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Background. Thyroid cancer is the most common endocrine malignancy, with a recent global increase of 20% in age-related incidence.
Ultrasonography and ultrasonography-guided fine-needle aspiration biopsy (FNAB) are the most widely used diagnostic tests for thyroid
nodules; however, it is estimated that up to 25% of thyroid biopsies are cytologically inconclusive. Molecular markers can help guide
patient-oriented and targeted treatment of thyroid nodules and thyroid cancer. Methods. Datasets related to papillary thyroid cancer
(PTC) or thyroid carcinoma (GSE129562, GSE3678, GSE54958, GSE138042, and GSE124653) were downloaded from the GEO
database and analysed using the Limma package of R software. For functional enrichment analysis, the Kyoto Encyclopedia of Genes
and Genomes pathway analysis and Gene Ontology were applied to differentially expressed genes (DEGs) using the Metascape
website. A protein-protein interaction (PPI) network was built from the STRING database. Gene expression, protein expression,
immunohistochemistry, and potential functional gene survival were analysed using the GEPIA website, the Human Protein Atlas
website, and the UALCAN website. Potential target miRNAs were predicted using the miRDB and Starbase datasets. Results. We
found 219 upregulated and 310 downregulated DEGs, with a cut-off of p < 0:01 and ∣log FC ∣ >1:5. The DEGs in papillary thyroid
cancer were mainly enriched in extracellular structural organisation. At the intersection of the PPI network and Metascape MCODEs,
the hub genes in common were identified as FN1, APOE, CLU, and SDC2. In the targeted regulation network of miRNA-mRNA, the
hsa-miR-424-5p was found to synchronously modulate two hub genes. Survival analysis showed that patients with high expression of
CLU and APOE had better prognosis. Conclusions. CLU and APOE are involved in the molecular mechanism of papillary thyroid
cancer. The hsa-miR-424-5p might have the potential to reverse the processes of papillary thyroid cancer by modulating the hub
genes. These are potential targets for the treatment of patients with papillary thyroid cancer.

1. Introduction

Thyroid cancer is the most common malignant tumour
of the endocrine system. Its incidence has risen sharply
worldwide in the past few years, as age-standardised inci-
dence rates have increased by 20%, from 2.74 to 3.3 per

100,000 [1]. In the United States, in 2020 alone, the esti-
mated numbers of new cases and deaths from thyroid
cancer are 52,890 and 2,180, respectively [2]. Intriguingly,
a parallel increase in global mortality is difficult to
explain in the context of earlier diagnosis and better
treatment [3].
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According to criteria defined by the National Cancer
Institute, there are several histological types of thyroid can-
cer: papillary, follicular, poorly differentiated, and anaplastic.
Differentiated forms of papillary and follicular thyroid cancer
contribute to more than 90% of all thyroid carcinomas [4]. It
is estimated that 5 to 70% of adults could be diagnosed with
thyroid nodules, by various clinical tests [5, 6], and the pri-
mary intention of their evaluation is to differentiate thyroid
cancer from benign nodules. Most thyroid nodules can be

determined by the commonly used diagnostic tests of ultra-
sonography and fine-needle aspiration biopsy (FNAB) [7].
However, it has been predicted that up to 25% of thyroid
biopsies remain cytologically undefined, which can require
diagnostic thyroid surgery [8].

Researchers have made much progress in discovering
molecular mechanisms related to thyroid tumourigenesis,
which can potentially be used as an adjunct in guiding
clinical decisions. Somatic BRAF and RAS point mutations,

Table 1: List of details and patient information of the datasets in GEO.

