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Abstract: Cold stress, including freezing stress and chilling stress, is one of the major environmental
factors that limit the growth and productivity of plants. As a temperate dicot model plant species,
Arabidopsis develops a capability to freezing tolerance through cold acclimation. The past decades
have witnessed a deep understanding of mechanisms underlying cold stress signal perception,
transduction, and freezing tolerance in Arabidopsis. In contrast, a monocot cereal model plant species
derived from tropical and subtropical origins, rice, is very sensitive to chilling stress and has evolved a
different mechanism for chilling stress signaling and response. In this review, the authors summarized
the recent progress in our understanding of cold stress response mechanisms, highlighted the
convergent and divergent mechanisms between Arabidopsis and rice plasma membrane cold stress
perceptions, calcium signaling, phospholipid signaling, MAPK cascade signaling, ROS signaling,
and ICE-CBF regulatory network, as well as light-regulated signal transduction system. Genetic
engineering approaches of developing freezing tolerant Arabidopsis and chilling tolerant rice were also
reviewed. Finally, the future perspective of cold stress signaling and tolerance in rice was proposed.

Keywords: cold stress; signal perception; signal transduction pathways; Arabidopsis; rice

1. Introduction

Cold stress limits the geographical distribution, growth habits, and productivity of
plants [1]. There are two types of cold stress, including chilling stress (0 to 15 ◦C) and
freezing stress (below 0 ◦C). Many temperate plants, such as Arabidopsis, rapeseed, wheat,
and rye, have acquired a complex network that senses and responds to freezing stress.
Molecular mechanisms and regulation networks of plasma membrane cold perception,
signaling and freezing stress tolerance of these plants have been well-reviewed [2–9]. On
the other hand, rice (Oryza sativa L.), one of the most important cereal crops, is susceptible
to chilling stress, especially in high elevation and high latitude temperate zones [10]. Many
novel regulatory genes have been identified in chilling stress perception and signaling in
rice in the past decade [11–13]. This allows us to compare and distinguish the similarities
and differences of cold stress sensing and signaling mechanisms between Arabidopsis and
rice [8,9].

Plants respond to the decreased temperatures through sophisticated processes at dif-
ferent levels. Initially, plant cells perceive cold stress signals through the plasma membrane
(PM) rigidification, PM-bound G-protein associated receptors, or cold sensors, such as Ca2+

influx channels, two-component histidine kinases, protein and nucleic acid conformations,
or metabolite concentrations [6,14]. Then, the second messengers, including calcium ion,
reactive oxygen species (ROS), and inositol phosphates, are generated. These second mes-
sengers further modulate the intracellular calcium (Ca2+) level. Perturbation in cytosolic
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Ca2+ level is sensed by calcium-binding protein (Ca2+ sensors), which interact with their
target proteins, to transduce calcium signal in the cell. These proteins orchestrate cold stress
signal transduction, activate protein phosphorylation cascades, and adjust the expression
of transcription factors and cold regulated (COR) genes in plants [6].

This review summarized the recent progress in (i) cold stress perceptions, including
PM-associated receptor-like kinases (RLK) and cold sensors; (ii) cold stress signaling mech-
anisms, including calcium signaling, phospholipids signaling, MAPK (mitogen-activated
protein kinase) cascade signaling, and ROS signaling; (iii) ICE (inducer of CBF expression)-
CBF (C-repeat binding factor) transcriptional regulatory network; (iv) the light-regulated
signal transduction system in cold stress tolerance. We highlighted the similarities and
differences in cold-induced responses contributing to freezing tolerant Arabidopsis and
chilling tolerant rice. Finally, we evaluated the genetic engineering for improving cold
stress tolerance in plants and explored future research of cold stress signaling and tolerance
mechanism in rice.

