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Abstract
Accumulating evidence has suggests that women with advanced endometriosis exhibit alterations in the expression of 
genes in the endometrium compared to healthy controls. Furthermore, replication stress is a characteristic feature of cancer 
cells, which results from sustained proliferative signaling induced by either the activation of oncogenes or the loss of tumor 
suppressors. In the present study, we propose that DNA replication ATP-dependent helicase/nuclease 2 (DNA2) might be 
upregulated in endometriosis. Immunohistochemical staining results confirmed the hypothesis that DNA2 is overexpressed 
in the eutopic/ectopic endometrium compared to that in a control endometrium from a healthy donor. Subsequently, ectopic 
endometrium-derived endometrial mesenchymal stem cells (EMSCs) showed the highest level of DNA2 and checkpoint 
kinase 1 (CHK1), as well as the strongest proliferation and migration capabilities, followed by eutopic endometrium-derived 
EMSCs, and then control EMSCs. To further analyze the function of DNA2, we knocked-down DNA2 expression in KLE 
cells. As expected, proliferation and migration declined when cells were transfected with DNA2 small interfering RNA. 
Taken together, our study demonstrated the overexpression of DNA2 in human endometriosis, which might be responsible 
for the upregulated cell proliferation and migration. This study provides insights into the mechanisms underlying human 
endometriosis.
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Introduction

Endometriosis (EM) is an estrogen-dependent benign 
inflammatory response disease and refers to the appearance 
of endometrial interstitials and glands outside the uterine 
cavity (Burney and Giudice 2012; Giudice 2010). Com-
mon ectopic endometrial tissue invasion sites include the 
ovary, peritoneum, uterosacral ligament, and recto-uterine 
pouch (Keckstein and Wiesinger 2005; Kinkel et al. 1999; 
Ness 2003; Young et al. 2013). The incidence of this dis-
ease has shown an upward trend in recent years. Further-
more, 10–15% of women of childbearing age suffer from 

the disease, of which 30% present with infertility and 45% 
of cases had chronic pelvic pain (Kulkarni 2016; Nnoaham 
et al. 2011). Studies have also reported a high recurrence 
rate of 20–40% after treatment (Becker et al. 2017; Fedele 
et al. 2004; Tandoi et al. 2011). Therefore, there is a need to 
improve our understanding of the pathogenesis of endome-
triosis to develop more clinically effective therapies.

There are many theories for the pathogenesis of endome-
triosis (Koninckx et al. 2019; Sourial et al. 2014). However, 
Sampson’s theory of retrograde menstruation/transplantation 
is the most popular and accepted mechanism (Signorile and 
Baldi 2010). Moreover, accumulating evidence suggests that 
endogenous or exogenous estrogen plays an important role 
in the pathogenesis of endometriosis (Burney and Giudice 
2012; Han et al. 2015). Estrogen regulates various types of 
cells in the endometrium, including epithelial cells, stromal 
cells, immune cells, and vascular cells. Therefore, the ana-
bolic or regulatory imbalance of estrogen can cause patho-
logical changes in the endometrium (Gibson et al. 2015; 
Skarzynski et al. 2020; Xu et al. 2019; Yang et al. 2018). 
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Enzymes related to estrogen anabolism have been observed 
in endometriosis tissues (Dassen et al. 2007; Lai et al. 2019; 
Tang et al. 2019).

Estrogen can stimulate cell proliferation and induce DNA 
damage (Roy et al. 2007; Santen et al. 2015). Many stud-
ies have reported that DNA replication helicase/nuclease 2 
(DNA2) is overexpressed in tumors, such as breast and ovar-
ian cancers (Strauss et al. 2014). DNA2 is a key enzyme, 
with both helicase and nuclease activity, and is involved in 
both DNA replication and DNA repair in the nucleus and 
mitochondrion (Pawłowska et al. 2017; Ronchi et al. 2019; 
Yu et al. 2018). In this study we sought to determine whether 
DNA2 is involved in endometriosis.