GEO ID GSE129562 GSE54958 GSE3678 GSE124653 GSE138042

Total no. of patients 8 Not mentioned Not mentioned Not mentioned
Not

mentioned

Total no. of samples 16 38 7 29 81

No. of nontumour
samples

8 7 7 3 57

Tumour types
Papillary thyroid

cancer
Papillary thyroid

cancer
Papillary thyroid

cancer
Thyroid papillary/follicular

carcinoma
Thyroid
cancer

Grading of tumours
(TNM stage)

Stage I-II Not mentioned Not mentioned Primary tumor
Primary
tumor

Pathological grade Not mentioned Not mentioned Not mentioned No subdivision
No

subdivision

‘‘�yroid Cancer’’ OR 
‘‘�yroid Carcinoma’’

Starbase database
miRDB database

GSE129562 GSE3678

DEGs

GO

Metascape

Hub genes

PPI

Cytoscape

GSE54958

mRNA
Papillary thyroid cancer

Inclusion (n = 57)
Organism: homo sapien
Study type: expression profiling by RT-PCR/array

/high throughput sequencing
Attribute name: tissue

miRNA target prediction

R so�ware

Inclusion:survival and expression analysis in
the HPA and GEPIA datasates

Validation: GSE124653
GSE138042
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Figure 1: Study procedure flow chart for selecting of PTC genes.
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Figure 2: Continued.
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as well as RET/PTC rearrangement, are the most recognised
markers in this progression, involving the mitogen-
activated protein kinase (MAPK) and PI3K/AKT signalling
pathways [4]. This suggests the unprecedented possibility of
more precise and effective approaches to the diagnosis and
prognosis of thyroid cancer, based on the discovery of novel
molecular markers.

This study used a high-throughput gene expression data-
base to identify the potential molecular mechanisms of pap-
illary thyroid cancer (PTC). In an attempt to elucidate the
molecular mechanisms, lay a theoretical foundation, and
provide well-defined therapeutic targets for the treatment of
papillary thyroid cancer, we analysed differentially expressed
genes (DEGs) and their regulatory relationships.

2. Materials and Methods

2.1. Microarray Datasets. The gene expression profiles of
GSE129562, GSE3678, GSE54958, GSE138042, and
GSE124653 were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/), and gene expression data
for papillary thyroid cancer and normal thyroid tissue (par-
tial paratumour normal thyroid tissue) were obtained.
GSE129562, GSE3678, and GSE54958 were used for the i-
dentification of mRNA DEGs. GSE124653 and GSE138042
were used for the identification of differentially expressed
miRNAs (DEMIs). The details and patient information of
the datasets in the GEO are listed in Table 1. Our study
procedure flowchart for searching papillary thyroid cancer
target genes is shown in Figure 1.

2.2. Data Analysis and DEG Acquisition. After preprocessing
and standardisation of raw biological data, the original data-
sets were analysed using the Limma package of R software.
The DEGs were further analysed by taking the ∣log FC ∣ >
1:5 and p < 0:01 as thresholds. Volcano maps were drawn
using R software. The intersection of the upregulated and

downregulated genes was mapped using the Venn package
(http://bioinformatics.psb.ugent.be/webtools/Venn/).

2.3. Functional Enrichment Analysis of DEGs.Gene Ontology
(GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were enriched by Metascape [9],
which provides a set of reliable, effective, and efficient tools
to analyse and interpret bioinformatics studies. GO consists
of three domains: molecular function (MF), cellular compo-
nent (CC), and biological process (BP). DEGs were uploaded
to Metascape for enrichment analysis. Terms with a p value <
0.01, a minimum count of 3, and an enrichment factor > 1:5
were collected and grouped into clusters based on their
membership similarities.

2.4. Protein-Protein Interaction (PPI) Network of DEGs. The
online database STRING 11.0 (http://string-db.org), a bio-
logical database and predictor of protein-protein interaction,
was used to explore the PPI analysis of DEGs. An interaction
with a combined score > 0:4 was considered statistically sig-
nificant. Cytoscape (version 3.7.2) is a common source bioin-
formatics platform for the visualisation and analysis of
molecular interaction networks. We also ran a PPI enrich-
ment analysis using Metascape, with default parameters.

2.5. Hub Gene Confirmation and Analysis. The interaction
coefficient between DEGs and hub genes was calculated using
the plugin cytoHubba (version 0.1), and the hub genes were
screened according to their degree.