2. Cold Stress Perceptions at Plasma Membrane (PM) in Arabidopsis and Rice

One of the major consequences of the temperature downshift is a decrease in mem-
brane fluidity affecting membrane-associated cellular functions, and the PM is proposed
as a primary sensor of low-temperature stress [15–17]. The feature of primary perception
of temperature in plants has been proposed [18]. Different microdomains with lipid raft
formation and composition, including sphingolipids in the PM, are responsible for sensing
the particular temperature ranges [8,15]. Many putative calcium channels, PM-bound
G-protein associated receptors, plasma membrane-localized receptor-like kinases (RLKs)
have been identified as cold sensors in plants. Calcium channels responsible for Ca2+

influx have been considered a major sensor class for low temperature [19–21]. Through the
membrane rigidification-activated mechano-sensitive or ligand-activated Ca2+ channels,
cold stress induces a transient Ca2+ influx into the cytosol (Figure 1a). Two Arabidopsis
calcium-permeable mechano-sensitive channels, AtMCA1 and AtMCA2, are involved in a
cold-induced increase in [Ca2+]cyt and cold stress tolerance [22]. A cold sensor OsCOLD1
is the novel PM and endoplasmic reticulum (ER)-located protein, which interacted with
α subunit 1 of the G protein (RGA1), enhancing the calcium transients in the cytosol in
cold signal transduction in rice [23]. Two cyclic nucleotide-gated channels, OsCNGC14
and OsCNGC16, mediate the calcium signaling and promote chilling tolerance in rice
seedlings. Their homologous proteins AtCNGC2 and AtCNGC4 in Arabidopsis promote
chilling growth and freezing tolerance [24]. OsCNGC9 positively regulates chilling tol-
erance by mediating cytoplasmic calcium signaling in rice [25] (Figure 1b). Therefore,
calcium channels play a central role in cold stress sensing in Arabidopsis and rice.

On the other hand, a new calcium sensor synaptotagmin without the EF-hand motif,
AtSYT1, localized to the PM and ER, participates in the exocytosis process in the calcium-
dependent pathway under freezing stress in Arabidopsis [26] (Figure 1a). In rice, thirteen SYT
homologous N-terminal-TM-C2 domain proteins (OsNTMC2) have been annotated [27].
However, the function of OsNTMC2 in vesicle trafficking and PM repair in cold stress
response awaits further investigations.

Many receptor-like protein kinases, such as two-component histidine kinases, RLKs,
and G-protein associated kinases, have played pivotal roles in cold stress sensing in Ara-
bidopsis and rice. Two-component signaling systems, AHK2/3, AHP2/3/5, and ARR7, me-
diate the cold stress signaling through inhibiting ABA signaling [28,29]. Besides, AtCRLK1
binds to calcium and calmodulin (CaM), interacts with phosphorylates AtMEKK1 in
freezing signaling and tolerance [30]. Moreover, AtCRPK1 phosphorylates 14-3-3λwhich
shuttles from the cytosol to the nucleus, then interacts with and destabilizes the CBFs
in freezing stress tolerance [31]. In addition, AtPXL1 interacts with and phosphorylates
histidine-rich dehydrin1 (AtHIRD1) and a light-harvesting protein complex I (AtLHCA1)
to positively regulate cold and heat stress tolerances during the germination stage [32].
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Figure 1. Plasma membrane-localized proteins perceive the cold stress signals in Arabidopsis and rice. (a) In Arabidopsis,
freezing stress initiates the PM rigidification, PM-associated calcium channels MCA1/2, calcium sensor SYT1 and kinases
including CRLK1, AtHK1/2/3, and CRPK1, as well as PM-localized PXL1, participate in primary cold stress sensing
and perception. (b) In rice, chilling stress initiates the PM rigidification, many PM-associated proteins, including calcium
channels ACA6, CNGC14/16, phospholipidase PLDα1, aquaporin proteins PIP2;1/PIP2;6, G-protein-associated cold sensor
COLD1 and kinases GT4a and CPK17, participate in primary cold stress sensing and perception. However, a specific
calcium channel for calcium influx is still not known.

