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Novel humidity sensors based 
on nanomodified Portland cement
Thanyarat Buasiri1*, Karin Habermehl‑Cwirzen1, Lukasz Krzeminski2 & Andrzej Cwirzen1

Commonly used humidity sensors are based on metal oxides, polymers or carbon. Their sensing 
accuracy often deteriorates with time, especially when exposed to higher temperatures or very 
high humidity. An alternative solution based on the utilization of Portland cement-based mortars 
containing in-situ grown carbon nanofibers (CNFs) was evaluated in this study. The relationship 
between the electrical resistivity, CNF content and humidity were determined. The highest sensitivity 
was observed for samples containing 10 wt.% of the nanomodified cement which corresponded to 
0.27 wt.% of CNFs. The highest calculated sensitivity was approximately 0.01024 per 1% change in 
relative humidity (RH). The measured electrical resistivity is a linear function of the RH in the humidity 
range between 11 and 97%. The percolation threshold value was estimated to be at around 7 wt.% of 
the nanomodified cement, corresponding to ~ 0.19 wt.% of CNFs.

Humidity sensing plays an important part in, e.g. production processes or building maintenance. Cement hydra-
tion is controlled by moisture content and thus humidity1. Uncontrolled or improper moisture diffusion, espe-
cially in an early stage of hydration, can result in a number of negative effects. These include increased shrinkage, 
lower long-term strength and durability problems2, 3. An insufficient water content, e.g. related to an excessive 
evaporation, can hinder the hydration process4. Therefore, monitoring the humidity is crucial for concrete tech-
nology. The humidity defined as the amount of water vapour present in the gas phase and can be expressed as 
absolute or relative value. The relative humidity (RH) is the ratio between the measured amount of water vapour 
and the water vapour required to reach the saturation state at a certain temperature. Measuring the mass of water 
vapour contained in a unit volume determines to the absolute humidity (AH).

Humidity measurements rely on converting the detected amount of water molecules into a signal that can 
be measured, analysed, interpreted and quantified. The interaction between water molecules and sensors is 
controlled by various physical phenomena. The physical phenomenon being measured defines which type of 
sensor is used. The most conventional types include capacitive, resistive, impedance, quartz crystal microbalance 
(QCM), optic-fiber, surface acoustic wave (SAW) or resonance sensing5–7. The capacitive sensors are the most 
commonly used with an estimated 75% of the total market share8. They are built of two metal plates separated 
by a thin layer of an non-conductive polymer film9. The non-conductive polymer film attracts moisture from the 
air, which changes the dielectric constant of the hygroscopic layer. Various types of materials have been used for 
the moisture sensitive layer. The most common include for example polyimide film (DuPont 5878), polymethyl 
methacrylate (PMMA), porous ceramics, porous silicon, porous silicon carbide, hygroscopic polymers or porous 
alumina (Al2O3 )8, 10, 11. Capacitive sensors tend to have a variable sensitivity depending on the measured humidity 
levels. For example sensors using plasma-etched polyimide as the sensing layer showed low sensitivity at a RH 
up to 70% and very high sensitivity at a RH between 70 and 90% 11. Similar problems were observed when using 
porous silicon. In that case, hysteresis was observed at a RH above 60%9. The required power demand is rather 
low but the production technology of this type of sensors is complicated12. Resistive sensors overcame some of 
the problems typical for the capacitive sensors. They also are easier and cheaper to fabricate, have high sensitivity 
and low power consumption. Metal oxide, polymers, and carbon-based materials are the most frequently used 
materials for their production. Unfortunately, some of these materials degrade when exposed to high humid-
ity, including for example, metal oxide or polymer sensors13. Slow response/recovery time and high operating 
temperatures remain the main design challenges for these sensors. Sensors based on matrixes containing Port-
land cement measure also changes of resistivity14. In this case, the measured changes were related to alterations 
of the pore structure leading to either shrinkage or expansion of the matrix, water absorption or desorption 
hysteresis at the interface. Humidity sensing of such matrixes depends also on the amount of the incorporated 
conductive material like carbon fibers (CFs). Chen et al.15 revealed that cementitious matrixes containing less 
CFs better sense changes of the internal humidity. Different curing conditions are known to affect the sensing 
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capability as well. Sun et al.16 reported that a cementitious matrix reinforced with CFs cured in air had a more 
than 2-times lower electrical resistivity compared to the same material being oven cured. Results obtained by 
Han et al.17 showed the same trend. Optic fiber humidity sensors can be classified according to their working 
principles including optical absorption of materials, optical fiber Bragg gratings (FBG), interferometric method, 
and evanescent wave. The FBG-based sensors have been used to monitor strain and temperature18–20 as well as 
humidity in highways19. FBG uses a permanent periodic modulation of the reflective index which is formed by 
an exposure of the core of the optical fiber to an intense optical interference pattern of the light21. The humidity 
sensing is based on an interaction of water molecules with the sensitive core layer. This results in a change of the 
effective refractive index of the fiber core and in a shift of the Bragg wavelength22. Several polymeric materials 
such as polymide23, 24, di-ureasil21 and PMMA25, 26 have been coated onto an etched FBG to improve the humid-
ity sensitivity. Etching of cladding and coating with graphene oxide27 or CNTs22 layer showed sensitivity of 
∼31 pm/%RH. Furthermore, the modified sensor could detect the relative humidity over a wide range between 
20 and 90% at a constant temperature of 25 ˚C22. PMMA-based microstructure polymer optical fiber Bragg were 
studied by Woyessa et al.28. The results showed a response having a very low hysteresis and an improved humidity 
sensitivity (∼35 pm/%RH at 90% RH).