Hub genes with ≥10 degrees were identified as high con-
nectivity hub genes in the PPI network. In addition, the
Metascape Molecular Complex Detection (MCODE) compo-
nent was used to cluster a given network, based on topology,
to find densely connected regions and identify the most
densely connected networks. The cut-off criteria were the
default values: degree cut-off = 2, node score cut-off = 0:2,
Max depth = 100, and K‐score = 2.
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Figure 2: Identification of thyroid cancer mRNA and miRNA DEGs. (a–c) Volcano map of GSE129562, GSE3678, and GSE54958,
respectively. (d, e) Four upregulated and six downregulated DEGs were selected based on the intersection between upregulated and
downregulated genes in GSE129562, GSE3678, and GSE54958.
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2.6. Association of Gene Expression with the Survival of
Thyroid Cancer Patients. The GEPIA website (http://gepia
.cancer-pku.cn/) can provide quick customisation, based on
TCGA data. The expression of target genes was analysed
through the GEPIA website, and the prognosis of target genes
was validated using the Human Protein Atlas website
(https://www. http://proteinatlas.org/), which contains
immunohistochemistry (IHC) data, location, staining inten-
sity, quantity, and patient information regarding the type of
cancer. The results from the two websites were used to iden-
tify each target gene. p < 0:05 was considered statistically
significant.

2.7. Hub Gene-Related miRNA Prediction.MicroRNAs (miR-
NAs) are small, endogenous RNA molecules consisting of
21–25 nucleotides, and their highly conserved regions can
target gene expression by binding to their 3′-untranslated

regions (3′-UTRs). They play an important regulatory role
in the aetiology of many animal and plant diseases and in
pathophysiological and physiological functions. Each
miRNA is supposed to be able to regulate multiple genes,
via combinatorial and competitive interactions when bound
to mRNA. To determine the potential interaction of
miRNA-mRNA within the hub gene network, the online
resources miRDB (http://mirdb.org/) and Starbase (http://
starbase.sysu.edu.cn/) were employed for miRNA target pre-
diction, and Cytoscape 3.7.1 was used to construct the
miRNA–mRNA regulatory network.

3. Results

3.1. Identification of DEGs in Thyroid Cancer. The gene
expression profiles of GSE129562, GSE3678, GSE54958,
GSE138042, and GSE124653 were downloaded from the
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Figure 3: GO Function enrichment analysis and KEGG pathway analysis of DEGs in thyroid cancer by Metascape. (a, b) MF analysis of
upregulated and downregulated DEGs, respectively. (c, d) BP analysis of upregulated and downregulated DEGs, respectively. (e, f) CC
analysis of upregulated and downregulated DEGs, respectively. (g, h) KEGG of upregulated and downregulated DEGs, respectively.
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GEO database for papillary thyroid carcinoma and paired,
normal thyroid tissue. As shown in Figure 2, 13530, 20188,
and 18837 DEGs from GSE129562, GSE3678, and
GSE54958 were extracted, respectively (Figures 2(a)–2(c)).

R cluster analysis software (∣log FC ∣ >1:5 and p value <
0.01 as the cut-off) found that, in diseased tissue compared
with the paired normal thyroid tissue, there were 219 upreg-
ulated genes and 310 downregulated genes. The common
DEGs in the three datasets were identified using Venn dia-
gram software (Figures 2(d) and 2(e)). The results showed a
total of 10 common DEGs, among which 6 were downregu-
lated and 4 were upregulated.