In rice, there are several identified PM-localized kinases involved in cold stress per-
ception. OsACA6, a PM Ca2+-ATPase, interacts with CaM-binding protein OsCaMBP1,
calcium-dependent protein kinase (CDPK)-related kinase OsCRK2, and receptor-like kinase
(RLK) OsRLK2 [33]. PM-localized OsCPK17 interacts with and phosphorylates the sucrose-
phosphate synthase OsSPS4 and aquaporin OsPIP2;1/OsPIP2;6, can enhance the cold stress
tolerance in rice [34](Figure 1b). CTB4a, a conserved leucine-rich repeat receptor-like kinase,
interacts with a beta subunit of adenosine triphosphate (ATP) synthase AtpB and improves
the yield under cold stress [35]. Interestingly, the protein level of phospholipase Dα1
(OsPLDα1) increases at one minute after cold treatment. It activates OsMPK6 and OsSIZ1,
followed by the regulations of OsDREB1s expression in cold signaling [36] (Figure 1b).
Therefore, there is much convergence of primary PM-located protein kinases in cold stress
perceptions between Arabidopsis and rice.
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3. Cold Stress Signal Transduction Mechanisms in Arabidopsis and Rice

Following the cold stress perceptions, cold stress signal transduction events occur in
the cytosol and nucleus of plant cells. The second messengers, such as Ca2+ and reactive
oxygen species (ROS), transmit the external cold signals to intracellular signaling systems.
Progress has been made in calcium signaling, phospholipid signaling, MAPK cascade
signaling, and ROS signaling in the past decades. Here, we compare the recent advances
in signal transduction pathways of freezing stress in Arabidopsis and chilling stress in
rice (Figures 2 and 3), highlighting the divergence and convergence in cold stress in both
plant species.
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Figure 2. Putative model of cold stress signaling networks toward freezing stress tolerance in Arabidopsis. The cold-
induced calcium signature in the cytosol is recognized by the calcium sensor proteins, including CaM, CDPK, CBL1/CIPK7,
and CAMAT3, as well as the bZIP transcription factor SGB1 pathway. In addition, CRLK1-MEK1-MKK1/2-MPK4/6
cascade, ROS signaling, and phospholipid signaling work together to regulate cold stress signaling, and many ICE1-DREB
transcription activators and repressors have been identified to regulate the COR gene expressions, finally leading to freezing
tolerance in Arabidopsis.
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Figure 3. Putative model of chilling stress signaling networks toward cold stress tolerance in rice. There are at least four
chilling stress signaling pathways in rice. MYB4-ROS-bZIP cascade is involved in the ROS signaling process. MKK6-MP3
cascade and phospholipid signaling work with calcium signaling concomitantly in chilling stress signaling in rice. ICE1-
DREB transcriptional regulatory cascade is conserved in the Arabidopsis and rice. Furthermore, these pathways’ upstream
and downstream signal transducer proteins play cooperative and regulatory roles in cold stress tolerance in rice.

3.1. Calcium Signaling

Calcium influx into the cytosol is an early event in cold stress [6,17]. This transient
elevation in calcium concentration is also called intracellular calcium signature. Calcium
influx is primarily sensed by the calcium sensor proteins, containing the helix-loop-helix
domain with the EF-hand motif. In plants, calcium sensors include four major classes:
CaM/CaM-like protein (CML), calcium-dependent protein kinase (CDPK or CPK), cal-
cineurin B-like (CBL) protein, and CBL-interacting protein kinase (CIPK). In addition,
a small annexin family has been identified as a calcium sensor to cold stress response
in Arabidopsis.

In Arabidopsis, overexpression of AtCaM3 hinders the cold induction of RD29A and
KIN1, and the AtCaM4 negatively regulates freezing tolerance by interacting with a CaM-
binding protein PATL1 [37]. AtCBL1 interacts with AtCIPK7 and binds to the DREB core
element of COR promoters to negatively regulate freezing tolerance [38]. CaM-binding
transcription activator protein CAMTA3 binds to the conserved CG-1 element in the CBF2
promoter, regulating CBF2 expression in cold stress signaling [39]. A vacuolar Ca2+/H+

antiporter AtCAX1 enhances the DREB1 transcription in cold acclimation response [40].
Recently, an AtOST1-AtANN1cascade was found to regulate calcium signaling in the
CBF1-dependent manner to enhance freezing tolerance in Arabidopsis [41]. This evidence
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demonstrated the negative and positive regulations of calcium sensors to freezing tolerance
in Arabidopsis.