Material and methods

Ethics approval and human sample collection

This study was performed in accordance with the principles 
of the Declaration of Helsinki. Approval was granted by the 
Ethics Committee of Zhejiang Provincial People’s Hospi-
tal (November 9, 2019/No. 2019KY204). Human eutopic 
endometrial and ectopic endometriosis tissue samples were 
collected from patients with endometriosis, and endometrial 
samples were collected from control subjects undergoing 
laparoscopic surgery. Informed consent was obtained from 
all patients/subjects. All of the cases, including patients and 
fertile control subjects, were free from hormonal therapy for 
three months, and free from any other endocrine, metabolic, 
or immune diseases related to the female reproductive sys-
tem before the collection of samples. There were no obvi-
ous abnormalities in the heart, lung, liver, kidney, or other 
functional examinations. All healthy control subjects were 
nulligravid.

Isolation and culture of endometriosis cells

Primary endometrial cells were isolated from eutopic/ectopic 
endometrium and normal human endometrial tissues within 
2 h of separation. Briefly, the fresh tissues were rinsed thrice 
with phosphate-buffered saline (PBS, BBI life Sciences) and 
divided into two parts. One part was preserved with tissue 
specimen fixative solution for immunohistochemistry (IHC) 
study, and the other was cut into 0.5–1.0 mm pieces with 
ophthalmic scissors in a cell culture dish. Then, three times 
the volume of pre-warmed 0.25% collagenase IV (Sigma) /
trypsin–EDTA (GIBCO) mixed solution was added, and the 
mixture was placed in a 37 °C cell incubator. After 10 min, 
two volumes of culture medium (DMEM-F12 supplemented 
with 10% FBS; GIBCO) was added to stop the digestion. 
The cell suspension was filtered through a mesh and centri-
fuged at 700 rpm for 3 min. The pellets were resuspended in 

culture medium at a density of 1 ×  105 cells/mL and seeded 
in 10-cm culture dishes at 37 °C, 5%  CO2, and passaged by 
0.25% trypsin–EDTA digestion at a 1:3 ratio.

The phenotype of endometrial cells was examined at the 
third passage by flow cytometry (BD FACSVerse) with anti-
bodies, including anti-CD14 (BD Biosciences), anti-CD34 
(BD  Biosciences), anti-CD73 (Biolegend), anti-CD105 
(Biogems), anti-CD45 (BD Biosciences), and anti-CD90 
(Biolegend) according to manufacturer’ instructions. The 
suitable isotype-matched antibody (BD Biosciences) was 
utilized as the negative control. The data were analyzed 
using BD FACSuite software.

Histopathological examination of DNA2

Eutopic/ectopic endometrium and normal human endome-
trial tissues were fixed in paraphormaldeyde (Sangon Bio-
tech) and embedded in paraffin. The 5 μm specimen sections 
were cut, mounted on glass and dried overnight at 37 °C. 
All sections were then deparaffinized in xylene, rehydrated 
through a graded alcohol series and washed in PBS. For 
IHC staining, the tissue sections were first incubated with 
sodium citrate buffer for antigen retrieval and incubated for 
30 min in blocking solution followed by an overnight incu-
bation with the primary antibody against DNA2 (Abcam). 
The tissue sections were then sequentially incubated with 
a biotinylated antibody and peroxidase-labeled streptavidin 
(Dako), resulting in a brown precipitate at the antigen site.

Cell lines and reagents

The endometrial adenocarcinoma cell line KLE was 
obtained from the American Type Culture Collection, and 
maintained in MEM medium supplemented with 10% fetal 
bovine serum (FBS), 100 µg/mL streptomycin, 100 units/
mL penicillin, and 2 mM glutamine (GIBCO). Cell cultures 
were maintained at 37 °C in an atmosphere containing 5% 
 CO2 and 100% humidity.

β-Estradiol (E2), progesterone, tamoxifen, and monoclo-
nal antibodies for ER-β (SAB4500814) and goat anti-rabbit 
secondary antibody (A4062) were purchased from Sigma 
(St. Louis, MO, USA). Antibodies against ER-α (MC-20), 
PR-A and PR-B (C-20) were purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA, USA). Rabbit anti-β-actin 
antibody (TA306308) was purchased from Oncogene (Bos-
ton, MA, USA).

Transfection of DNA2 small interfering (si) RNA

DNA2 siRNA and negative control (NC) were transfected 
into KLE cells or EMSCs isolated from ectopic endo-
metrium using standard transfection reagent (Thermo 
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Scientific) according to the manufacturer’s protocol, to 
observe the effect of DNA2 expression levels on the cell 
phenotype.