Yet, carbon-based materials are widely used to induce the sensing capability into the monitored material. 
For example, Chung et al.29–32, Sun et al.33 and Ou et al.34 induced piezoresistive properties of cementitious com-
posites by incorporating CFs. Camacho-Ballesta et al.35 reported that composites containing only 0.05 wt.% of 
CNTs showed electrical properties sufficient to be used for monitoring. Yu and Kwon36 revealed CNT/cement 
composites have high sensitivity of the composite stress response when the CNT doping level is high. Compos-
ites based on Portland cement with directly grown CNFs showed even better results in stress/strain monitoring 
reaching approximately 90% compared with the conventional cementitious material37. CNTs and CNFs are 
commonly added as aqueous dispersions. Unfortunately, their strong hydrophobicity results in a formation of 
agglomerates. The effect is even stronger in high pH solutions present during the Portland cement hydration. The 
formation of agglomerates prevents the uniform distribution of the fibers throughout the binder matrix, which 
is the key condition to create an effective electrically conductive network. Surface functionalization of CNTs and 
CNFs enhanced the mechanical properties of cement matrixes through a better bond but it also increased the 
agglomeration38. The usage of ultra-sonication in the presence of surfactants produced stable suspensions of well 
dispersed MWCNTs and functionalized CNTs/CNFs38, 39. However, the results showed also that an increasing 
amount of CNTs/CNFs tends to worsen the fresh mix workability.

The development of an alternative technology enabling to synthesize CNFs directly on cement have limited 
some of these problems. This method uses a chemical vapour deposition process to grow CNFs directly on cement 
particles by utilizing naturally embedded Fe and Al as catalysts37, 40, 41. Replacing part of Portland cement with 
this nanomodified cement ensured a uniform distribution of CNFs. It mitigated also the loss of workability and 
thus significantly increased the maximum amount of CNFs, which could be incorporated into the binder matrix. 
This method seems to be potentially beneficial to create electrically conductive matrixes sensitive in many aspects 
including humidity variations. The research described in the present paper focused on investigating potential 
applicability of nanomodified cement to manufacture sensors for humidity measurements.

Materials and methods
Test sensors were produced as mortar beams composed of a mixture of an ordinary Portland cement (OPC) 
type CEM I 42.5 provided by Cementa-Sweden and the so-called SmartCem. The SmartCem is a nanomodified 
Portland cement having CNFs synthesized directly on the surface of pristine cement through Chemical Vapour 
Deposition (CVD). The total amount of carbon nanofibers (CNFs) grown on the SmartCem was approximately 
2.71 wt.%. The used synthesis processes is described in detail elsewhere37. The morphology of grown CNFs is 
shown in Fig. 1.

Figure 1.   Scanning Electron Microscope image of the nanomodified cement. This figure was taken using 
InTouchScope software version JSM-IT100 (https://​www.​jeol.​co.​jp/​en/​produ​cts/​detail/​JSM-​IT100.​html).

https://www.jeol.co.jp/en/products/detail/JSM-IT100.html
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Sieved and clean sand with the maximum particle size of 150 μm was used as fine aggregate. The superplasti-
cizer (sp) type Glenium produced by Grace Chemical with a solid content of 30% was used to control the work-
ability of the fresh mix. The water-to-binder ratio and the sand-to-binder ratio (s/b) were constant at 0.35 and 1 
respectively. The mix proportions used for the test mortars are shown in Table 1. Three samples were produced 
for each mix and measured electrical resistivity showed less than 5% variation. Measurements also indicated that 
900 s waiting time was required to obtain a stable reading. All measurements were done after that waiting period.