In rice, a CaM-like protein OsCML16 and its six putative targets have been identified
to be involved in cold stress response in rice [42]. However, there is no report about the
role of OsCaMs in cold stress signaling. OsCDPK7 enhances cold stress tolerance by the
increased accumulation of a putative target gene rab16A [43,44]. OsCDPK13 enhances
cold stress tolerance by activating a ubiquitin-like nuclear protein OsCRTintP1, calreticulin
interacting protein 1 [45,46]. OsCPK24 interacts with and phosphorylates OsGrx10, a
glutathione-dependent thioltransferase, in cold stress response [47]. Overexpression of
OsCIPK3, a CBL-interacting protein kinase, improves cold stress tolerance [48]. It is worth
mentioning that OsCIPK31 is strongly induced by cold and salt stress and interacts with
AtCBL3, suggesting the convergence of CBL/CIPK pathways in cold stress signaling
Arabidopsis and rice [49]. As described above, the CaM-associated signaling pathways in
cold stress signaling wait for further confirmations in Arabidopsis and rice.

3.2. Phospholipid Signaling

An increasing number of studies have shown that the metabolism of the membrane
lipids plays an important role in the temperature stress response in plants. In Arabidopsis,
in a few seconds after cold exposure, diacylglycerol kinase (DGK) is activated to converse
diacylglycerol (DAG) into phosphatidic acid (PA), followed by a change in membrane
fluidity [50]. Overexpression of a PM-bound phospholipase gene PLDδ enhances freezing
tolerance in rice seedlings [51]. Suppressed expression of PLDα1 results in a significant
increase in freezing tolerance [52]. Acyl-coenzyme A: diacylglycerol acyltransferase DGAT1
enhances freezing tolerance via CBF2 regulon and NADPH oxidase RbohD (respiratory
burst oxidase homolog D)-dependent H2O2 production in Arabidopsis [53]. The acyl-
coenzyme A-binding protein (ACBP) family has six members (AtACBP1-6) in Arabidopsis.
Overexpression of AtACBP6 enhances freezing tolerance by activating PLDδ to decrease
phosphatidylcholine (PC) levels and accumulate PA [54]. Overexpression of AtACBP1
increases freezing sensitivity via the expression of PLDα1 and PLDδ and maintains a
membrane-associated PA pool [55]. Further, a temperature-induced lipid pathway has
been demonstrated. The FAD2, FAD5 and ACT1 have been identified as the key enzymes
in influencing fatty acid flux between the eukaryotic and prokaryotic pathways cold stress
response in Arabidopsis [56].

In plants, glycerol-3-phosphate acyltransferase (GPAT) of chloroplasts is a key enzyme
to catalyze transferring the acyl group of acyl-(acyl-carrier-protein) (ACP) into the sn-1
position of glycerol 3-phosphate in the first step of glycerolipid biosynthesis in chloroplasts.
Ectopic overexpressing of AtGPAT in rice largely induces the unsaturation of fatty acids and
chilling tolerance of photosynthesis under low temperature [57]. In rice, theω-3 fatty acid
(FA) desaturase (FAD8) mutant does not acclimate to cold stress [58]. OsPLDα1 increases
the levels of PA that bind to OsMPK6 in cold signaling and tolerance [36]. Interestingly,
comparative glycerolipidomics analysis of freezing stress (−6 ◦C and −12 ◦C) in Arabidopsis
and chilling stress (4 ◦C and 10 ◦C) in rice has illustrated that Arabidopsis has a higher
double bond index (DBI) and lower average acyl chain length (ACL) than rice under
cold stress condition [59]. Accordingly, glycerolipid metabolism and signaling show great
potentials in applying cold stress tolerance engineering in Arabidopsis and rice.

