and biodegradability (181). Jin et al. (50) created a
novel anticancer nanoplatform (Co-P@mSiO2@DOX-MnO2) for
the synergistic treatment of tumor chemotherapy and PTT,
which used cobalt phosphide nanocomposite as the core and
mesoporous silica as the shell, loaded with Dox, and combined
with manganese dioxide nanosheets. The results showed that
under the irradiation of 808-nm NIR laser, Co-P@mSio2@DOX-
MnO2 rapidly increased the temperature of the tumor, reflecting
the excellent photothermal conversion ability. Compared with
the control group, the tumor growth inhibition of the Co-P@
mSio2@DOX-MnO2 group was greater and the antitumor effect
was significantly improved.

In recent years, upconversion nanoparticles (UCNPs) have
attracted attention for their ability to convert NIR light into
visible light or ultraviolet light with a shorter wavelength (182).
UCNPs have the advantages of minimizing light damage, deep
tissue penetration, low light bleaching, and good chemical
stability (183–185), which give them great potential for
application in tumor therapy (186). Zhang et al. (51) designed
a lanthanide-doped UCNP nanotherapy platform (UCNPs@
mSiO2FePc-MC540) coated with mesoporous silica for
synergistic PDT and PTT, which included NaYF4:Yb, Er@
NaLuF4:Nd@NaLuF4 UCNPs, and dual photosensitizing agents
(merocyanine 540 and iron phthalocyanine). The results of the
antitumor experiment showed that the survival rate of A549
cells in the UCNPs@mSiO2FePc-MC540 group decreased
significantly under 808-nm light, while the tumor volume
decreased to approximately 10% of the original volume,
showing a significant antitumor effect.
FIGURE 4 | MAX phases Mn+1AXn forming elements (171). Reproduced with permission from (171).
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Prussian blue (PB) is an iron-centered compound (Fe4[Fe
(CN)6]3-xH2O, where x is the number of water molecules), which
has been widely studied as a coordination compound (187, 188).
PBNPs arewidely used in immunosensors, biological imaging, drug
release, and tumor therapy due to their large inner pore volume,
adjustable size, easy synthesis, surface modification, good thermal
stability, and biocompatibility (189–193). Liu et al. (52) mixed
paclitaxel (PTX) and phase change materials (PCM) and loaded
them onto polyethylene glycol-modified mesoporous PBNPs
(mPBs) to construct a biocompatible nano-drug delivery system
(PCM+PTX@mPBs/PEG). The in vitro cell experiment showed
that the cellular uptake rate of PCM+PTX@mPBs/PEG increased
significantly after 808-nm NIR laser irradiation. The in vivo
antitumor experiment showed that PCM+PTX@mPBs/PEG could
accumulate in the tumor site of mice by passive transport and
significantly inhibit tumor growth by delivering chemotherapeutic
drugs and a photothermal effect.

2.2 Organic Photothermal Nanomaterials
Inorganic photothermal nanomaterials are easy to prepare and
highly modifiable (141), and tend to have higher PCE and better
photothermal stability than organic nanomaterials (26, 194).
However, the potential cytotoxicity caused by the poor
biodegradability of inorganic materials hinders their clinical
application (195). In contrast, organic photothermal
nanomaterials are more biodegradable and biocompatible (26,
196) and mainly include organic small-molecule nanomaterials
and conjugated polymer nanomaterials (14, 197). These two
types of PTAs have shown good therapeutic effects and are
frequently used for tumor imaging and treatment (198, 199). The
most common organic photothermal nanomaterials are
introduced below.

2.2.1 Organic Small-Molecule Nanomaterials
Common organic small-molecule photothermal materials
include cyanine dyes, porphyrins, phthalocyanines, boron
dipyrromethene, and diketopyrrolopyrrole (DPP). Although
these small molecules have excellent photothermal conversion
ability and biosafety, they also have limitations, such as poor
water solubility and limited tumor accumulation. Through
functional modification, nanocarriers can be designed to
improve the solubilization and pharmacokinetics of small
organic molecules and enhance the penetration and retention
of therapeutic agents in tumor tissue, enhancing the therapeutic
effect (26).

After modification to improve the photophysical properties,
cyanine dyes are widely used in tumor PTT, imaging, and
sensing because of their excellent biocompatibility and strong
NIR absorption (200, 201). Cyanine molecules such as ICG,
IR825, IR780, and cypate, are common PTAs that show potential
for widespread application in fluorescence imaging and tumor
therapy (26, 202). Guo etal. (53) synthesized zeolitic imidazolate
framework-8 (ZIF-8) composite nanoparticles (Cy5.5&ICG@
ZIF-8-Dex) using dimethyl sulfoxide/water solvent mixtures
and loaded ICG and cyanine-5.5 (Cy5.5) for tumor imaging
and PTT. The results of PTT showed that the A549 cells in the
Cy5.5&ICG@ZIF-8-Dex group died in large numbers, and the
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tumor growth rate in mice was significantly inhibited, achieving
an excellent therapeutic effect.