RNA extraction, reverse transcription, 
and quantitative real‑time polymerase chain 
reaction (qRT‑PCR)

Total RNA was isolated using Trizol reagents (TAKARA) 
according to the manufacturer’s protocol. cDNA was syn-
thesized from 1 µg RNA with random primers using the 
SuperScript kit (Invitrogen). RT-qPCR was performed in 
the ABI 7900 real-time RT-PCR system with reagents from 
the SYBR® Green Real-time PCR Master Mix (Takara) and 
the appropriate primers in a 20 μL reaction system (10 μL 
Master mixture, 1 μL cDNA, 1 μL forward primer and 1 
μL reverse primer, and 7 μL  ddH2O). The primers for each 
gene were as follows: DNA2, forward TTT TGT ATT GTG 
GAT GAA GCC TCT , reverse CAT TCT GTA CTG CAC GGT 
TAA CTG; CHK1, forward GCT GAT TGA TAT TGT GAG 
CAGCC, reverse TTC ATC CTT TCC CCA AAG TTTTG; 
and GAPDH, forward GGC ACA GTC AAG GCT GAG AATG, 
reverse ATG GTG GTG AAG ACG CCA GTA. Real-time PCR 
was performed under the following conditions: initial dena-
turation at 95 °C for 10 min, followed by 40 cycles of dena-
turation at 95 °C for 30 s, annealing at 60 °C for 40 s, and 
extension at 72 °C for 30 s. All experiments were performed 
at least three times and the mean values were used.

Western blot analysis

Western blot analysis was performed as previously 
described. In brief, cell extracts (20 µg) were separated 
on 10% SDS PAGE (BBI life Sciences) and subsequently 
transferred onto nitrocellulose membranes (Millipore). The 
membranes were blocked for 1 h in PBS containing 0.1% 
Tween-20 and 10% nonfat dried milk. The specific anti-
bodies against ER-α, ER-β, PR-A, PR-B, or β-actin were 
applied according to the manufacturer’s recommendations. 
Primary antibody binding was performed overnight at 4 °C 
with constant rotation. The blots were then incubated with 
appropriate secondary antibodies (at room temperature for 
1 h at 1:3000 dilution) and developed with an enhanced 
chemiluminescence kit (Beyotime).

Proliferation assay

Cell proliferation was determined using the Cell Counting 
Kit-8 (CCK-8) (Beyotime) according to the manufacturer’s 
protocol. Cells were seeded in 96-well plates at a confluence 
of 2000 cells per well. The proportion of living cells was 
measured at indicated time points by absorbance at 460 nm 

using a microplate reader according to the manufacturer’s 
instructions.

Migration assay

Transwell inserts (Millipore) were used for the analysis. 
5 ×  104 cells were seeded onto the upper chamber, and 800 
μL medium with 10% FBS was added to the lower chamber. 
After incubation for 24 h, the cells adhering to the upper 
surface of the membrane were removed with a cotton swab. 
Migration cells, which adhered to the lower surface, were 
fixed with 4% paraformaldehyde and stained with 0.1% 
crystal violet (Beyotime). Data were obtained from three 
independent experiments.

Cell cycle analysis

To determine the cellular proliferation rate, a propidium 
iodide (PI)-based cell cycle detection Kit (Beyotime) was 
used. Cells were plated at 1 000/cm2, and detached with 
0.25% trypsin after 48 h. Following collection, the cells were 
washed twice with cold PBS and fixed with 70% ice-cold 
ethanol at 4 °C overnight. The cells were then collected via 
centrifugation, washed twice with PBS, and stained with 
propidium iodide at room temperature for 15 min in the 
dark. Cell cycle assays were performed using a flow cytom-
eter (BD Biosciences). Each experiment was performed in 
triplicate.

Statistical analysis

Data are expressed as the mean ± standard deviation (SD). 
Comparisons between groups were analyzed using the Stu-
dent’s t test or ANOVA. P values < 0.05 were considered 
statistically significant.

