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Introduction
Peripheral nerve injury is commonly caused by accidental 
trauma, acute compression or iatrogenic injury (Wu et al., 
2012). Such injury can induce temporary or permanent 
neurapraxia, and may seriously affect a patient’s quality of 
life and ability to work. Drug treatment can improve neu-
rological function after peripheral nerve damage, especially 
crush injury (Jacob et al., 2000; Xie et al., 2001; Gu et al., 
2011). After peripheral nerve injury in adult mammals, a 
slow increase in the neuronal expression of neurotrophic 
factor can be observed from 7 days after injury. Axonal re-
generation at the proximal stump of the injury site is also 
very slow, and even after nerve suturing, axons may take up 
to 1 month to extend across the region of damage (Gordon, 
2009; Unezaki et al., 2009). Therefore, even when the nerve 
stump is promptly sutured, additional measures are needed 
to support satisfactory neural regeneration. At present, such 
measures include gene therapy, cell therapy, and administra-
tion of neurotrophic factors. In experimental animals, gene 
and cell therapy successfully promote neuronal repair after 
peripheral nerve injury (Wang et al., 2012); however, there 
are several difficulties with the use of these approaches in 
humans, including finding an appropriate donor, continued 
elevated expression of the exogenous gene, high treatment 
costs, transplantation challenges, and a need for long-term 
efficacy evaluation. Therefore, a considerable amount of 

further research into the safety and efficacy of these meth-
ods is needed before they can be relied on in the clinic (Cai 
et al., 2011; Chen et al., 2011; Dadon-Nachum et al., 2011; 
Hoyng et al., 2011). Neurotrophic factors promote neuronal 
survival and regeneration, but their purification is compli-
cated and costly, and doubts remain about their clinical ef-
ficacy (Rizos et al., 2014; Valiente-Gomez et al., 2014; Wang 
et al., 2014a, b). 

Mecobalamin is a form of vitamin B12 that contains cobalt 
(Yang et al., 2013). It is currently used to treat diabetic pe-
ripheral neuropathy (Huang et al., 2011; Izumi et al., 2013). 
As a cofactor of the methyltransferase enzyme, mecobalamin 
is an essential vitamin for nervous system functioning. It 
contributes to the synthesis of methionine and thymine, in-
creases the uptake of folic acid, and protects its transfer and 
storage within the cell, activates amino acids, contributes to 
the biosynthesis of nucleic acid and proteins, and is involved 
in the formation of nerve tissue lipoprotein (Matsushita et 
al., 2009; Kocaoglu et al., 2014; Meziere et al., 2014). How-
ever, the molecular mechanism by which mecobalamin pro-
motes functional nerve recovery remains unclear. 

In the present study, we evaluated the effects of meco-
balamin on the morphological and functional recovery of 
nervous tissue, and its effects on target muscle atrophy, in a 
mouse model of sciatic nerve injury. In addition, we used re-
al-time PCR to measure the expression of genes for various 
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neurotrophic factors associated with nerve growth, in order 
to examine the molecular mechanisms by which mecobala-
min may promote peripheral nerve regeneration. 

Materials and Methods
Animal surgery and treatment 
Sixty adult male ICR mice, weighing 22–25 g, were provided 
by the Experimental Animal Center of Soochow University 
(Suzhou, Jiangsu Province, China). All experimental proce-
dures involving animals were carried out in accordance with 
the US National Institute of Health (NIH) Guide for the 
Care and Use of Laboratory Animals and approved by the 
Administration Committee of Experimental Animals, Jiang-
su Province, China. 

All animals were deeply anesthetized with an intraperitone-
al injection of a cocktail of xylazine (10 mg/kg), ketamine (95 
mg/kg) and acepromazine (0.7 mg/kg) (Sigma-Aldrich, St. 
Louis, MO, USA). A10 mm long incision was made in the left 
hindlimb to expose the sciatic nerve, and 2 mm of nerve was 
crushed by clamping for 30 seconds with smooth-jaw forceps. 
The distal end of the crush site was marked with a 9-0 nylon 
suture. After the surgical incisions were closed, the animals 
were randomly divided into three groups (n = 20 per group), 
to receive daily intraperitoneal injections of 65 μg/kg (low-
dose) mecobalamin (Eisai, Tokyo, Japan), 130 μg/kg (high-
dose) mecobalamin, or equivalent volumes of saline. The 
treatment lasted for 21 days.

Walking track analysis
Walking track analysis was performed 1, 5, 10, 15 and 20 
days after sciatic nerve injury to examine motor function re-
covery in the mice. Paw length (PL) and toe spread (TS) were 
measured. Sciatic functional index was calculated using the 
following formula: 118.9 [(ETS − NTS)/NTS] − 51.2 [(EPL 
− NPL)/NPL] − 7.5, where E represents the experimental 
side and N refers to the normal control side. An sciatic func-
tional index value of 0 indicates normal nerve function, and 
−100 indicates total impairment (Rustemeyer and Dicke, 
2009). 