Porphyrin-based nanomaterials, with good photophysical
properties and biocompatibility, have gained extensive
attention in clinical tumor therapy and diagnostic imaging
(203, 204). Studies have found that assembling porphyrin
monomers with supramolecular nanostructures not only
improves their physical and chemical properties and
strengthens tumor accumulation, but also greatly enhances the
range of application of porphyrin in the biomedical field (205,
206). Cao et al. (54) synthesized amphiphilic porphyrin (PPor)
through conjugation with two PEG chains, and integrated
perylene diimide into the porphyrin skeleton to form a D-A
structure. The in vivo and in vitro antitumor experiments showed
that under 808-nm laser irradiation, PPor nanoparticles
completely disappeared from the primary tumor in mice and
stimulated robust systemic antitumor immunity by releasing a
large number of damage-associated molecular patterns and
tumor-associated antigens, which significantly inhibited
tumor metastasis.

Phthalocyanines (PCs) are regarded as second-generation
photosensitizers in PDT because of their high molar
absorption and excellent photostability (202, 207). With
further research on PCs, it was found that PC nanomaterials
also exhibit high PCE after irradiation with NIR light, giving
them great potential in the application of PTT (208, 209). Feng et
al. (55) designed T-MP nanoplatforms based on HER2 and
targeted micellular PC. The results of in vivo and in vitro
antitumor experiments showed that after 808-nm laser
irradiation, the killing rate of HT-29 cells in the T-MP group
was much higher than that in the control group. Additionally,
primary tumor growth was significantly suppressed, and tumor
lymph node metastasis was effectively overcome, greatly
prolonging the survival time of mice.

Compared with other organic photothermal nanomaterials,
boron dipyrromethene (BODIPY) has gained interest because of
its strong absorption of long wavelengths, good photostability,
excellent water solubility, and biocompatibility (210–214).
Through chemical modification with a conjugated system, the
nano-photosensitizer based on BODIPY has a higher absorption
coefficient in the NIR region, which gives it the potential to be
used as a PTA (215–217). Yu et al. (56) fabricated an NIR
BODIPY dye with an upper phenyl-fused segment (BBDP). The
photothermal experimental results demonstrated the PCE of
BBDP nanoparticles to be as high as 54.2%, suggesting
excellent photothermal capability. Moreover, in vitro antitumor
experiments showed that under 690-nm laser irradiation, as the
concentration of BBDP-NPs increased, the survival rate of tumor
cells gradually decreased, indicating that BBDP-NPs have a good
phototherapeutic effect.

DPP and its derivatives are widely used in fluorescence
imaging and tumor therapy because of their easy modification,
high molar extinction coefficient, and good photothermal
stability (218, 219). In recent years, nanomaterials with a D-A-
D structure based on DPP derivatives have received increasing
attention (220, 221). Zheng et al. (57) synthesized three self-
assembled nanoparticles with PEG as the side chain using three
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amphiphilic DPP derivatives (TPADPP, DTPADPP, and
TPADDPP). The experimental results showed that these three
nanoparticles can not only effectively gather in the tumor site,
but also have good biological safety and low cytotoxicity in dark
environments. Under the irradiation of a 635-nm laser,
DTPADPP and TPADDPP nanoparticles showed an efficient
photothermal effect, and tumor growth in mice was significantly
inhibited, suggesting that they have a tumor ablation effect.

2.2.2 Conjugated Polymer Nanomaterials
Conjugated polymers with a large p-conjugated backbone and high
electron delocalized structure have been widely used in tumor
therapy because of their high extinction coefficient and good
biocompatibility (222, 223). Moreover, because of their p-
electrons, which can easily cause delocalization and transition,
conjugated polymers can effectively convert absorbed light energy
into heat, making it a suitable PTA (224). At present, the conjugated
polymer nanomaterials mainly include polypyrrole (PPy),
polyaniline (PANI), and donor-acceptor (D-A)-conjugated
polymers, as well as poly-(3,4-ethylenedioxythiophene): poly(4-
styrene sulfonate) (PEDOT : PSS).

As a potential PTA, PPy has good biocompatibility, excellent
photothermal properties, photostability, and accessible synthesis
characteristics (225, 226). Wang et al. (58) combined CS and
carboxymethyl cellulose (CMC) through electrostatic
interactions and loaded PPy and 5-fluorouracil (5-Fu) to
prepare a novel composite nanoparticle: CMC/CS@PPy
+5FuNP. In vitro biological studies showed that CMC/CS@PPy
+5FuNPs can be effectively internalized by HepG2 cancer cells.
The combination of the photothermal effect of PPy and toxicity
of 5-FU can significantly improve the therapeutic efficiency on
tumors, indicating that CMC/CS@PPy+5FuNPs have great
potential in synergistic chemotherapy and PTT.

PANI has been reported as a type of organic photothermal
nanomaterial with good stability, biocompatibility, and strong
NIR absorptivity. It has been widely used in photoacoustic
imaging (PAI) and PTT for tumors (227–229). Wu et al. (59)
synthesized a glucose oxidase (GOx)-conjugated PANI
nanoplatform (PANITG) for PTT for tumors. Under the
irradiation of NIR laser, PANITG activates PTT in slightly
acidic tumor microenvironments. The released GOx reacts
with excess glucose in the tumor tissue, resulting in cancer
starvation. The in vitro and in vivo antitumor experiments
showed that glutamate produced by GOx-mediated catalytic
reactions enhances the photothermal effect. Meanwhile, PTT
also plays a role in promoting the catalytic reaction, indicating
that the two synergistically exhibit a significant antitumor effect.