3.2. DEGs, GO, and KEGG Pathway Analysis in Thyroid
Cancer. In an attempt to analyse the biological classification
of DEGs, the Metascape website was used for functional
and pathway enrichment analysis. BP enrichment showed
that the increase in DEGs was mainly concentrated in extra-

cellular structure organisation, myeloid leukocyte activation,
blood vessel development, response to wounding, and regu-
lation of cell adhesion (Figure 3(a)), while the decrease in
DEGs was mainly concentrated in the detection of stimuli
involved in sensory perception, detoxification, keratinisation,
and oxygen transport (Figure 3(b)). GO analysis showed that
the MF changes of upregulated DEGs were mainly concen-
trated in structural constituents of the extracellular matrix,
glycosaminoglycan binding, proteoglycan binding, protease
binding, and cell adhesion molecular binding (Figure 3(c)),
while downregulated DEGs in MF were mainly concentrated
in olfactory receptor activity and oxygen carrier activity
(Figure 3(d)). Changes in the CC of upregulated DEGs were
mainly enriched in the extracellular matrix, cytoplasmic vesi-
cle lumen, specific granule, tertiary granule, and extracellular
matrix components (Figure 3(e)), whereas downregulated
DEGs in CC were mainly found in the following GO terms:
keratin filament and collagen-containing extracellular matrix
(Figure 3(f)).

KEGG pathway analysis showed that the DEGs were pri-
marily concentrated in ECM-receptor interaction, comple-
ment and coagulation cascades, focal adhesion, cell adhesion
molecules, (CAMs), transcriptional misregulation in cancer,
pathways in cancer, the p53 signalling pathway, the TGF-
beta signalling pathway, thyroid hormone synthesis, and the
NF-kappaB signalling pathway (Figures 3(g) and 3(h)).

3.3. Identification of Hub Genes. To clarify the significant cor-
relation of DEGs in papillary thyroid carcinoma, we com-
bined the 529 DEGs using the STRING online database
(http://string-db.org) and Cytoscape software. The PPI net-
work of DEGs was constructed, and the most significant
module was obtained from Cytoscape. The top 30 genes were
screened by selecting the models of maximal clique centrality
(MCC), degree, density of maximum neighbourhood com-
ponent (DMNC), and maximum neighbourhood component
(MNC) in the cytoHubba plugin (Table 2). The top 30 genes
in the four models contain 18 common genes: PRSS23, TNC,
HSP90B1, MFGE8, GPC3, CHGB, VCAN, FN1, FAM20A,
THBS1, SPP1, APOE, SERPINA1, CLU, TIMP1, SDC2,
EVA1A, and CDH2 (Figure 4(b)).

Additionally, Metascape online was applied to discover
the hub clusters in the network with the MCODE component
based on PPI enrichment analysis. In total, 15 modular
MCODEs were extracted from the 529 DEGs, which
included 38 hub genes and four seed genes: ADORA, HBB,
EGR1, and GPR83 (Figure 4 and Table S1). We intersected
the 18 hub genes extracted by cytoHubba with 38 hub
genes identified by Metascape and found four common hub
genes: FN1, APOE, CLU, and SDC2.

3.4. Analysis of Hub Genes by Survival Analysis and
Expression. A survival analysis of the hub genes was per-
formed using the Human Protein Atlas online tool, and
expression was analysed using the GEPIA website, which
helped us to investigate the correlation between hub genes
and survival of patients with thyroid cancer. We found that,
in thyroid cancer, the expressions of FN1, APOE, and CLU
were statistically significant (Figure 5). Although there was

Table 2: List of top 30 genes of 4 modes of MCC, DMNC, MNC,
and degree in cytoHubba plugin.