Histomorphological examination 
Twenty-one days after surgery, two mice were chosen at ran-
dom from each group. Approximately 3 mm of nerve was 
obtained from the distal segment of the injury site after mice 
were sacrificed by cervical dislocation under anesthesia, fixed 
in glutaraldehyde, and embedded in Epon 812 epoxy resin, 
and cut into ultrathin (3 nm) sections. The sections were 
contrasted using uranium-lead and viewed under a trans-
mission electron microscope (JEOL USA Inc., Peabody, MA, 
USA). 

The remaining eight mice were sacrificed by cervical dis-
location under anesthesia, fixed with 4% paraformaldehyde. 
Gastrocnemius muscle on the ipsilateral side was embedded 
in paraffin, sectioned (section thickness, 10 μm), and stained 
with hematoxylin and eosin. Myocyte cross-sectional area 
was determined using the Leica QWin image analysis system 
(Leica Imaging Systems Ltd., Munich, Germany). 

Real-time PCR
Oligonucleotide primers were designed using Primer Version 
4.0 software (Whitehead Institute, Cambridge, MA, USA), 
and synthesized by Invitrogen Life Technologies (Carlsbad, 
CA, USA). Primer sequences are listed in Table 1. 

At 5, 10, 15 and 20 days postoperatively, three mice were 
chosen at random from the physiological saline group and 
from the high-dose mecobalamin group. Total RNA was 
harvested from nerve tissue on the injured side and from 
L4–6 segments of the ipsilateral spinal cord dorsal root gan-
glia using Trizol (Invitrogen). Total RNA was purified using 
an RNeasy Mini Kit, and cDNA was synthesized using an 
Omniscript RT Kit (both from Qiagen, Valencia, CA, USA), 
according to the manufacturer’s instructions. 

Quantitative real-time PCR was conducted using a Ste-
pOne Real-Time PCR System (Applied Biosystems, Foster 
City, CA, USA) and a SYBR Green RT-PCR system (Fast-
Start Universal SYBR Green Master (ROX) for quantitative 
PCR; Roche, Mannheim, Germany). Each 20 mL of reaction 
mixture contained 0.5 mL cDNA from each sample that was 
mixed with 12.5 mL of 1 × FastStart Universal SYBR Green 
Master (ROX; Roche), 0.5 mL forward primer, 0.5 mL re-
verse primer and 6 mL of PCR-grade water. Real-time PCR 
conditions were as follows: pre-denaturation at 95°C for 2 
minutes, then 45 cycles of 95°C for 15 seconds and 60°C for 
60 seconds. The housekeeping gene GAPDH served as the 
internal reference. Each sample was tested in triplicate and 
the 2–ΔΔCt method was used to analyze relative transcription 
data (Bijwaard et al., 2001; Livak and Schmittgen, 2001).

Statistical analysis 
All data were presented as the mean ± SD. Data were com-
pared by one-way analysis of variance and Scheffe post hoc 
test, using SPSS 11.5 software package (IBM, San Francisco, 
CA, USA). A P < 0.05 level was considered statistically signifi-
cant. 

Results
Mecobalamin promoted the recovery of sciatic nerve 
function in mice 
All mice recovered consciousness after surgery. Mice walked 
with their hindlimbs on the injured side dragging on the 
ground. Walking track analysis demonstrated that sciatic 
functional index value in each group increased with time 
(Figure 1). One day after the surgery, no significant differ-
ence in sciatic functional index value was detectable among 
groups, but by 10 days, sciatic functional index was signifi-
cantly better in the high-dose mecobalamin group than in 
the saline group (P < 0.05). At 15 and 20 days, sciatic func-
tional index was significantly better in both mecobalamin 
groups than in the saline group (P < 0.01).

Mecobalamin contributed to sciatic nerve regeneration 
and prevents target muscle atrophy in mice
At 21 days, ultrathin sections of the crushed portion of the 
nerve were observed in two mice from each group under 
a transmission electron microscope. The crushed nerve in 
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animals that had received saline showed abundant axonal 
degeneration, and the regenerated myelinated nerve fibers 
were arranged sparsely and with thinned myelin. Abundant, 
densely arranged myelinated fibers with mature and thick 
myelin sheaths were observed in the mecobalamin groups 
(Figure 2A–C). The myelin sheath in regenerated myelinated 
nerve fibers was significantly thicker in the high-dose me-
cobalamin group than in the saline group (P < 0.05; Figure 
2D).