D-A-conjugated polymers have been widely used in PTT for
tumors because of their extended light absorption ability and
good PCE (230, 231). Liu et al. (60) synthesized D-A-conjugated
nanoparticles using thiophene and triphenylamine (TPA) as
donors and benzo[1,2-c:4,5-c′]bis([1,2,5]thiadiazole) (BBTD) as
the acceptor. The molecular rotors and bulky alkyl chains were
then introduced into the center Dmura core to reduce
intermolecular interaction. NIRb14 nanoparticles (NIRb14NPs)
with long alkyl chains exhibit better photothermal properties.
Additionally, the in vivo and in vitro antitumor experiments
Frontiers in Oncology | www.frontiersin.org 11
showed that NIRb14NPs had a longer circulation time in vivo,
demonstrat ing significant tumor growth inhibit ion
and biosafety.

Poly(3,4-ethylenedioxythiophene): poly(styrene-sulfonate)
(PEDOT : PSS) is a complex of conjugated polymer PEDOT
and negatively charged polymer PSS (232–234). PEDOT : PSS is
an aqueous-based conductive polymer nanoparticle with strong
NIR absorption that has become a popular NIR PTA for its
water-dispersibility, high PCE, excellent light stability, and good
biocompatibility (235–237). Ko et al. (61) synthesized a kind of
magneto-conjugated polymer core-shell nanoparticle (MNP@
PEDOT : PSSNP) based on PEDOT : PSS by in situ surface
polymerization. PTT experiments showed that after laser
irradiation, compared with the control group, the tumor
volume of tumor-bearing mice did not significantly change,
while the tumors in the MNP@PEDOT : PSSNP group were
completely cleared. Additionally, these nanoparticles did not
affect other organs, showing an effective and safe anti-
tumor effect.

PDAhas a similar chemical structure to eumelanin andmay have
similar properties, including NIR-responsiveness, chelation, and
drug-binding capability (238). Liu et al. (239) first discovered that
PDA has remarkable photothermal conversion ability and applied
PDA as PTA to tumors. Xu et al. (62) designed biodegradable folic
acid-modified Cu2+-chelated PDA nanoparticles (Cu-PDA-FANPs)
as an immunogenic cell death (ICD) inducer andmultimodal tumor
therapy technique (Figure 5). Experimental results showed that
under the irradiation of 808-nm NIR light, Cu-PDA-FANPs could
effectively convert light into heat and cooperate with Cu2+-mediated
chemical dynamic therapy, promotinga systemic antitumor immune
response,which can eliminate tumors in vivo and significantly inhibit
tumor metastasis.

2.2.3 Other Organic Photothermal Nanomaterials
Melanin is a natural polyphenol substance that can be divided
into eumelanin and pheomelanin (240), according to the
precursor molecular. Apart from their chelating function and
drug-binding ability, natural melanin-based nanomaterials have
many beneficial physical and chemical properties, including UV-
Vis absorption and excellent PCE. Therefore, the application of
natural and artificial melanin-based nanomaterials or melanin-
like nanoparticles has achieved remarkable results in the field of
biomedicine, especially as antitumor PTT (241, 242). For
example, Xie et al. (63) prepared melanin and cellulose
nanosheets (OMCNs) using black sesame hell as raw material
by facile liquid-phase exfoliation. They then tested the
photothermal properties and ability to kill cells of the OMCNs.
The extinction coefficient of OMCNs at 808 nm was 3.1 L/g/cm,
the PCE was approximately 37.3%, and the OMCNS
demonstrated good light stability. The results of cell
experiments showed that almost all SMCC-7721 and B16 cells
were killed after NIR laser irradiation, indicating that OMCNs
have a significant photothermal killing effect on cancer cells and
great potential in antitumor therapy in vivo. In addition, Kang
etal. (64) prepared dual laser-responsive multifunctional
melanin-like nanoparticles (MNPs) for PDT, PTT, and
chemotherapy, based on the KMnO4-oxidative polymerization
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of L-3,4-dihydroxyphenylalanine (L-DOPA), pheophorbide a,
and Dox, and modified by FA. The results of antitumor
experiments showed that after 670-nm and 808-nm laser
irradiation, the MNP group showed more extensive damage
and apoptosis than the control group, showing great potential
for antitumor therapy.

2.3 Organic-Inorganic Hybrid
Photothermal Nanomaterials
Inorganic photothermal nanomaterials have unique
physicochemical properties, such as high molar extinction
coefficients, good photothermal conversion rate, excellent
photothermal stability, and easy modification; however, their
poor biodegradability and potential cytotoxicity limit their use in
clinical treatment (91, 243). In contrast, organic photothermal
nanomaterials have ideal biodegradability and biocompatibility;
however, the photothermal properties of most organic
photothermal nanomaterials often require further modification
to be used in the treatment of tumors in vivo (244, 245). Due to
the unsatisfactory effect of inorganic or organic photothermal
nanomaterials alone, the application of organic-inorganic
Frontiers in Oncology | www.frontiersin.org 12
composite nanomaterials in PTT has attracted attention.
Organic-inorganic composites not only integrate their
respective advantages and improve their physical and chemical
properties, but also exhibit synergistm (246–248).