Results

Human eutopic/ectopic endometrium display 
accumulation of DNA2

Disruption of DNA2 has been associated with many types 
of human diseases (Zheng et al. 2020). To clarify the role 
of DNA2 in endometriosis, we first assessed the levels 
of DNA2 in tissue samples obtained from patients with 
endometriosis. Of the 10 patients, 5 had an ectopic endo-
metrium and the others had eutopic endometrium. The 
mean age and body mass index (BMI) of the patient group 
were 31.1 ± 3.6 years and 23.8 ± 2.2 kg/m2, respectively. 
Matched human endometria (n = 5) were collected from 
the control women. The mean age and BMI of the controls 
were 31.8 ± 1.8 years and 24.1 ± 2.6 kg/m2, respectively. 
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As shown in Fig. 1, we subsequently investigated DNA2 
expression using IHC. For all cases of control endome-
trium, IHC of tissue sections revealed that DNA2 stain-
ing ranged in intensity from mild to moderate (≈ 18% 
cells stained positive). Among the endometriosis samples 
tested, DNA2 staining varied from mild to strong and was 
more evenly distributed (> 30% cells stained positive). 
Having confirmed that DNA2-positive cell ratios were 

increased in endometriosis tissues, we investigated the 
mRNA and protein levels in these tissues. Upregulated lev-
els of DNA2 were observed by Western blotting (Fig. 2). 
Moreover, we evaluated CHK1, which is also an essen-
tial kinase required to preserve genome stability; similar 
results were obtained in the present study. Together, these 
data suggest that both CHK1 and DNA2, two key players 
in DNA damage repair, were upregulated in endometriosis 
samples.

Fig. 1  Eutopic/ectopic endometrium are enriched in DNA2. Stain-
ing distribution of DNA2 in representative tissue sections of nega-
tive control (a), normal endometrial tissues (b), eutopic endometrium 
tissue (c), and ectopic endometrium tissue (d). Images are repre-
sentative of n = 10. The brown precipitate indicates the antigen site. 

e DNA2 positive cells were analyzed using InForm Version 1.0 soft-
ware (INFORM). Five images per slide were quantified. (*P < 0.05, 
**P < 0.01). Scale bars = 50  μm. DNA2 DNA replication ATP-
dependent helicase/nuclease 2

Fig. 2  DNA2 and CHK1 expressions in eutopic/ectopic endome-
trium and normal human endometrial tissues. a Protein expression of 
DNA2 and CHK1 in endometrial tissues were determined by Western 
blot analysis. b Quantification of DNA2 and CHK1 levels were deter-

mined using image J software. (*P < 0.05, **P < 0.01). DNA2 DNA 
replication ATP-dependent helicase/nuclease 2; CHK1 checkpoint 
kinase 1
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Endometrial cells isolated from eutopic/
ectopic endometrium tissues showed enhanced 
proliferation and migration capability

Typical EMSCs were isolated from all three groups using 
a collagenase IV/trypsin–EDTA-based protocol. Primary 
EMSCs presented a fusiform morphology, which gradually 
changed into a fibroblast-like spindle shape with increas-
ing passages, similar to the features of bone marrow MSCs. 
All EMSCs positively expressed CD73, CD90, and CD105 
but negatively expressed CD14, CD34, and CD45 (Sup-
plementary Fig. 1). Subsequently, EMSCs at passage 3 of 
each group were harvested and tested for CHK1 and DNA2 
expression levels. At the mRNA levels, eutopic endome-
trium-derived EMSCs showed an ≈ 1.2-fold increase in 
CHK1 and ≈ 1.9-fold increase in DNA2 levels compared 
with control EMSCs (Fig. 3a), which was further improved 
in the ectopic endometrium-derived EMSCs (≈ 1.5-fold 
increase in CHK1 and ≈ 2.7-fold increase in DNA2 lev-
els). Representative EMSCs of each group (controls: #3; 
eutopic endometrium group: #4; ectopic endometrium: #9) 
were analyzed by Western blotting (Fig. 3b, c). In addition, 
enhanced phosphorylation of CHK1 was also observed in 
EMSCs from patients with endometriosis.

The CCK-8 assay results indicated EMSCs from patients 
with endometriosis exhibited significantly increased prolif-
eration compared with the controls (Fig. 4a). Furthermore, 
the Transwell assays revealed the number of migrated cells 
was significantly increased in both the eutopic endometrium-
derived EMSCs (≈ 2.2-fold higher) and ectopic endome-
trium-derived EMSCs (≈ 3.2-fold higher) compared to con-
trols. Moreover, migration of EMSCs isolated from ectopic 
endometrium was significantly reduced by DNA2 knock-
down using siRNA (Supplementary Fig. 2). These results 
suggest a potential function of DNA2 in EMSC migration 
and endometriosis.