MCC DMNC MNC Degree

FN1 SPP1 FN1 FN1

SERPINA1 CDH2 SERPINA1 C3

TIMP1 EVA1A C3 SERPINA1

SDC2 CHGB TIMP1 TIMP1

GPC3 PRSS23 APOE SDC2

VCAN MFGE8 SDC2 APOE

APOE FAM20A GPC3 GPC3

TNC HSP90B1 VCAN SPP1

C3 VCAN TNC CDH2

SPP1 TNC HSP90B1 VCAN

CDH2 GPC3 SPP1 TNC

HSP90B1 SDC2 CDH2 HSP90B1

EVA1A MMRN1 EVA1A EVA1A

CHGB TMSB4X CHGB CHGB

PRSS23 PROS1 PRSS23 PRSS23

MFGE8 TIMP1 MFGE8 MFGE8

FAM20A TMC6 FAM20A FAM20A

CFD ATP11A CFD THBS1

CLU ALDH3B1 CLU SDC4

THBS1 OLR1 THBS1 LYZ

MMRN1 APOE CD47 CD36

TMSB4X CLU SDC4 DCN

PROS1 COL8A1 LYZ CFD

CD36 P4HA2 QPCT CD47

CD47 COL5A2 MMRN1 PLAUR

PLAUR THBS1 TMSB4X JUN

PLAU SERPINA1 PROS1 CLU

TMC6 FN1 CD36 QPCT

ATP11A COL23A1 PLAUR COL3A1

ALDH3B1 DCN PLAU ITGA2
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no significant correlation between the high expression of
FN1 and the survival status of patients with thyroid cancer
(p > 0:05), patients with high expression of CLU
(Figure 6(a)) and APOE (Figure 6(c)) tended to live longer.
Thus, we chose APOE and CLU as our target genes for better
prognosis.

3.5. The Biological Roles of the Target Genes in Tumours. To
study whether the target genes play a role in the oncogenesis
of other tumours, we analysed their differential expression in
normal tissues and in various carcinomas, using the GEPIA
website. The analysis showed that CLU was upregulated in
a variety of tumours, including lymphoid neoplasm diffuse
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Figure 4: MCODE enrichment analysis by Metascape. (a) PPI interaction network. The MCODE algorithm was applied to clustered
enrichment ontology terms to identify neighborhoods where proteins are densely connected. Each MCODE network is assigned a unique
color. GO enrichment analysis was applied to each MCODE network. See Supplementary Table S1 for more details. Red, blue, green,
violet, and orange colors indicate modules 1, 2, 3, 4, and 5, respectively. (b) Additionally, 18 most significant genes of four models of
MCC, degree, DMNC, and MNC were identified using the cytoHubba plugin in the Cytoscape.
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large B-cell lymphoma (DLBC), glioblastoma multiforme
(GBM), kidney renal papillary cell carcinoma (KIRP), acute
myeloid leukaemia (AML), brain lower grade glioma
(LGG), ovarian serous cystadenocarcinoma (OV), thyroid
carcinoma (THCA), and thymoma (THYM) (Figure 7(a)).
This implies that, for some tumours, the underlying mecha-
nisms of CLU in regulating their occurrence and develop-
ment are identical. We confirmed that CLU was highly
expressed in THCA, using the UALCAN website (http://
ualcan.path.uab.edu/) (Figure 7(b)). Differential expression
of CLU was found to vary according to the cancer stage
(Figure 7(c)), the patient’s race (Figure 7(d)), the patient’s
age (Figure 7(e)), nodal metastatic status (Figure 7(f)), and
histological subtype (Figure 7(g)). To investigate the poten-
tial molecular mechanisms of CLU, coexpressed genes were
identified via the COXPRESdb website (http://coxpresdb
.jp). This analysis showed that CLU-related genes were pri-
marily concentrated in the proteoglycans in cancer and in
glycine, serine and threonine metabolism, arginine and pro-
line metabolism, histidine metabolism, and tyrosine metabo-
lism (Figure 8). We discovered that CLU had a strong
coexpressive relationship with MIR6843, SCARA3, and
MAOB (Figure 8).

To investigate whether the APOE gene plays an onco-
genic role in other tumours, we analysed its differential
expression in normal tissues and in various tumours, through
the GEPIA website. This showed that APOE was upregulated