Mortars were mixed using a Bredent vacuum mixer and poured into Teflon moulds. The size of test specimens 
in this research was selected having dimensions of 12 mm × 12 mm × 60 mm since no standard size setup test for 
electrical resistance measurement at present. Different specimen geometries can be used; however, the measured 
resistance should be converted to resistivity by using an appropriate geometry correction factor. Four copper 
electrodes having dimensions of 5 mm × 15 mm × 0.25 mm were immersed 7.5 mm and 30 mm apart into these 
samples and connected by electrical wires with the measuring system, Fig. 2.

The effects of the curing conditions on the electrical resistivity were determined a using reference sample 
(Ref) and the mix containing 4 wt.% of the SmartCem (S4). After casting, the samples were cured at 11%, 43%, 
75%, and 97% RH for 28 days, followed by storage in laboratory conditions at 20 ± 2˚C. The samples used for the 
actual humidity measurements were cured for 28 days at 20˚C and 97 ± 5% RH. The produced humidity sensors 
contained 0% (Ref), 2% (S2), 4% (S4), 6% (S6), 8% (S8) and 10% (S10) of the SmartCem, calculated as the total 
binder weight. Before measurements were started, all sensors were kept in humidity chambers at 11%, 43%, 75% 
or 97% RH for 24 h. The humidity chambers consisted of sealed glass containers containing various types of 
saturated salt solutions. These included lithium chloride (LiCl), potassium carbonate (K2CO3), sodium chloride 
(NaCl) and potassium sulphate (K2SO4) which can maintain relative humidities of 11%, 43%, 75%, and 97%, 
respectively. A commercial humidity sensor type SHT85 produced by Sensirion was installed in each container 
as reference. Values measured after 24 h showed less than 5% variation within 24 h.

The electrical resistance was measured using a four-probe method with a digital multimeter type Keysight 
34465A. An electrical current was applied to the two outer copper electrodes while the electrical resistivity was 
measured on the two inner electrodes, Fig. 3. Humidity sensing was determined as a fractional change of the 
electrical resistivity FCRHumidity and calculated following the Eq. (1):

where: �ρ is the change of electrical resistivity, ρ0 is the initial electrical resistivity. The electrical resistivity ρ 
was calculated using Eq. (2):

where: R is the measured electrical resistance, L is the internal electrode distance and A is the electrode area. The 
sensitivity of the sensor to humidity SHumidity was calculated using Eq. (3)42:

(1)FCRHumidity = �ρ
/

ρ0

(2)ρ = R · A
/

L

Table 1.   Mix proportions.

Mix w/b s/b

sp Cement Nanomodified cement (SmartCem) Amount of CNFs

(wt.% of binder) (wt.% of binder) (wt.% of binder) (wt.% of binder)

Ref 0.35 1.0 0.8 100 0 0.000

S2 0.35 1.0 0.8 98 2 0.054

S4 0.35 1.0 0.8 96 4 0.108

S6 0.35 1.0 0.8 94 6 0.163

S8 0.35 1.0 0.8 92 8 0.217

S10 0.35 1.0 0.8 90 10 0.271

Figure 2.   Mortar specimen with four electrodes. This figure was created using Sketchup version 2017 (https://​
www.​sketc​hup.​com), Microsoft PowerPoint version Microsoft 365 (https://​www.​micro​soft.​com/​en-​us/​micro​
soft-​365/​power​point).

https://www.sketchup.com
https://www.sketchup.com
https://www.microsoft.com/en-us/microsoft-365/powerpoint
https://www.microsoft.com/en-us/microsoft-365/powerpoint
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where: �R and �(%RH) refer to the resistance change and the change of relative humidity in percentage, respec-
tively and R0 is the initial resistance.

Results and discussion
There are many factors influencing electrical resistivity of cementitious matrix. These factors can be divided into 
two main groups. First group contains factors affecting the intrinsic electrical resistivity, especially including 
w/c ratio, which determines porosity, aggregate size, aggregate type, curing condition and storage condition. 
While the second group covers factors affecting the electrical measurement itself. For example, probe spacing, 
electrode contact and specimen geometry. In this research, all listed factors were kept constant, thus humidity 
variations can be indicated as the main affecting factor.

The effects of the humidity during curing and the sample age on the electrical resistivity of the material were 
determined for samples containing 100 wt.% of OPC (Ref) and a combination of 96% of OPC with 4 wt.% of 
the SmartCem (S4).