Common organic-inorganic composite nanomaterials
include core-shell nanoparticles and metal-organic frameworks
(MOFs) (249, 250). Odda etal. (65) synthesized surface-
engineered iron oxide nanoparticles (a-Fe2O3NPs) and
PEDOT into a novel core-shell photothermal nanoparticle
(Fe2O3@PEDOT-siRNANP), which was loaded with siRNA for
synergistic tumor gene therapy and PTT. The experimental
results of photothermal conversion performance showed that
Fe2O3@PEDOT-siRNANPs not only had good biocompatibility
and water dispersibility but also demonstrated a high PCE (h =
54.3%) in the NIR region. In vitro and in vivo experiments
showed that Fe2O3@PEDOT-siRNANPs induced greater cancer
cell apoptosis and more pronounced tumor suppression after
laser irradiation compared with GT or PTT alone. Bai etal. (66)
were the first to prepare NIR emission carbon dots (RCDs) based
on glutathione (GSH). They then synthesized a novel metal-
organic framework nano-platform (RCDS@MIL-100) using
FIGURE 5 | Schematic illustration of Cu–PDA–FA NP synthesis and Cu–PDA–FA NP-mediated PTT/CDT synergistic effect and antitumor immune activation (62).
Reproduced with permission from Xu et al., 2022 (62).
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RCDs, FeCl3, and trimesic acid solutions. In the tumor
microenvironment, RCDS@MIL-100 NPs consumed GSH and
released Fe2+, which could react with hydrogen peroxide to
produce hydroxyl radicals. Under the irradiation of 660-nm
laser, RCDs showed excellent photothermal conversion ability,
promoted a Fenton reaction, and enhanced the therapeutic effect
of CDT. The results of antitumor experiments indicated that
tumors in the mice of the RCDS@MIL-100 group were
completely removed, showing a highly effective antitumor effect.
3 MULTIMODAL THERAPY FOR TUMORS
BASED ON PHOTOTHERMAL
NANOMATERIALS

Currently, chemotherapy (251), radiotherapy (252), and high-
intensity focused ultrasound therapy (253) are widely used and
successfully inhibit the growth or spread of tumors and prolong
the survival time of patients. PDT (254) has also been shown to
have significant advantages in the treatment of non-small cell
lung cancer and esophageal cancer. Other treatments, such as
PTT (194), immunotherapy (255), gene therapy (256), and
magnetothermal therapy (257), have undergone significant
research, though most are still in the preliminary clinical stage
of research. These emerging tumor treatments have been shown
to have ideal anticancer effects in many laboratory and
preclinical studies and have broad applications for clinical
treatment in the future. For example, ICG, a hydrophobic
photosensitizer, is the only NIR imaging reagent approved by
the USFDA and has been widely used in the biomedical field,
especially for tumor therapy (258, 259). However, ICG has not
achieved the eradication of all tumors or the prediction and
prevention of metastasis, which is the limitation of single-mode
immunotherapy. For example, some cancer cell subsets in
heterogeneous tumor tissues may achieve mono-drug
resistance to antineoplastic drugs (260). Moreover, long-term
use of anticancer drugs often induces multidrug resistance in
tumor tissues, which leads to reduced efficacy of chemotherapy
(261). Additionally, because of the insensitivity of anoxic cancer
cells to ionizing radiation, radiotherapy alone is often unable to
achieve an ideal therapeutic effect in a hypoxic tumor
environment (262).

Similarly, although PTT has unique advantages, its inherent
limitations affect its clinical application. Because the temperature
of the tumor site rises to 41–47°C during PTT, necrosis may also
occur in the surrounding normal tissue. This leads to the
infiltration of pro-inflammatory and immune suppressor cells,
triggers a chronic inflammatory response, and promotes
immunosuppression through the activation of checkpoint
pathways that inhibit T cell responses (263–265). In addition,
due to the limited depth of NIR light penetration into the tissue,
the tumor cells outside the irradiation area are not completely
removed, resulting in possible tumor recurrence and metastasis
(263). These limitations inhibit the clinical applications of PTT.

To overcome these barriers of single-mode therapy,
combination therapy by integrating two or more treatment
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modalities has been proposed as a solution (266). Combination
therapy is based on synergistic and enhanced interactions
between two or more treatments, which tends to produce
super additive effects, known as “1+1>2” (267). Therefore,
multi-functional nanomaterials are constructed by combining
different types of therapeutic agents in a single nanostructure
through physical adsorption or chemical binding, which can be
used to create multimodal, collaborative therapy for tumors
(268–270).

3.1 Dual-Modal Therapy Based on PTT
PTT facilitates other tumor treatment methods by its ability to
increase the temperature of the tumor site and change the
microenvironment. The heat generated during PTT can also
promote the intracellular transmission and release of drugs,
genes, and immune adjuvants and the disintegration of
thermosensitive nanocarriers to enhance the therapeutic
effects of chemotherapy, gene therapy, and immunotherapy.
It can also accelerate the production of physical/chemical injury
factors, such as ROS synthesis, to enhance the efficacy of PDT,
sonodynamic therapy (SDT), and CDT based on the principle
of oxygen injury. Additionally, due to the increase in
temperature from PTT, the vascular permeability of tumor
tissue increases, which promotes hemoperfusion, increases
oxygen saturation, improves the hypoxic tumor environment,
and enhances the efficacy of radiotherapy limited by hypoxia.
At the same time, light induces ICD and upregulates
tumor immunogenicity, which improves lymphocyte
permeability and enhances antitumor immunity (263, 271).
In this section, representative studies will be introduced to
expla in the synergy between PTT and addi t iona l
therapies (Figure 6).