in a variety of tumours, including DLBC, oesophageal carci-
noma (ESCA), GBM, head and neck squamous cell carci-
noma (HNSC), LGG, liver hepatocellular carcinoma
(LIHC), pancreatic adenocarcinoma (PAAD), prostate ade-
nocarcinoma (PRAD), skin cutaneous melanoma (SKCM),
stomach adenocarcinoma (STAD), testicular germ cell
tumours (TGCTs), THCA, THYM, uterine corpus endome-
trial carcinoma (UCEC), and uterine carcinosarcoma (UC)
(Figure 9(a)). This implies that there is a common underlying
mechanism for APOE in regulating tumour occurrence and
development. We confirmed that APOE was highly
expressed in THCA, via the UALCAN website
(Figure 9(b)). Differential expression of APOE was found in
patients with different cancer stages (Figure 9(c)) and of dif-
ferent race (Figure 9(d)), age (Figure 9(e)), nodal metastatic
status (Figure 9(f)), and histological subtype (Figure 9(g)).
To investigate the potential molecular mechanisms of APOE,
the genes coexpressed with APOE were identified via the
COXPRESdb website (http://coxpresdb.jp), and analysis
showed that APOE-related genes are primarily concentrated
in cholesterol metabolism and the PPAR signalling pathway
(Figure 10). We discovered that APOE has a strong coexpres-
sive relationship with APOC1, APOC1P1, APOC2,
HSD17B14, PLTP, and PAPLN (Figure 10).

3.6. miRNA-mRNA Network Construction. The miRDB and
Starbase databases were used for miRNA target prediction
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and functional annotations, which are involved in regulating
the transcription of target genes. The probability scores were
predicted using the miRDB database, and a high score of
miRNA-mRNA reflected a close potential function of
miRNA in regulating the target messenger. We filtered the
predicted miRNAs that were identified by at least one of eight
miRNA target prediction programs including PITA, miR-
map, miRanda, microT, picTar, RNA22, PITA, and targetS-
can in the Starbase. The overlapped predicted miRNAs
between the miRDB database and Starbase database were

chosen to construct a miRNA-mRNA network using Cytos-
cape software with a cut-off > 50 (Figure 11).

We constructed a predicted miRNA network for CLU,
LRP2, and APOE, since APOE and CLU were connected
via LRP2 in the MCODE of the Metascape website. Interest-
ingly, 16 miRNAs were validated using GSE124653 and
GSE138042: hsa-miR-542-3p, hsa-miR-424-5p, hsa-miR-
653-5p, hsa-miR-146b-5p, hsa-miR-181d-5p, hsa-let-7b-3p,
hsa-miR-19a-3p, hsa-miR-653-3p, hsa-miR-582-3p, hsa-
miR-188-5p, hsa-miR-204-5p, hsa-miR-181c-5p, hsa-miR-
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548e-3p, hsa-miR-15a-5p, hsa-miR-214-3p, and hsa-miR-
590-3p. Interestingly, hsa-miR-424-5p can regulate both
CLU and LRP2 simultaneously and may play a crucial role
in the progression of carcinogenesis. The potential binding
sites for hsa-miR-424-5p were validated at the 3′-UTR
region of CLU and LRP2 using the miRanda program in
the Starbase (Figure 12).

4. Discussion

Thyroid nodules are extremely common and are often found
in asymptomatic patients who are being evaluated for other
conditions [6, 10]. Thyroid nodules are commonly evaluated
by tests involving thyroid function, ultrasound examination,
and FNAB of selected nodules. However, approximately 25%
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THCA based on sample type. (c) Expression of CLU in THCA based on individual cancer stages. (d, e) Expression of CLU in THCA based on
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of FNA cytology samples yield more than two types of inde-
terminate cytological diagnosis [11]. Moreover, the insuffi-
cient selection of thyroid nodules for biopsy can also lead
to a missed diagnosis of thyroid cancer. The management
of patients with indeterminate nodules is challenging, since
the estimated risk of thyroid cancer is unpredictable (5–
75%) [12–14].

Molecular cytology diagnosis has been applied to multi-
platform detection of DNA, mRNA, and miRNA, which
can help to identify inconclusive thyroid nodules and further
improve the preoperative risk management of benign nod-
ules with undetermined cytology [15]. Researchers have
reviewed the top 12 recommended markers, which include
those well-studied (MET, TFF3, SERPINA1, TIMP1, FN1,
and TPO) as well as those that are relatively novel (TGFA,
QPCT, CRABP1, and PROS1) [16].