3.3. MAPK Cascade Signaling

In plants, the MAPK cascade consists of three sequentially phosphorylating and
activating components, a MAP kinase kinase kinase (MEKK/MAPKKK), a MAP kinase
kinase (MEK/MAPKK), and a MAP kinase (MPK/MAPK). MAPKs phosphorylate various
downstream substrates, including transcription factors, protein kinases, phospholipases,
and cytoskeleton-associated proteins, finally leading to the activation of specific gene
expressions under stress conditions [60].
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In Arabidopsis, MAPKKK protein AtANP1 initiates a phosphorylation cascade with
AtMPK3 under cold stress [61]. The complete cascade AtCRLK1-AtMEKK1-AtMKK2-
AtMPK4/6 has been established to positively regulate freezing tolerance [62]. Recently,
AtMPK6 is found to phosphorylate AtMYB15 to reduce the binding affinity of AtCBF3
and freezing tolerance [63]. AtMPK3 and AtMPK6 phosphorylate AtICE1 to promote its
degradation, thereby negatively regulate freezing tolerance [64]. AtMPK6 phosphorylates
AtMYB5 to positively regulate freezing tolerance [63]. However, the AtMEKK1-AtMKK1/2-
AtMPK4 cascade promotes freezing tolerance by antagonizing the AtMPK3/6 pathway [65].
These results indicate that AtMPK3, AtMPK4, and AtMPK6 proteins cooperatively regulate
freezing tolerance in Arabidopsis.

In rice, there is not identified complete MAPK pathway involved in cold stress sig-
naling until now. Our previous study established that the OsMKK6-OsMPK3 cascade
modulates chilling signaling and tolerance in rice [66]. OsMPK3 phosphorylates and stabi-
lizes OsICE1, which directly transactivates the expression of OsTPP1, thereby positively
regulating chilling tolerance [67]. Moreover, PA binds to OsMPK6 and mediates chilling
stress signaling and tolerance [36]. Therefore, these results have demonstrated a divergence
in MAPK signaling pathways and regulation network in cold stress response in Arabidopsis
and rice.

3.4. ROS Signaling

Under cold stress, excess ROS is produced and brings about oxidative damage and
cold stress response in plant cells. In Arabidopsis, AtMEKK1-AtMKK2-AtMPK4/AtMPK6
cascade regulates the ROS-scavenging enzymes to maintain redox homeostasis under
cold stress [62]. Overexpression of a ROS-regulated C2H2 zinc finger transcription factor
AtZAT12 decreases the expressions of AtCBF1/2/3 genes under cold stress [68]. In addition,
AtHAP5A, a heme-associated protein, positively modulates the freezing resistance by
binding AtXTH21 and inhibits ROS accumulation under freezing stress [69]. Stromal and
thylakoid-bound ascorbate peroxidases sAPX and tAPX trigger COR15A, PAL1, and CHS
expressions under cold stress [70]. AtTrx-h2 regulates the expressions of COR genes under
freezing stress [71].

H2O2 levels are increased within 1.5 h of 10 ◦C stress in rice seedlings [72]. A subset
of 121 early-response genes was upregulated during the initial 24 h of 10 ◦C stress [73];
Among them, four are transcription factor genes, including ROS-bZIP1 and asl/ocs-like
element-containing genes. A hypothetical model of ROS-mediated regulon (ROS-bZIP-
as1/ocs) is assembled independent of CBF/DREB- or ABA-mediated regulons in cold
stress response [72,73]. Comparative metabolomics analysis of indica (9311) and japonica
(Nipponbare) varieties revealed a ROS-dominated dynamic model involved in chilling stress
adaptation and tolerance in rice [74]. Overexpression of OsZFP245 enhances cold stress
tolerance by regulating proline levels and ROS-scavenging activities in rice seedlings [75].
Overexpressing OsAPX1 prevents the over-accumulation of H2O2 and reduces lipid peroxi-
dation in the spikelet tissues at the booting stage of rice [76]. Natural variation reveals that
OsSAP16 controls low-temperature germination in rice [77]. Therefore, there exist specific
and different pathways of ROS-mediated cold signaling in rice.