In general, the electrical resistivity increased with the curing age due to the consumption of water by the 
hydrating cement. The electrical resistivity of the S4-samples tended to be lower at all ages and exposures in com-
parison with the corresponding OPC samples, Table 2. The effect can be related to the creation of an additional 
conductive network by CNFs being present in the S4-samples. The lowest ultimate resistivity was measured for 
the sample mix containing 4wt.% of SmartCem (S4) and being cured at 97% RH.

In the next stage, all sensors produced from the reference mix and the S4 mix and cured at different conditions 
were used to determine their humidity sensing capability. Before the measurement, all produced sensors were 

(3)SHumidity =
�R

/

R0

�(%RH)

Figure 3.   The experimental setup for electrical resistance measurements of mortar samples. This figure was 
created using Sketchup version 2017 (https://​www.​sketc​hup.​com), Microsoft PowerPoint version Microsoft 365 
(https://​www.​micro​soft.​com/​en-​us/​micro​soft-​365/​power​point).

Table 2.   Effects of sample age and curing conditions on electrical resistivity.

Mix Sample age (days)

Electrical resistivity (Ω cm)

Curing condition

11%RH 43%RH 75%RH 97%RH

Ref

1 61.24 60.57 16.61 7.06

3 73.58 68.31 62.92 13.54

7 254.98 245.23 188.72 22.57

28 325.05 249.95 220.91 28.50

S4

1 49.05 46.50 13.95 7.06

3 67.56 54.93 50.62 12.38

7 139.21 130.41 76.38 14.16

28 278.41 202.279 116.33 22.19

https://www.sketchup.com
https://www.microsoft.com/en-us/microsoft-365/powerpoint
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stored for 24 h at 60% RH and 20 ± 2 ˚C. The exposure conditions included 11%, 34%, 75% and 97% RH. The 
resistivity measurements started 24 h later. The obtained results are shown in Fig. 4 and the calculated sensitivity 
of the composites are shown in Table 3.

Figure 4 shows that in the case of reference samples cured at 11%RH the measured electrical resistivity was 
around 210 Ω cm when exposed to 11% RH and 200 Ω cm at 97% RH. A slightly higher change in resistivity was 
measured for samples cured at 97% RH with values of 200 and 170 Ω cm when exposed to 11% and 97% RH, 
respectively. Additionally, there was nearly no change of the samples containing SmartCem cured at 11% RH in 
the electrical resistivity until the relative humidity in the test chamber was set to 97%. In that case, the measured 
electrical resistivity was constant at around 110 Ω cm when exposed to 11%, 43% and 75% RH, while dropping 
to around 80 Ω cm at 97% RH. Samples cured at 43% and 75% RH showed a better sensitivity but only when 
exposed to a higher humidity, 75% and 97% RH. Only the sample cured at 97% RH could detect a humidity 
change in the entire measured range between 11 and 97%RH. Furthermore, for the samples cured at 97% RH 
the observed relation between electrical resistance and relative humidity was linear. At 11% RH the measured 
electrical resistivity was around 90 Ω cm while at 97% RH it decreased to 22 Ω cm.

Samples containing only the unmodified Portland cement showed a generally low sensitivity to humidity; 
independently of the used curing conditions. While samples containing 4 wt.% of the SmartCem showed a sig-
nificantly higher sensitivity to humidity. In both cases, the lowest sensitivity was measured for samples cured at 
11% RH and the highest for cured at 97% RH. The highest calculated sensitivity of 0.00874/%RH was reached 
for the sensor cured at 97% RH and the sensitivity of the S4 sensor significantly increased when exposing to a 
humidity greater than 75% RH, Table 3.

Access of moisture during curing of Portland cement affects the hydration process that controls also the 
developed pore structure. The pore structure and especially connectivity of capillary pores define transport of 
moisture within the solidified binder matrix. This in turn will ultimately affect the efficiency of a moisture sensor 
based on Portland cement. It has been shown that hydration of Portland cement stops when the relative humid-
ity drops to around 80%43. The hydration degree of tricalcium silicate, measured after 90 days dropped from 
36% to only 2% when the RH decreased from 98 to 85%44. Furthermore, the hydration is believed to stop when 
Portlandite, C-S–H and tricalcium silicate are in equilibrium which can occur at a lower RH. Limited hydration 

Figure 4.   Effects of curing conditions used during production of sensors on the humidity sensing capability. 
Error bars represent standard errors.

Table 3.   Calculated sensitivity of reference and S4 samples exposed to 11%, 43%, 75% and 97% RH.