To identify DEGs and target genes, we analysed the dif-
ferences in gene profile between papillary thyroid cancer tis-
sue and normal thyroid tissue. Molecular mechanisms and
regulatory relationships with papillary thyroid cancer were
identified, based on the high-throughput analysis of the gene

expression database. Moreover, a theoretical foundation for
the diagnosis of papillary thyroid cancer and accurate per-
sonal therapeutic targets are provided by our analysis. DEGs
may be useful for GO analysis, and target genes can facilitate
clinical studies, following consideration of their clinical rele-
vance. In this study, 529 integrated DEGs were found in pap-
illary thyroid cancer, using a comprehensive analysis of GEO
(GSE129562, GSE3678, and GSE54958). GO (BP, CC, and
MF) analysis was then performed on the 529 integrated
DEGs. The DEG enrichment analysis yielded many terms
concentrated in BP, CC, and MF. These results indicate that
these DEGs are involved in the extracellular matrix of thyroid
cancer cells. The KEGG pathway analysis showed that DEGs
were primarily concentrated in ECM-receptor interaction,
complement and coagulation cascades, cell adhesion mole-
cules (CAMs), transcriptional misregulation in cancer, path-
ways in cancer, thyroid hormone synthesis, mineral
absorption, and tyrosine metabolism. The ECM is highly
dynamic since it is constantly deposited, reshaped, and
degraded throughout development until maturity, to main-
tain tissue homoeostasis [17]. The composition and
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organisation of the ECM are spatiotemporally regulated to
control cell behaviour and differentiation, and the dysregula-
tion of ECM dynamics can lead to the development of dis-
eases such as cancer [18]. Therefore, investigating this
pathway will lead to a better understanding of the prolifera-
tion and invasion of papillary thyroid cancer and will help
to predict tumour progression.

We built a PPI network with 529 integrated DEGs, and 18
hub genes were identified. Additionally, the MCODE com-
ponent of Metascape online was also applied, and 38 hub
genes were discovered. We then intersected the 18 hub genes
and 38 hub genes identified by different methods; four hub
genes (FN1, APOE, CLU, and SDC2) were found in common.
They affect tumourigenesis and progression, mainly by
affecting cell adhesion, migration, and apoptosis. These hub
genes could be used as therapeutic targets in the management
of papillary thyroid cancer and inconclusive thyroid nodules.
Then, these 4 hub genes were subjected to a prognostic anal-
ysis using the GEPIA and Human Protein Atlas websites.
Surprisingly, CLU and APOE expression showed strong rela-
tionships with the prognosis of patients with papillary thy-
roid cancer. Therefore, we chose CLU and APOE as target
genes for further analysis.

The protein encoded by CLU is a secreted chaperone that
may be involved in several basic biological events, such as
cancer initiation and progression, and neurodegenerative
disorders [19, 20]. This involvement suggests that CLUmight
play an important role in cell death, cell cycle regulation,
DNA repair, cell adhesion, tissue re-modelling, lipid trans-

portation, membrane recycling, and immune system regula-
tion [19, 20]. Indeed, CLU is selectively overexpressed and
strongly associated with increased tumourigenicity, metasta-
tic potential, and resistance to chemotherapy [21–24]. It has
been found that CLU mRNA and protein are overexpressed
in several human cancers, including cancer of the prostate,
breast, lung, kidney, ovary, colon, and endometrial tissues
[25–33]. Overexpressions of CLU in DLBC, GBM, KIRP,
LAML, LGG, OV, THCA, and THYM patients were found
by using the GEPIA website, which was consistent with our
main analysis. It has been reported that apoptotic triggers
can upregulate CLU, which acts as a cell survival gene, and
can affect cell resistance to apoptosis in carcinomas [34].
CLU was found within distinct, bipartite patches on the baso-
lateral plasma membranes of cultured porcine thyrocytes,
suggesting that it is a component of cell-adhesion complexes
and is involved in cell-cell and cell-matrix interactions [35].
Our analysis showed that CLU is differentially expressed in
patients according to cancer stage, race, age, nodal metasta-
sis, and histological subtype. We also found that CLU has a
strong coexpressive relationship with MIR6843, SCARA3,
and MAOB.