4. ICE-CBF Transcriptional Cascade

ICE and CBF homologs are highly conserved in Arabidopsis and rice. In Arabidopsis,
ICE-CBF transcriptional cascade has been established as the main regulatory response
toolkit to cold signaling and freezing tolerance [78]. There are several identified positive
and negative regulators, including HK2/3, CAMTA3, OST1, HOS1, and SIZ1/2 for ICE1,
ICE1 for CBF3, MYB15 for CBFs, and SRF6 for COR [79–81]. ICE1 binds toe CBF3 promoter
and induces the CBF3 expression in cold stress signaling [82]. Overexpression of ICE2
induces the expression of CBF1 and enhances freezing tolerance [83]. A RING-finger
ubiquitin E3 ligase, HOS1, interacts with ICE1 and targets for polyubiquitylation and
proteolysis of ICE1 after 12 h of cold stress [79]. SIZ1 catalyzes sumoylation of ICE1 during
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cold acclimation and thus reduces the ICE1 polyubiquitylation [80]. OsSFR6 enhances
freezing tolerance in Arabidopsis [84]. However, there are no such reports of cold signaling
in rice.

Furthermore, OST1 phosphorylates and stabilizes ICE1 to enhance freezing toler-
ance [85]. ICE1 interacts with and negatively regulates the expression of MYB15 during
cold acclimation [81]. EIN3, an ethylene-insensitive 3 gene, negatively regulates the ex-
pressions of CBFs and type-A ARRs [86]. Two repressors of jasmonate acid (JA) signaling,
JAZ1, and JAZ4, interact with and suppress ICE1 and ICE2 transcription activity, finally
repressing the CBF3 expression and freezing tolerance [87]. ZAT12 regulon inhibits the
CBF cold-response regulatory pathway [68]. CAMTA3, a CaM-binding transcription factor,
binds to the CG-1 element in the promoter of ZAT12 under cold stress [28].

In rice, transcript levels of OsICE1 and OsICE2 remain constant during cold stress,
indicating that they are posttranslationally modified under cold stress [88]. Ectopic overex-
pression of OsICE1 and OsICE2 in Arabidopsis imparts freezing tolerance by inducing CBF
expressions [89]. OsDREB1A and OsDREB1B transcripts are induced within 40 min after
cold stress. Overexpressing OsDREB1A increases chilling stress tolerance in rice [90]. Ec-
topic overexpression of OsDREB1A and OsDREB1B in Arabidopsis enhances the expressions
of stress-inducible genes rd29a, cor15a, and rd17 [91]. In particular, OsMYBS3 represses
the transcriptional level of the OsDREB1-dependent cold response pathway in rice [92].
OsROC1 enhances the chilling tolerance by activating OsDREB1 in rice [93]. These results
have revealed the convergence in the ICE-CBF cascade and divergence in the regulation
of the ICE-CBF cascade in cold stress signaling in both species. As expected, new kinases,
phosphatases, and transcriptional regulatory factors upstream and downstream of DREBs
will integrate the convergent and divergent networks of cold stress signaling in Arabidopsis
and rice.

5. Light Modulates the Cold Stress Tolerance

Cross talk between light signaling and cold signaling has been elucidated in the model
plant Arabidopsis and tomato and cereals species [13]. For example, in Arabidopsis, there
are five phytochromes isoforms phyA-E. By using Arabidopsis phys mutants, Franklin and
Whitelam confirmed that phyB and D prevent the realization of FR-induced cold tolerance
at 16 ◦C [94,95]. Interestingly, phytochrome A and B function antagonistically to regulate
cold stress via abscisic acid (ABA)-dependent jasmonate signaling in tomatoes [96]. Similar
results have been obtained in wheat and barley [97]. In barley, the light-regulated signal
transduction system was reported to connect the circadian clock, phospholipid signaling
pathway, calcium signaling elements, and the downstream HvCBF3/4 genes expressions
under cold stress [98].