3.1.1 PTT Acts Synergistically by Promoting the
Uptake of Therapeutic Agents
Studies have found that the high temperatures produced by PTT
can promote the uptake of nanocarriers by tumor cells and
accelerate the decomposition of nanocarriers to enhance
intracellular drug concentration and cytotoxicity (272). In
addition, some anticancer drugs (e.g., cisplatin) exhibit a
significantly enhanced ability to kill tumor cells under the high
temperature produced by PTT (273). However, due to the
thermal expansion of PTT, chemotherapeutic drugs can be
more evenly distributed in tumor tissues, enhance
heterogeneity, and inhibit tumor drug resistance and
metastasis. Wang et al. (274) prepared an intelligent polymer-
drug vehicle (MPPD@IR825/DTX) for chemo-photothermal
combination therapy, which used poly(ethyleneimine)-
poly (ϵ-caprolactone) block polymers as the core and
dimethylmaleic anhydride-modified PEG as the shell,
encapsulating docetaxel (DTX) and IR825. Compared with the
free drug, IR825, MPPD@IR825/DTX nanoparticles exhibited
higher temperatures under 808-nm NIR laser irradiation,
which increased cytotoxicity and promoted apoptosis of tumor
cells more effectively. Furthermore, the results of an in vivo
antitumor experiment showed that the combination of
chemotherapy and PTT has a better effect on tumor
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eradication, while chemotherapy or PTT alone cannot eliminate
the tumor completely.

Similar to combination chemotherapy, PTT can enhance
immunotherapy by promoting the uptake of immune
adjuvants and the disintegration of nanocarriers by tumor
cells. Some PTAs can also be used as immune adjuvants to
promote the maturation of dendritic cells and the production of
antitumor cytokines (275). After PTT, tumor tissue responds to
high-temperature stress and promotes ICD of tumor cells,
thereby enhancing antitumor immune responses (276, 277).
Wang et al. (278) loaded immune adjuvants, imiquimod
(IMQ) and ICG onto amorphous iron oxide nanoparticles
(IONs) to design a tumor microenvironment-responsive
nanoplatform (IMQ@IONs/ICG). The results of antitumor
experiments in vivo and in vitro showed that IMQ@IONs/ICG
had good photothermal conversion ability under 805-nm laser
irradiation, induced in situ ICD, and cooperated with released
IMQ to enhance the antitumor immune response and
significantly inhibit tumor metastasis. Compared with the ICG
alone group, the primary tumors in the IMQ@IONs/ICG group
were completely eradicated after treatment, mesenteric
metastasis was significantly reduced, and the survival time of
mice was significantly prolonged.
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Similarly, PTT can enhance the efficiency of tumor cell uptake
by loosening the cell membrane and promoting the release of
genes from nanocarriers to enhance gene therapy effects (279).
Gene therapy can improve the efficacy of PTT by inhibiting the
expression of specific heat shock proteins and overcoming the
resistance of cancer cells to thermal damage (280). Xu et al. (281)
synthesized a polypyrrole-poly(ethyleneimine)-siILK
nanocomplex (PPRILK) gene PTT nanosystem based on the
siRNA of integrin-linked kinase (ILK). The results of in vivo and
in vitro experiments showed that after 808-nm laser irradiation,
the tumor growth of the PPRILK treatment group was
significantly slower and the damage to normal tissue was
minimized compared to the laser and gene therapy groups,
indicating that the combination of gene therapy and PTT can
effectively ablate tumors and inhibit tumor recurrence.

3.1.2 PTT Acts Synergistically by Promoting the
Production of Damaging Factors
As an innovative ROS-based cancer treatment, CDT mainly
relies on in situ Fenton or Fenton-like reactions to generate
hydroxyl radical and trigger oxidative damage (282, 283). A
kinetic study found that when the temperature increased from
20°C to 50°C, the rate of Fenton reaction was significantly
FIGURE 6 | Applications of photothermal nanomaterials in tumor dual-mode therapy (left) and applications of photothermal nanomaterials in tumor multimode
therapy (right).
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accelerated, giving PTT an unparalleled position in promoting
CDT (284). A limitation of PTT is that the expression of HSPs
inhibits heat-induced apoptosis (285). HSPs include redress
misfolded proteins, such as HSP90 and HSP70, which can
alleviate tumor ablation mediated by PTT. Interestingly,
studies have found that ROS can effectively inhibit the
expression of HSP70, suggesting that CDT, which can generate
hydroxyl radicals, is suitable for inhibiting HSP activity and
enhancing the efficacy of PTT (286). Huang etal. (287) mixed
Ag2S nanodot-conjugated Fe-doped bioactive glass nanoparticles
(BGN-Fe-Ag2S) with PEG double acrylates (PEGDA) and 2,2′-
azobis[2-(2-imidazolin-2-yl)propane]-dihydrochloride solution
to form a novel light-activated injectable nano-hydrogel
(PBFA). The results of in vitro experiments showed that under
the irradiation of an 808-nm laser, the solution temperature of
the PBFA group increased significantly, the concentration of
intracellular ROS increased, and the survival rate of tumor cells
was much lower than that of the control groups at 33%.
Additionally, compared with the control group, the PBFA
group could inhibit tumor growth more effectively and showed
better biological safety.