Mix

Sensitivity, SHumidity (/%RH)

Curing condition

11%RH 43%RH 75%RH 97%RH

Ref 0.00104 0.00134 0.00154 0.00206

S4 0.00126 0.00219 0.00577 0.00874
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leads to a decreased amount of gel pores and coarsening of the pore structure. Tests showed a nearly three times 
coarser pore structure for samples cured at 80% RH in comparison with water curing45. These results can be 
directly related to the observed research trends that show that the electrical resistivity of the matrix decreased 
when exposed to high humidity and vice versa. Furthermore, it can be assumed that the presence of CNFs 
enhances the connectivity between moisture filled pore network and thus increases the electrical sensitivity of 
the entire system. The tunnelling effect developing between CNFs was strengthened through the presence of 
water molecules at the fiber–fiber and fiber-matrix interfaces46, 47.

The described results were used in a second set of sensor production and measurements. These sensors 
contained different amounts of CNFs to determine what kind of effect the CNF quantity has on the humidity-
sensing capability. These sensors contained 0% (Ref), 2 wt.% (S2), 4 wt.% (S4), 6 wt.% (S6), 8 wt.% (S8) and 10 
wt.% (S10) of the SmartCem. Based on the best results obtained in the first part of the study, a 97% RH was used 
for curing.  To ensure the stability and exclude any possible effects of moisture or temperature variations on the 
measured electrical resistivity, the produced sensors were stored in laboratory condition for 72 h before testing.

The test results showed a nearly linear relationship between the measured electrical resistivity and the rela-
tive humidity, Fig. 5. The R2 was over 0.95 in all cases, Table 4. Samples containing 0–6 wt.% of the SmartCem 
showed a significantly lower sensitivity of around 0.002 /%RH while samples containing 8 wt.% and 10 wt.% of 
the SmartCem showed a significantly higher sensitivity of 0.00982/%RH and 0.01024/%RH, respectively. The 
maximum humidity sensitivity of 0.01024/%RH was measured for the sensor containing 10 wt.% of the Smart-
Cem. The measured electrical resistivity varied between 280 and 300 Ω cm at 11% RH and 230 Ω cm at 97% RH, 
Fig. 5. At 11% RH the measured value was around 240 Ω cm for both samples and around 300 Ω cm at 97%RH. 
Analysis showed that the percolation threshold related to the amount of CNFs humidity sensing was around 7 
wt.% which corresponded to around 0.19 wt.% of CNFs, Fig. 6.

Comparison between sensing capability of cementitious matrixes incorporating different types of carbon-
based materials is shown in Table 5. Various types of conductive materials showed different humidity sensing 
capabilities. The observed differences in humidity sensitivity can be related to several factors mentioned earlier. 
These include the types of the used conductive fibers and their dispersion in the matrix. Matrixes studied in the 
present research showed significantly higher sensitivity.

Figure 5.   Effects of relative humidity and amount of SmartCem on electrical resistivity of produced sensors. 
Error bars represent standard errors.

Table 4.   Calculated sensitivity and R2 for the produced humidity sensors cured at 97% RH.

Mix CNFs concentration (wt.% of binder) Sensitivity of sensor, SHumidity (/%RH) R2

Ref 0.000 0.00277 0.9956

S2 0.054 0.00278 0.9968

S4 0.108 0.00297 0.9873

S6 0.163 0.00261 0.9938

S8 0.217 0.00982 0.9805

S10 0.271 0.01024 0.9642
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Summarising, the humidity sensing mechanism of the developed SmartCem sensors is related to an altera-
tion of the electrical resistivity. Absorption or desorption of water molecules due to variation of RH in this study 
change the interconnection between matrix–matrix, fiber–fiber and fiber-matrix resulting in a change in the 
ultimate electrical resistivity of sensors. For example, water molecules in gaseous state adsorb on the external 
surface of the sensor and later diffuse into the matrix due to capillary condensation, Fig. 7a. The water vapour 
condenses into water and gradually fills up the abundant pores. This generates additional “bridges” between 
existing electrically conductive paths. Consequently, different amounts of water vapour will result in different 
ultimate electrical resistivity of the sensor, which can be measured, Fig. 7b 50. A comprehensive micromechani-
cal model was proposed by Jang et al.51 to predict the effective electrical conductivity of cementitious matrix 
containing carbon-based filler. This model confirmed that moisture affects the sensing of smart cementitious-
based composite.