In rice, phyB negatively regulates chilling tolerance. The phytochrome B-deficient
mutant (phyB) shows the more stabilized chloroplast structure and higher unsaturated
fatty acid (USFA) content in membrane lipids, thereby alleviating the chilling-induced
photoinhibition. Moreover, expressions of genes associated with USFA syntheses such
as OsFAD7 and OsFAD8 are higher in the phyB mutant than in the wild type, suggesting
that OsFAD7 and OsFAD8 are the downstream genes of phyB [99]. On the other hand,
phyB negatively regulates the OsDREB1 expression through interacting with OsPIL16 to
reduce the membrane integrity under cold stress [100]. Therefore, phyB probably senses
the red light signals and transduces the low-temperature signal together with a series of
downstream genes, at least in part through changes in the composition and stability of cell
membranes under cold stress. Nevertheless, there are many gaps to bridge between red
light signal reception and cold stress response in plants.

6. Downstream Response Pathways in the Arabidopsis Freezing Stress and Rice
Chilling Stress

The development of genetically engineered plants by the repression and overexpres-
sion of selected genes seems to be a viable option to hasten the breeding of cold stress
tolerance-improved crop plants. Genetic engineering of cold stress tolerance was reviewed
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in crop and horticultural plants in 2011 [101]. The recent progress in freezing tolerant trans-
genic Arabidopsis and chilling tolerant transgenic rice has been updated (Tables 1 and 2). In
Arabidopsis, engineering of freezing stress tolerance have been obtained through protein
kinases and their associated proteins such as AtLCBK1 [102], AtBZR1 [103], AtCRF4 [104],
ARR22 [105], and AtTCF1 [106]. Many transcription factors, such as bZIP, ZFP, WRKY,
MYB, NAC, GT, DEAR, AP2, AREB, and ERF, have been applied to improve freezing
stress tolerance. Furthermore, AtACBP6 [107] and AtLCBK1 [102] have been identified
as positive regulators of freezing tolerance. Based on the four signaling pathways above,
these engineered genes function downstream of phospholipid signaling, ROS signaling,
and CBF regulon under freezing stress response (Table 1). Thus, these regulatory and
functional proteins can adjust the balance of dehydration, detoxification, and metabolism
under freezing stress in Arabidopsis, increasing the widespread distribution and adaptation
to temperature stress in natural habitats.

Table 1. List of transgenic freezing stress Arabidopsis lines since 2011.

Genes Proteins Signaling
Pathways

Freezing Stress
Regulation References

AtLCBK1 long-chain base kinases Phospholipid Positive [102]
AtBZR1 brassinazole-resistant 1 CBF Positive [103]

AtCRF4 cytokinin response
factor 4 CBF Positive [104]

AtOST1 open stomata 1 CBF Positive [85]

AtACBP6 Acyl-coenzyme
A-binding protein 6 Phospholipid Positive [107]

AHP2/3/5
histidine

phosphotransfer protein
2/3/5

CBF Positive [28]

ARR22 Arabidopsis response
regulator CBF Positive [105]

AtTCF1 Tolerant to Chilling and
Freezing ROS Negative [106]

AtVOZ2 vascular one zinc-finger
protein ROS Negative [108]

AtCCA1 circadian
clock-associated 1 CBF Positive [109]

AtMYB96 MYB transcription
factor CBF Positive [110]

AtFTL1 AP2 transcription factor CBF Positive [111]

AtPMEI13 pectin methyl-esterase
inhibitor ROS Negative [112]

AtSAG101 lipase-like regulators Phospholipid Negative [113]
AtEDS1 lipase-like regulators Phospholipid Negative [113]
AtPAD4 lipase-like regulators Phospholipid Negative [113]

In rice, a transgenic approach has been adopted to improve cold stress tolerance.
We update the engineering cold stress-tolerant rice since 2011 (Table 2). Based on the
functions of these genes in cold stress tolerance in rice, they can be divided into posi-
tive regulatory genes and negative regulatory genes. Positive regulatory genes include
OsCAF1B [114], OsSHMT1 [115], OsUGT90A1 [116], OsPYL10 [117], OsRBGD3 [118], Os-
PYL3 [119], OsSAPK6 [120], OsPUB2/3 [121], OsRAN1 [122], OsRAN2 [123], OsZFP182 [124],
OsCTZFP8 [125], OsbZIP46 [120], ONAC095 [126], OsNAC5 [127], OsWRKY76 [128], Os-
TERF2 [129] and OsMYB2 [130]. In addition, negative regulatory genes include Os-
MYB30 [131], OsbZIP52 [132], OsSPX1 [129] and OsWRKY45 [133]. Based on the four
signaling pathways above, these engineered genes function downstream of ABA signaling,
ROS signaling, and CBF regulon under chilling stress response in rice (Table 2). Therefore,
these genes are responsible for ROS homeostasis, proton transport, pectin degradation, and
trehalose biosynthesis under cold stress in rice.
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Table 2. List of transgenic chilling stress rice lines since 2011.