The principle of PDT is that photosensitizers are selectively
activated and produce cytotoxic ROS through a specific
wavelength of light induction, thus inducing tumor cell death
(288). It has been reported that PTT produces mildly high-
temperatures, can enhance cell membrane permeability to
enhance tumor cell uptake of photosensitizer-loaded
nanocarriers, and increases intracellular photosensitizer
concentration to promote ROS synthesis, enhancing the
therapeutic effect of PDT (289, 290). Sun et al. (291) prepared
a novel target nanoprobe (Fe/ICG@HA) with porous Fe3O4

nanoparticles modified by HA and loaded with ICG. The
results of antitumor experiments showed that the temperature
of the tumor site in the Fe/ICG@HA group increased rapidly to
42.3°C after 808-nm NIR laser irradiation. After 14 days of
treatment, the tumor volume of the Fe3O4 and ICG groups
increased slightly, while that of the Fe/ICG@HA group decreased
significantly. At the same time, histological examination showed
that a large amount of singlet oxygen was produced between
tumor cells, indicating that Fe/ICG@HA nanoprobe is a
promising nanoplatform for combination PDT/PTT.

In recent years, SDT has been widely revered as a non-
invasive tumor treatment method, whose action is to promote
acoustic cavitation in tumor cells through the impact of
ultrasound on sonosensitizers, thus producing an antitumor
effect (292). Additionally, the energy generated by ultrasound
can be converted into ROS in the presence of ultrasonic
sensitizers (293). Because the lipid arrangement in the biofilm
is affected by temperature and membrane permeability increases
with temperature, PTT can enhance the SDT cavitation effect
(263). Moreover, the ROS and oxygen environment on which
SDT depends may enhance PTT/SDT synergism (294).
Soratijahromi et al. (295) designed gold/manganese dioxide
nanocomposite (Au/MnO2 NC) for combination therapy of
SDT/PTT. The experimental results showed that under the
irradiation of an 808-nm laser and ultrasound, Au/MnO2 NC
shows excellent photothermal and acoustodynamic conversion
Frontiers in Oncology | www.frontiersin.org 15
ability. Compared with the control group, the production of ROS
in the phototherapy/sonotherapy group was significantly
increased, which was the most effective in inhibiting melanoma
and showed good synergism.

3.1.3 PTT Acts Synergistically by Improving Tumor
Hypoxic Environment
PTT can not only promote the generation of ROS to enhance the
therapeutic effect of PDT but the mildly high-temperature can also
accelerate blood flow to increase the saturated oxygen
concentration of blood vessels, which improves the tumor
hypoxia environment to promote oxygen production in oxygen-
dependent PDT (296, 297). In addition, difficulty in distinguishing
normal cells from tumor cells as well as hypoxia-limited ROS
production are common pitfalls of radiotherapy (298). Currently,
PTT-induced hyperthermia has been observed to accelerate
intratumoral blood flow to improve tumor oxygenation (299),
thereby reducing hypoxia-induced radioresistance to enhance
radiotherapy efficacy (300). In addition, PTT can effectively
inhibit the repair of DNA damage caused by X-ray radiation,
increase the radiosensitivity of tumor cells, and improve synergism
(301, 302). Ni et al. (303) assembled UCNPs coated with
manganese dioxide and copper sulfide to create a
multifunctional nanoplatform (UCCM) for combined
radiotherapy and PTT. The results showed that the manganese
dioxide coating produced a large amount of oxygen by interacting
with hydrogen peroxide, which can improve the anoxic
microenvironment and enhance the efficacy of radiotherapy.
Meanwhile, under NIR laser irradiation, the dispersed copper
sulfide nanoparticles absorbed light energy and converted it into
thermal energy, which significantly inhibited tumor growth.
Compared with the radiotherapy or PTT groups, the tumor-
bearing mice in the UCCM group had lower cancer cell activity
levels and more significant antitumor effects.