APOE is an apolipoprotein associated with lipid particles,
mainly mediating lipid transport between organs via the
plasma and interstitial fluids [36–38]. In addition, APOE is
involved in innate and adaptive immune responses, such as
controlling the survival of myeloid-derived suppressor cells
[39]. It has also been reported that APOE is related to a vari-
ety of biological cellular events, such as cell proliferation,
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Figure 9: The biological role of APOE in tumours. (a) Expression of CLU in various tumours on the GEPIA website. (b) Expression of CLU in
THCA based on sample type. (c) Expression of CLU in THCA based on individual cancer stages. (d, e) Expression of CLU in THCA based on
a patient’s race and age. (f) Expression of CLU based on nodal metastasis status of THCA. (g) Expression of CLU based on tumour histology
of THCA. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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migration, adhesion, and immunoregulation, in a tissue-
dependent manner [40]. Many studies have identified a link
between APOE and carcinogenesis via metabolic mecha-
nisms, including DNA synthesis, β-catenin localisation, cell
proliferation, antioxidant function, angiogenesis, and metas-
tasis [41, 42]. Many reports have shown that APOE can be
overexpressed in human malignancies, including cancers of
the bladder, breast, and ovary, colorectal cancer, renal cell
carcinoma, and gastric cancer [42–47]. It is consistent with
these findings that the levels of APOE in DLBC, ESCA,
GBM, HNSC, LGG, LIHC, PAAD, PRAD, SKCM, STAD,
TGCT, THCA, THYM, UCEC, and UC patients were found
to be overexpressed, using the GEPIA website. Although
APOEmRNA is expressed in significant quantities in various

normal human organs [40, 48], it is almost undetectable in
the thyroid and the expression of APOE protein is negative
[49]. However, it has also been reported that APOE was
highly expressed in THCA, via the UALCAN website. This
suggests that high APOE expression may be an important
characteristic of thyroid cancer. Our analysis showed that
APOE is differentially expressed in THCA patients according
to cancer stage, race, age, nodal metastasis, and histological
subtype. We also found that APOE has a strong coexpressive
relationship with APOC1, APOC1P1, APOC2, HSD17B14,
PLTP, and PAPLN.

It was found that both APOE and CLU could delay the
initiation time of amyloid growth kinetics in a
concentration-dependent manner, acting as extracellular
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chaperones to inhibit amyloid-β deposition in patients with
sporadic cerebral amyloid angiopathy [50]. Additionally,
studies have shown that concentrations of APOA1, APOE,
and CLU were differentially expressed in cervical squamous
cell carcinoma patients when compared to those with benign
lesions and were associated with the histological classification

or the processing of the cervical lesion [51]. Interestingly, we
found that APOE correlated with CLU via LRP2 in
MCODE2, and CLU and LRP2 had common predicted miR-
NAs, which implicated hub genes and their potential miR-
NAs that might affect thyroid cancer proliferation and
invasion through the extracellular matrix.

Figure 11: The construction of miRNA-mRNA network of hub genes in THCA. The red circles predicted the potential miRNAs that can be
validated in GSE124653 and GSE138042. The green circular nodes represent mRNAs. The size of the nodes is equal to the target score of
interaction between miRNAs and mRNA.
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5. Conclusion

We found that APOE and CLU were the hub genes regulating
proliferation and invasion through the extracellular matrix in
papillary thyroid cancer. We speculated that the predicted
hsa-miR-424-5p might have the potential to reverse the pro-
cesses of papillary thyroid cancer by modulating the hub
genes. These are potential targets for the treatment of
patients with papillary thyroid cancer.
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