Conclusion
The study aimed to determine the sensitivity of novel sensors to variations in the humidity. These humidity sen-
sors are based on mortars containing various amounts of the nanomodified Portland cement (SmartCem). It was 
found that the electrical resistivity of the sensors tended to increase with longer wet curing time due to the alter-
nation of the microstructure and hydration processes. Samples cured at 97% RH showed the highest sensitivity 
with the sensitivity value reaching 0.01024/%RH. According to the percolation theory, the percolation threshold 
amount of the nanomodified cement using for humidity monitoring is estimated at 7 wt.% of the SmartCem 
(~ 0.19 wt.% of CNFs). The humidity sensitivity of the nanomodified cement was related to the intrinsic electri-
cal property, water absorption property, the connectivity as well as the amount of the nanomodified cement to 
change the contact point between fiber–fiber and fiber-matrix due to the presence of water vapour in the air.

Figure 6.   Effects of humidity and amount of nanomodified Smart cement content on the measured electrical 
resistivity. Error bars represent standard errors.

Table 5.   Sensitivity to humidity of cementitious matrixes incorporating various types of carbon-based 
materials.

Reference
Amount of carbon-based materials 
(wt.% of cement) Humidity range Measurement method

Calculated change of the electrical 
resistivity (%)

Calculated humidity sensitivity 
(/%RH)

Xiaoming48 25% graphite 20–60% Four-probe  ~ 9.09%  ~ 0.00227

Carisio et al.49 0.20% MWCNT 0–90% Four-probe  ~ 49.33%  ~ 0.00548

Carisio et al.49 0.35% MWCNT 0–90% Four-probe  ~ 49.64%  ~ 0.00551

Present result S10 0.271% CNF
10% SmartCem 11–97% Four-probe 88.06% 0.01024



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8189  | https://doi.org/10.1038/s41598-021-87563-7

www.nature.com/scientificreports/

Received: 20 January 2021; Accepted: 31 March 2021

References
	 1.	 Delatte, N. J., Williamson, M. S. & Fowler, D. W. Bond strength development with maturity of high-early-strength bonded concrete 

overlays. ACI Mater. J. 97, 201–207 (2000).
	 2.	 Shen, D., Wang, T., Chen, Y., Wang, M. & Jiang, G. Effect of internal curing with super absorbent polymers on the relative humidity 

of early-age concrete. Constr. Build. Mater. 99, 246–253 (2015).
	 3.	 de Medeiros-Junior, R. A., de Lima, M. G. & de Medeiros, M. H. F. Service life of concrete structures considering the effects of 

temperature and relative humidity on chloride transport. Environ. Dev. Sustain. 17, 1103–1119 (2015).
	 4.	 Lothenbach, B., Matschei, T., Möschner, G. & Glasser, F. P. Thermodynamic modelling of the effect of temperature on the hydration 

and porosity of Portland cement. Cem. Concr. Res. 38, 1–18 (2008).
	 5.	 Blank, T. A., Eksperiandova, L. P. & Belikov, K. N. Recent trends of ceramic humidity sensors development: A review. Sensors 

Actuators B Chem. 228, 416–442 (2016).
	 6.	 Lv, C. et al. Recent advances in graphene-based humidity sensors. Nanomaterials 9 (2019).
	 7.	 Yang, S., Jiang, C. & Wei, S. huai. Gas sensing in 2D materials. Appl. Phys. Rev. 4 (2017).
	 8.	 Zhu, Z. T., Mason, J. T., Dieckmann, R. & Malliaras, G. G. Humidity sensors based on pentacene thin-film transistors. Appl. Phys. 

Lett. 81, 4643–4645 (2002).
	 9.	 Chen, L. & Zhang, J. Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sensors Actuators 

A Phys. 178, 88–93 (2012).
	10.	 Story, P. R., Galipeau, D. W. & Mileham, R. D. A study of low-cost sensors for measuring low relative humidity. Sensors Actuators 

B. Chem. 25, 681–685 (1995).
	11.	 Laville, C., Pellet, C. & Kaoua, G. N. Interdigitated humidity sensors. 1st Annu. Int. IEEE-EMBS Spec. Top. Conf. Microtechnol. 

Med. Biol. Proc. 10–15 (2000).
	12.	 Lee, C. Y. & Lee, G. B. Humidity sensors: A review. Sens. Lett. 3, 1–15 (2005).
	13.	 Park, S. Y. et al. Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. 

Sensors Actuators B Chem. 258, 775–782 (2018).