At 21 days, hematoxylin-eosin staining of gastrocnemius 
muscle on the injured side in the saline group showed thin, 
widely-spaced myocytes, whereas in the high-dose mecobal-
amin group, muscle cells were plump and regularly arranged 
(Figure 3A–C). The cross-sectional areas of muscle cells in 
mice in the high-dose mecobalamin group were significantly 
greater than in the saline group (Figure 3D; P < 0.05).

Mecobalamin upregulates gene expression of growth 
associated protein 43  in nerve tissue, and of 
neurotrophic factors in the dorsal root ganglion 
Ten days after surgery, growth associated protein 43 mRNA 
expression in the L4–6 segments of the crushed nerve was sig-

Figure 1 Walking track analysis after sciatic nerve crush. 
Sciatic function index value at different time points after surgery in 
mice receiving daily intraperitoneal injections of saline or mecobalamin 
(65 or 130 μg/kg). Data are represented as the mean ± SD (n = 8). 
*P < 0.05, **P < 0.01, vs. saline group (one-way analysis of variance 
and Scheffe post hoc test). 

Table 1 Real-time PCR oligonucleotide primers 

Gene Gene locus Sequence (5′–3′) Product size (bp)

GAPDH NM 008084 Forward: GTG GCA AAG TGG AGA TTG TT 195

Reverse: CCT CAC CCC ATT TGA TGT TA

GAP43 NM 008083 Forward: AGC TTC CGT GGA CAC ATA AC 149

Reverse: TCG GTA GTA GCA GAG CCA TC

NGF NM 013609 Forward: GCC TCA AGC CAG TGA AAT TA 125

Reverse: AGA CAC TGA GGT GAG CTT GG

BDNF NM 007540 Forward: CAA AGC CGA ACT TCT CAC AT 220

Reverse: TTG TCC GTG GAC GTT TAC TT

CNTF NM 170786 Forward: GCA AGG AAG ATT CGT TCA GA 197

Reverse: TTG GTT AAC ATC CCT TGG AA

GAP43: Growth associated protein 43; NGF: nerve growth factor; BDNF: brain-derived nerve growth factor; CNTF: ciliary neurotrophic factor; 
GAPDH: glyceraldehyde phosphate dehydrogenase.

nificantly greater in the high-dose mecobalamin group than 
in the saline group (P < 0.05), and remained elevated until 
15 days postoperatively (P < 0.05). Nerve growth factor, 
brain-derived nerve growth factor and ciliary neurotrophic 
factor mRNA levels in ipsilateral dorsal root ganglia were 
also significantly greater in the high-dose mecobalamin 
group than in the saline group at 5 and 10 days (P  < 0.05; 
Figure 4). 

Discussion
Axonal regeneration is not always accompanied by function-
al motor and sensory recovery after peripheral nerve injury 
(Allodi et al., 2012; Daly et al., 2012). Mecobalamin, a co-
enzyme of vitamin B12, promotes the metabolism of nucleic 
acids, proteins and lipids via a methyl conversion reaction. 
Mecobalamin readily enters nerve tissues and promotes res-
toration of injured nervous tissue, but the underlying mech-
anisms remain poorly understood (Matsushita et al., 2009). 

In the present study, we used mouse models of sciatic 
nerve crush injury, and investigated the restorative effects of 
mecobalamin after peripheral nerve injury using behavioral 
and histomorphological analyses. We show that mecobal-
amin improved motor function after sciatic nerve injury, 
contributed to neural regeneration, and prevented target 
muscle atrophy. To date, few studies have explored the mo-
lecular mechanisms of mecobalamin in peripheral nerve 
regeneration. We therefore analyzed the expression of genes 
for a variety of proteins associated with nerve growth after 
daily mecobalamin injections in mouse models of periph-
eral nerve injury. Growth associated protein 43 is strongly 
associated with nervous system development and plasticity, 
and during neuronal development or after injury, levels of 
growth associated protein 43 expression are elevated up to a 
hundredfold (Chen et al., 2012). Significant upregulation of 
growth associated protein 43 expression contributes to the 
growth of nervous processes and activates neurite growth 
cone movement, and these changes are particularly evident 
during nerve regeneration (Zhou et al., 2009; Tsai et al., 
2011; Zhang et al., 2014). Here, we demonstrated that meco-
balamin significantly upregulates growth associated protein 
433 mRNA levels in nervous tissue after sciatic nerve injury. 
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Figure 2 Transmission electron micrographs and quantification of myelinated fibers after sciatic nerve crush. 
(A–C) Transmission electron micrographs of ultrathin sciatic nerve sections obtained 21 days after nerve crush surgery in mice that received daily 
intraperitoneal injections of 130 μg/kg mecobalamin (A), 65 μg/kg mecobalamin (B) or saline (C) for 21 days. Scale bars: 5 μm. (D) Statistical anal-
ysis of myelin sheath thickness in the three groups (data are represented as the mean ± SD). *P < 0.05, **P < 0.01, vs. saline group (one-way analy-
sis of variance and Scheffe post hoc test).