3.1.4 PTT Acts Synergistically With Other Methods
In addition to the synergistic effects of PTT with the methods
described above, PTT can also promote synergism in other ways.
For example, Yang et al. (304) combined superparamagnetic iron
oxide nanoparticles and luminescent lead sulfide/cadmium sulfide
quantum dots (Pb-based QDs) to create supernanoparticles
(SASNs), which verified the feasibility of magnetothermal and
photothermal dual-modal hyperthermia. Dual-modal heating with
SASN as the heating agent showed an efficient heating output,
which was better than magnetothermal and photothermal heating
alone. Lu et al. (305) explored the synergism between gas therapy
and PTT by designing sulfur dioxide prodrug-doped nanorattles.
The experimental results showed that sulfur dioxide had goodPCE,
while sulfur dioxide gas had certain cytotoxicity, which could
effectively induce tumor cell apoptosis through pH-precise
targeting. Compared with the control group without laser
irradiation, the expression of pro-inflammatory proteins (Bax,
P53, caspase-3) was significantly upregulated in superficial and
deep tumors in the combined treatment group after 808-nm laser
irradiation, while that of the anti-inflammatory protein, Bcl2, was
significantly downregulated, and the apoptosis rate of tumor cells
was higher.
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3.2 Multimodal Therapy Based on PTT
Since the 1960s, the combination of two or more treatment
strategies has shown a strong synergistic effect and reduced side
effects. Hence, dual-modal or multimodal treatments have skillfully
integrated the advantages of a single treatment into one system
(282). In contrast to the limited therapeutic effects and possible side
effects of single-modal immunotherapy, multimodal synergistic
therapy may have the overall advantages of a variety of single-
modal immunotherapies and produce higher anticancer effects at
lower doses, avoiding high-dose side effects (306). Although dual-
modal therapy shows better therapeutic effects than single-modal
therapy, multimodal therapies (three or more based on PTT
treatments), can further overcome the shortcomings and improve
anticancer effectiveness (282). The potential synergistic effect of
different treatments has been largely ignored in previous literature
because of the complexity of the synergy among treatments. When
multiple treatment modes are superimposed, whether
contradictions or adverse effects will occur requires further
systematic research and analysis. For example, compared with
PTT or PDT alone, although their combination can provide a
simpler treatment process and more ideal result, it requires higher
laser power and irradiation time to initiate synergism.Whether this
results in adverse effects on normal human tissue has not been
reported (12). Based on the research experience of several groups
(307, 308), a variety of therapeutic agents can be assembled in
nanocarriers for combination treatment of multiple therapies with
higher efficacy and almost no side effects. Below, we provide
examples to introduce the research of several multimodal tumor
therapy methods.

3.2.1 PTT Combined With PDT and Chemotherapy
Previous studies have shown that drugs, photosensitizers, and
PTAs can be integrated into one nanostructure, thus enabling the
combination of chemotherapy, PDT, and PTT (309). Because
ROS produced during PDT can promote intracellular drug
delivery by avoiding uptake of nuclear endosomes, PDT can
effectively enhance chemotherapy. Therefore, the combination of
PTT/PDT/chemotherapy may be more effective than their dual-
modal combinations. Chen et al. (310) synthesized a new
multimodal therapy system based on BP nanotablets using
Dox as a model drug, which has pH/light-responsive drug
release properties. In other words, drug release is further
promoted under 808-nm illumination. The results of
antitumor therapy in vivo showed that, compared with other
control groups, the tumor growth inhibition of mice in the three-
mode immunotherapy group was the most significant (inhibition
rate as high as 95.5%), and the therapeutic effect was significantly
enhanced, indicating that the multi-modal combination of PTT/
PDT/chemotherapy is feasible.

3.2.2 PTT Combined With Chemotherapy and CDT
The synergistic effect between CDT and PTT has been widely
studied and verified (219, 311, 312), but tumor tissues adapt
stronger ROS defensive systems at high ROS levels, resulting in
poor therapeutic effects from CDT (219, 311, 312). A study (313)
found that when PTT andCDT are combined with
Frontiers in Oncology | www.frontiersin.org 16
chemotherapy, this multimodal method can not only overcome
the limitation of PTT penetration depth and avoid drug
resistance, but also improve the sensitivity of tumor tissue to
ROS, achieving significant synergism. Wang et al. (314) designed
a nanoparticle based on redox and light-responsiveness (RLR),
which consists of ultrasmall iron oxide nanoparticles embedded
in an amorphous hollow carbon framework as the core and
stacked manganese dioxide flower-like nanosheet structures as
the shell. RLR nanoparticles were synergistically treated by
manganese dioxide consumption of GSH, iron ion-induced
Fenton reaction, PTT, and chemotherapy (Dox). The in vivo
and in vitro results showed that the RLR nanoparticles
successfully achieved 99.4% and 99.0% tumor-killing rates,
respectively through the synergistic action of CDT,
photochemotherapy, and anticancer drugs on a single
platform. These results show the potential of the RLR
nanoparticle-based platform in multimodal tumor therapy.

3.2.3 PTT Combined With PDT and CDT
PDT and CDT are mainly ROS-mediated tumor therapy
methods. Thus, combining them to construct an antitumor
nanoplatform is a promising strategy to improve the antitumor
effect (315, 316). Because PTT can improve the hypoxia of PDT,
and CDT can inhibit the expression of HSP from PTT, the
establishment of a PTT/PDT/CDT multimodal therapeutic
platform has attracted attention. For example, Liu et al. (317)
prepared biocompatible copper ferrite nanospheres (CFNs)
(Figure 7). Under 650-nm laser irradiation, the Fenton
reaction mediated by copper and iron ions was significant.
Meanwhile, CFNs regulated the tumor microenvironment to
enhance the therapeutic effect of PDT by promoting the
production and consumption of GSH by oxygen. Under the
irradiation of 808-nm laser, CFNs exhibited excellent
photothermal conversion ability. The experimental results in
vivo and in vitro also showed that when the two wavelengths of
laser were irradiated at the same time, almost all tumor cells were
killed and the tumors in tumor-bearing mice were eliminated,
demonstrating an excellent synergistic antitumor effect.