Figure 7.   Schematic description of the effect of humidity on (a) the microstructure of the matrix (b) conductive 
paths in the matrix. This figure was created using Sketchup version 2017 (https://​www.​sketc​hup.​com), Microsoft 
PowerPoint version Microsoft 365 (https://​www.​micro​soft.​com/​en-​us/​micro​soft-​365/​power​point).

https://www.sketchup.com
https://www.microsoft.com/en-us/microsoft-365/powerpoint


9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8189  | https://doi.org/10.1038/s41598-021-87563-7

www.nature.com/scientificreports/

	14.	 Schließl, A. et al. Assessing the moisture profile of drying concrete using impedance spectroscopy. Concr. Sci. Eng. (2000).
	15.	 Chen, B., Wu, K. & Yao, W. Conductivity of carbon fiber reinforced cement-based composites. Cem. Concr. Compos. 26, 291–297 

(2004).
	16.	 Sun, M. Q., Liew, R. J. Y., Zhang, M. H. & Li, W. Development of cement-based strain sensor for health monitoring of ultra high 

strength concrete. Constr. Build. Mater. 65, 630–637 (2014).
	17.	 Han, B. G. & Ou, J. P. The humidity sensing property of cements with added carbon. Xinxing Tan Cailiao/ New Carbon Mater. 23, 

382–384 (2008).
	18.	 Alwis, L., Sun, T. & Grattan, K. T. V. Optical fibre-based sensor technology for humidity and moisture measurement: Review of 

recent progress. Meas. J. Int. Meas. Confed. 46, 4052–4074 (2013).
	19.	 Li, H. N., Li, D. S. & Song, G. B. Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 

26, 1647–1657 (2004).
	20.	 Rao, Y. J. Recent progress in applications of in-fibre Bragg grating sensors. Opt. Lasers Eng. 31, 297–324 (1999).
	21.	 Hill, K. O. & Meltz, G. Fiber Bragg grating technology fundamentals and overview. J. Light. Technol. 15, 1263–1275 (1997).
	22.	 Shivananju, B. N. et al. Highly sensitive carbon nanotubes coated etched fiber bragg grating sensor for humidity sensing. IEEE 

Sens. J. 14, 2615–2619 (2014).
	23.	 Lin, Y., Gong, Y., Wu, Y. & Wu, H. Polyimide-coated fiber Bragg grating for relative humidity sensing. Photon. Sensors 5, 60–66 

(2015).
	24.	 Berruti, G. et al. Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings 

sensors. Sensors Actuators B Chem. 177, 94–102 (2013).
	25.	 Swanson, A. J. et al. Development of novel polymer coating for FBG based relative humidity sensing. Sensors Actuators A Phys. 

249, 217–224 (2016).
	26.	 David, N. A., Wild, P. M. & Djilali, N. Parametric study of a polymer-coated fibre-optic humidity sensor. Meas. Sci. Technol. 23 

(2012).
	27.	 Wang, Y. et al. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide. Appl. Phys. 

Lett. 109, 1–6 (2016).
	28.	 Woyessa, G., Nielsen, K., Stefani, A., Markos, C. & Bang, O. Temperature insensitive hysteresis free highly sensitive polymer optical 

fiber Bragg grating humidity sensor. Opt. Express 24, 1206 (2016).
	29.	 Wen, S. & Chung, D. D. L. Piezoresistivity in continuous carbon fiber cement-matrix composite. Cem. Concr. Res. 29, 445–449 

(1999).
	30.	 Wen, S., Wang, S. & Chung, D. D. L. Piezoresistivity in continuous carbon fiber polymer-matrix and cement-matrix composites. 

J. Mater. Sci. 35, 3669–3675 (2000).
	31.	 Chung, D. D. L. Piezoresistive cement-based materials for strain sensing. J. Intell. Mater. Syst. Struct. 13, 599–609 (2002).
	32.	 Chung, D. D. L. A comparative study of steel- and carbon-fiber cement as piezoresistive strain sensors. Adv. Cem. Res. 15, 119–128 

(2003).
	33.	 Sun, M., Liu, Q., Li, Z. & Hu, Y. Study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during 

dynamic loading. Cem. Concr. Res. 30, 1593–1595 (2000).
	34.	 Ou, J. & Han, B. Piezoresistive cement-based strain sensors and self-sensing concrete components. J. Intell. Mater. Syst. Struct. 20, 

329–336 (2009).
	35.	 Camacho-Ballesta, C., Zornoza, E. & Garcés, P. Performance of cement-based sensors with CNT for strain sensing. Adv. Cem. Res. 