Figure 3 Hematoxylin-eosin staining and cross-sectional area analysis of gastrocnemius muscle fibers after sciatic nerve crush. 
(A–C) Representative light micrographs of transversely sectioned gastrocnemius muscle ipsilateral to the nerve injury in mice that received daily 
intraperitoneal injections of 130 μg/kg mecobalamin (A), 65 μg/kg mecobalamin (B) or saline (C) for 21 days after surgery. Scale bar: 50 μm. (D) 
Statistical analysis of the cross-sectional area of the fibers (data were represented as the mean ± SD; n = 8). *P < 0.05, vs. saline group (one-way 
analysis of variance and Scheffe post hoc test).

Figure 4 The mRNA expression in crushed nerve and L4–6 dorsal root ganglia (real-time RT-PCR) 5, 10, 15 and 20 days after surgery.
The mRNA expression of GAP43 in the crushed nerve (A), and NGF (B), BDNF (C) and CNTF (D) in the dorsal root ganglia, after intraperitoneal 
injections of high-dose mecobalamin (130 μg/kg) or saline, following sciatic nerve crush. Data are represented as the mean ± SD (n = 3). *P < 0.05, 
vs. saline group (one-way analysis of variance and Scheffe post hoc test). GAP43: Growth associated protein 43; NGF: nerve growth factor; BDNF: 
brain derived nerve growth factor; CNTF: ciliary neurotrophic factor; GAPDH: glyceraldehyde phosphate dehydrogenase; d: day. 
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Dorsal root ganglia contain cell bodies of peripheral 
nerves, and are readily cultured in vitro (Saijilafu and Zhou, 
2012). Cultures of dorsal root ganglia are frequently used to 
study the growth, development and regeneration of neurons 
in the peripheral nervous system (Johnson and Sears, 2013). 
An in vitro study highlighted the sensitivity of neuronal 
survival and regeneration in the dorsal root ganglion to neu-
rotrophic factors, such as nerve growth factor, brain-derived 
nerve growth factor and ciliary neurotrophic factor (Atlasi 
et al., 2009; Xiao, 2009). Over a third of dorsal root ganglion 
neurons with broken axons die (Burland et al., 2014). After 
peripheral nerve injury, neurotrophic factor expression is 
upregulated in adult mammals, but the response is very slow 
(Wan et al., 2010; Saleh et al., 2013; Xu et al., 2013), beginning 
7 days after injury (Grumbles et al., 2009; Ziv-Polat et al., 
2014). Accordingly, axonal regeneration at the proximal end 
of the injured nerve stump is also slow (Cui, 2006; Grumbles 
et al., 2009), requiring additional measures for adequate neu-
ronal survival. Although neurotrophic factors promote the 
survival and regeneration of neurons, their purification for 
clinical use is complicated and expensive, and clinical out-
comes remain debated (Rizos et al., 2014; Wang et al., 2014b). 
In the present study, we have shown that the use of 130 μg/kg 
mecobalamin for 5 days after nerve injury upregulates gene 
expression of nerve growth factor, brain-derived neurotroph-
ic factor and ciliary neurotrophic factor in the L4–6 segments 
of the ipsilateral spinal cord dorsal root ganglion. 

In summary, mecobalamin promotes functional and mor-
phological recovery after peripheral nerve injury. The molec-
ular mechanism underlying the restorative effects of meco-
balamin on injured nerves may involve upregulation of the 
genes for multiple neurotrophic factors. The signaling path-
way through which mecobalamin acts to promote peripheral 
nerve regeneration remains to be investigated in the future.
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Correction Announcement

In the article entitled “Impact of vasculature damage on the out-
come of spinal cord injury: a novel collagenase-induced model 
may give new insights into the mechanisms involved” published 
in Neural Regeneration Research [2014;9(20)], two citations were 
mistaken. 

In the body text, “Losey et al., 2014a” should be “Losey et al., 2014” 
(on pages 1783 and 1784), and “Losey et al., 2014b” should be “Losey 
et al., 2008” (on page 1784). 

In the reference list, “Losey P, Young C, Krimholtz E, Bordet R,  

Anthony DC (2014a) The role of hemorrhage following spinal-cord 
injury. Brain Res 1569:9-18.” should be “Losey P, Young C, Krim-
holtz E, Bordet R, Anthony DC (2014) The role of hemorrhage fol-
lowing spinal-cord injury. Brain Res 1569:9-18.” “Losey PH, Young 
C, Krimholtz E, Bordet R, Anthony DC (2014b) The role of hem-
orrhage following spinal cord injury. Brain Res 1569:9-18.” should 
be “Losey PH, Young C, Campbell SJ, Anthony DC (2008) The role 
of hemorrhage following spinal cord injury. FENS Forum. Vol. 
4:151.116.” 
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