3.2.4 PTT Combined With PDT and Gene Therapy
Studies have found that some specific types of siRNA (e.g.,
BAG3-siRNA) used in gene therapy can inhibit the expression
of HSPs in cancer cells, which provides the possibility of gene
therapy and PTT synergism (318). Among the nanomaterials
that have been used to construct multifunctional platforms for
tumor therapy and imaging, ultrathin BP nanosheets can not
only act as photosensitizers for PDT by effectively promoting the
production of large amounts of singlet oxygen (310), but also be
widely used in PTT because of their excellent extinction
coefficient and PCE (319). Therefore, the construction of a
PTT/PDT/gene multimodal therapy nanosystem, based on a
BP multifunctional nanoplatform, has aroused interest among
researchers (320). Chen et al. (321) used PEG and
polyethyleneimine-modified ultrathin BP nanoparticles (PPBP)
as a human telomerase reverse transcriptase (hTERT) siRNA
delivery system. When irradiated by different wavelengths of
laser, PPBP nanoparticles showed excellent PDT and PTT
July 2022 | Volume 12 | Article 939365

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Shi et al. Photothermal Nanomaterials
activities, which further promoted the specific release of siRNA
for gene silencing antitumor therapy. Experimental in vivo and
in vitro results showed that compared with single-wavelength
irradiation, when 660-nm and 808-nm lasers were irradiated
together, the expression of hTERT mRNA in mice was
significantly reduced and tumor growth was significantly
inhibited under the action of PPBP-siRNA nanosheets. After
42 days of treatment, no obvious lung metastases were found.
This study demonstrates that the PPBP-siRNA nanoplatform
effectively inhibits tumor growth and metastasis through PTT/
PDT/gene therapy synergism and verifies the feasibility of this
multimodal therapy.
4 CONCLUSION AND OUTLOOK

Relying on the rapid development of nanoscience and polymer
material technology, the research of photothermal nanomaterials
in tumor treatment has made significant progress (322).
Although the common inorganic and organic photothermal
nanomaterials have great differences in their structures, they all
have high PCE and tumor ablation capabilities. Nano
phototherapy can not only directly kill tumor cells and reverse
drug resistance, but also enhance immune responses (323). In
addition, photothermal nanomaterials are becoming increasingly
multifunctional through the modification of nanomaterials.
Moreover, tumor treatment is becoming increasingly
multimodal through the combination of various treatment
methods, such as PTT and chemotherapy or PTT and PDT,
which have achieved improved therapeutic effects. However,
most of these methods are still in the laboratory stage, and
Frontiers in Oncology | www.frontiersin.org 17
these nanomaterials may have defects that limit their clinical
application. Thus, the application of photothermal
nanomaterials faces many challenges, such as:

1) Due to the different locations of tumor growth and tumor
distances from the body surface, the tissue penetrated by laser
irradiation has absorbs light, resulting in light weakening or
extinction during PTT. In the future, more efforts should be
focused on the research and development of PTAs with greater
extinction coefficients. In addition, the application method of
penetrating the body should also be developed to avoid laser
attenuation, such as the administration of PTT at the same time
as surgery.

2) The targeting of photothermal nanomaterials in the
treatment of tumors, especially in temperature targeting, and
avoidance of HSP should be improved. In the future, more
attention should be paid to the modification of photothermal
nanomaterials to achieve multifunctional uses. For example,
treatment based on temperature sensitivity in combination
with the application of pH-responsiveness can increase
targeting capablities while realizing the multimodality of
tumor treatment.

3)Although nanocarriers can co-assemble various therapeutic
agents into a single system to build a multifunctional
nanoplatform for tumor diagnosis, imaging, and multimodal
therapy, the compatibility and composition of therapeutic agents
in this technique require further exploration. For example, while
PTT and PDT or CDT exert significant synergism, whether the
proportion of PTAs and photosensitizer or chemodynamic drugs
will inhibit the curative effect of synergistic therapy, as well as the
optimal constituent ratio to achieve the best outcome have yet to
be determined.
FIGURE 7 | Schematic illustration of synthetic process and therapeutic mechanism of CFNs (317). Reproduced with permission from Liu et al., 2018.
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4)PTT is convenient for other treatment modes by virtue of
its unique treatment principle; however, the deeper mechanism
of the synergy between multimodal treatments remains to be
explored. For example, PTT and PDT have an obvious
synergistic effect, but the dominant modality has yet to be
determined. In addition to the composition ratio of nanodrugs,
whether promoting ROS production or alleviating tumor
hypoxia is more significant, and how to design drug carriers to
best exploit this synergism require further investigation.

5)Finally, the most important aspect is the biosafety of
photothermal nanomaterials that remain in the body, which
can administer toxicity to the human body. In addition, most
solvents and chemicals in these nanomaterials are also harmful
to the human body. Although nanomaterials may show low
short-term cytotoxicity to cells, tissues, or organs, their long-
term cytotoxicity and related immune reactions should be
carefully evaluated. One possible method to reduce toxicity is
to design biodegradable and cleanable PTAs. However,
improving the biodegradability and clearance of PTAs may
sacrifice their stability and retention time in the blood,
resulting in reduced tumor uptake. Therefore, a balance must
be achieved.

In all, photothermal nanomaterials in multimodal tumor
therapy present great potential and will become increasingly
beneficial with further research.
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