Genes Proteins Signaling
Pathways

Chilling Stress
Regulation References

OsCAF1B CCR4-associated factor 1 ROS Positive [114]

OsSHMT1 Serine
hydroxymethyltransferase ROS Positive [115]

OsUGT90A1 UDP-glycosyltransferase ROS Positive [116]
OsPYL3 pyrabactin resistance-like ABA Positive [119]

OsRBGD3 RNA-binding glycine-rich
protein ABA Positive [118]

OsPYL10 ABA receptor 10 ABA Positive [117]

OsSAPK6 SNF-1 related protein
kinase 2 ABA Positive [120]

OsPUB2/3 U-box E3 Ub ligases CBF Positive [121]
OsRAN1 small GTPase ROS Positive [122]
OsRAN2 small GTPase ROS Positive [123]

OsZFP182 TFIIIA-type zinc finger
protein ROS Positive [124]

OsCTZFP8 C2H2 zinc finger protein ROS Positive [125]
OsbZIP46 bZIP transcription factor ABA Positive [120]
OsbZIP52 bZIP transcription factor ABA Negative [132]
ONAC095 NAC transcription factor ABA Positive [126]

OsNAP NAC transcription factor ABA Positive [134]
OsNAC5 NAC transcript factor ROS Positive [127]

OsMBY30 MYB transcription factor ROS Negative [131]
OsMYB2 MYB transcription factor ROS Positive [130]

OsWRKY76 WRKY transcript factor ROS Positive [128]
OsWRKY45 WRKY transcript factor ROS Negative [133]

OsTERF2 ethylene response factor ROS Positive [88]
OsSPX1 SPX domain protein ROS Positive [129]

OsBURP16 Polygalacturonase 1β ROS Negative [135]
OsAOX1a alternative oxidase 1 ROS Positive [136]
OsAPX2 ascorbate peroxidase ROS Positive [137]
OsAPXa ascorbate peroxidase ROS Positive [76]

OVP1 V-PPase ROS Positive [138]

OsTPS1 trehalose-6-phosphate
synthase CBF Positive [139]

7. Conclusions and Perspectives

This review analyzes the convergence in cold sensors PM-bound calcium channels
and receptor-like protein kinases in cold stress sensing in Arabidopsis and rice. Identifying
these proteins in calcium signaling and MAPK cascades will be helpful to strengthen the
cold-induced perception mechanisms in Arabidopsis and rice. On the other hand, there
is convergence in calcium signaling, MAPK cascade signaling, ICE-CBF transcriptional
pathways, and divergence in phospholipid signaling and ROS signaling. These signaling
pathways have evolved into distinctive and integrative networks in cold stress responses
in both species.

In the future, regulon engineering will be a novel strategy by using a master regulatory
switch to cause transcriptional changes in the cold response of rice [140]. An efficient
engineering approach will be to generate constitutively active mutant genes, for example,
by deleting the inhibitory domains of transcription factors or changing phosphorylation
mimicking/depriving status in the signal transducers such as MAPK, MAPKK, or receptor
kinases. Meanwhile, to prevent constitutive overexpression of cold-responsive genes from
consuming extra energy and producing undesirable traits, tissue-specific and cold stress-
inducible promoters will be beneficial for the genetic improvement of cold tolerance in rice.
Finally, a multi-genes site-specific assembly system will be developed. Elite constructs with
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multiple stress tolerant genes via CRISPR-Cas9 strategy should be designed to enhance
rice crop productivity to cold stress.
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