28, 274–284 (2016).
	36.	 Yu, X. & Kwon, E. A carbon nanotube/cement composite with piezoresistive properties. Smart Mater. Struct. 18, 55010 (2009).
	37.	 Buasiri, T., Habermehl-Cwirzen, K., Krzeminski, L. & Cwirzen, A. Piezoresistive load sensing and percolation phenomena in 

portland cement composite modified with in-situ synthesized carbon nanofibers. Nanomaterials 9 (2019).
	38.	 Cwirzen, A., Habermehl-Cwirzen, K. & Penttala, V. Surface decoration of carbon nanotubes and mechanical properties of cement/

carbon nanotube composites. Adv. Cem. Res. 20, 65–73 (2008).
	39.	 Konsta-Gdoutos, M. S., Metaxa, Z. S. & Shah, S. P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. 

Concr. Res. 40, 1052–1059 (2010).
	40.	 Nasibulina, L. I. et al. Direct synthesis of carbon nanofibers on cement particles. Transp. Res. Rec. J. Transp. Res. Board 2142, 96–101 

(2010).
	41.	 Nasibulin, A. G. et al. A novel cement-based hybrid material. New J. Phys. https://​doi.​org/​10.​1088/​1367-​2630/​11/2/​023013 (2009).
	42.	 Tang, Q. Y., Chan, Y. C. & Zhang, K. Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite 

films. Sensors Actuators B Chem. 152, 99–106 (2011).
	43.	 Flatt, R. J., Scherer, G. W. & Bullard, J. W. Why alite stops hydrating below 80% relative humidity. Cem. Concr. Res. https://​doi.​org/​

10.​1016/j.​cemco​nres.​2011.​06.​001 (2011).
	44.	 Jensen, O. M., Hansen, P. F., Lachowski, E. E. & Glasser, F. P. Clinker mineral hydration at reduced relative humidities. Cem. Concr. 

Res. https://​doi.​org/​10.​1016/​S0008-​8846(99)​00132-5 (1999).
	45.	 Patel, R. G., Killoh, D. C., Parrott, L. J. & Gutteridge, W. A. Influence of curing at different relative humidities upon compound 

reactions and porosity in Portland cement paste. Mater. Struct. https://​doi.​org/​10.​1007/​BF024​73055 (1988).
	46.	 Teomete, E. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber 

reinforced smart cement composite. Smart Mater. Struct. 25 (2016).
	47.	 Demircilioğlu, E., Teomete, E., Schlangen, E. & Baeza, F. J. Temperature and moisture effects on electrical resistance and strain 

sensitivity of smart concrete. Constr. Build. Mater. 224, 420–427 (2019).
	48.	 Xiaoming, F. Effects of environmental temperature and humidity on the electrical properties of carbon fiber graphite cement 

mortar. Adv. Mater. Res. 143–144, 1022–1026 (2011).
	49.	 Carísio, P. de A. et al. Influence of humidity, moisture and temperature on the electric properties of self-sensing cement pastes for 

post-abandonment well monitoring. In Offshore Technology Conference Brasil Vol. 20 (2019).
	50.	 Ding, S., Dong, S., Ashour, A. & Han, B. Development of sensing concrete: Principles, properties and its applications. J. Appl. Phys. 

126 (2019).
	51.	 Jang, S. H., Hochstein, D. P., Kawashima, S. & Yin, H. Experiments and micromechanical modeling of electrical conductivity of 

carbon nanotube/cement composites with moisture. Cem. Concr. Compos. 77, 49–59 (2017).

Acknowledgements
The authors would like to thank The Institute of Engineering Materials and Biomaterials at Silesian University of 
Technology, Poland for synthesized the nanomodified cement. The authors gratefully acknowledge financial sup-
port from the Swedish Government Agency (Vinnova) and the Swedish Transport Administration (Trafikverket).

Author contributions
T.B. conceived and designed the experiments, L.K., K.H.C. and A.C. were involved in planning and supervised 
the work, T.B. and A.C. processed the experimental data and performed the analysis, T.B. prepared the original 

https://doi.org/10.1088/1367-2630/11/2/023013
https://doi.org/10.1016/j.cemconres.2011.06.001
https://doi.org/10.1016/j.cemconres.2011.06.001
https://doi.org/10.1016/S0008-8846(99)00132-5
https://doi.org/10.1007/BF02473055


10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8189  | https://doi.org/10.1038/s41598-021-87563-7

www.nature.com/scientificreports/

draft of the manuscript, All authors provided critical feedback and helped shape the research, K.H.C. and A.C. 
supervised the project.

Funding
Open access funding provided by Lulea University of Technology.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Novel humidity sensors based on nanomodified Portland cement
	Materials and methods
	Results and discussion
	Conclusion
	References
	Acknowledgements