E2 treatment upregulates DNA2 and CHK1 
expressions in endometrial cells

Subsequently, we proposed that endometrial cells from 
patients with endometriosis might be more sensitive to E2 
treatment. To verify this hypothesis, EMSCs at passage 4 in 
all three groups were administered E2. As shown in Fig. 5, 
there were no significant changes in the DNA2 and CHK1 
levels in the controls. Interestingly, EMSCs from patients 
with endometriosis were sensitive to E2 treatment, resulting 
in a 1.5–2-fold increase in DNA2 mRNA expression and 

Fig. 3  DNA2 and CHK1 expressions in three types of primary endo-
metrial cells. Primary endometrial cells were isolated from eutopic/
ectopic endometrium and normal human endometrial tissues, 
respectively. a qPCR revealed that DNA2 mRNA expression was 
upregulated in eutopic/ectopic endometrium-derived endometrial 
cells compared with those from normal endometrial tissues. A simi-
lar expression trend of CHK1 was also observed. b, c Western blot 

analysis results showed 1 representative cell line per group, which 
confirmed the enhanced expression of DNA2 and CHK1. Corre-
spondingly, pCHK1 level was significantly higher in eutopic/ectopic 
endometrium-derived endometrial cells. (*P < 0.05, **P < 0.01). 
DNA2 DNA replication ATP-dependent helicase/nuclease 2; CHK1 
checkpoint kinase 1
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Fig. 4  Endometrium-derived endometrial cells show enhanced prolif-
eration and migration capability. a Cell Counting Kit-8 assay revealed 
that eutopic/ectopic endometrium-derived endometrial cells grow 
faster than those from normal endometrial tissues. b Transwell migra-
tion assay. Representative microscopic images of cells that migrated 

through the Transwell in the migration assay (crystal violet stain-
ing). c The quantitation of cells that migrated through the Transwell 
in the migration assay. The data are presented as the mean number 
of migrated cells per visual field. (*P < 0.05, **P < 0.01). Scale 
bars = 50 μm

Fig. 5  Effect of E2 treatment on DNA2 and CHK1 expressions in 
three types of primary endometrial cells. In  vitro cultured endome-
trial cells were treated with/without E2, and harvested after 24 h for 
the mRNA and Western blot analysis. a, b DNA2 and CHK1 mRNA 
levels were significantly increased in eutopic/ectopic endometrium-

derived endometrial cells, which was more obvious in the ectopic 
endometrium-derived group. c Western blot analysis results were 
consistent with the qPCR data. (*P < 0.05, **P < 0.01). DNA2 DNA 
replication ATP-dependent helicase/nuclease 2; CHK1 checkpoint 
kinase 1; E2 estradiol



747Journal of Molecular Histology (2021) 52:741–749 

1 3

1.2–2.8-folds increase in CHK1 mRNA levels (Fig. 5a, b). 
This was also confirmed by Western blot analysis (Fig. 5c).

Knock down of DNA2 inhibited cell cycle, 
proliferation and migration in endometrial cell line

To further analyze the role of DNA2 in proliferation and 
migration in endometrial cells, we treated the KLE endome-
trial cells with DNA2 siRNA. As shown in Fig. 6a, DNA2 
levels were significantly reduced 36 h after transfection with 
specific DNA2 siRNA; the CHK1 protein levels were not 
significantly changed. Cell cycle assays showed that KLE 
cells treated with DNA2 siRNA had a significantly reduced 
cell population in the S phase and increased cell populations 
in the G2 phase compared with the siRNA controls (Fig. 6b). 
Subsequently, cell growth was measured using the CCK8 
assay, and migration was determined by Transwell assay. As 
expected, proliferation and migration declined when cells 
were transfected with DNA2 siRNA (Fig. 6c, d).

Discussion

Sampson’s theory of retrograde menstruation/transplanta-
tion remains the most popular and accepted pathogenetic 
mechanism of endometriosis (Signorile and Baldi 2010); 
however, several lines of clinical and experimental evidence 
seem to contradict this hypothesis (Redwine 2002). Over the 
last decade, many studies have suggested that the environ-
mental disruption of hormones, such as estrogen, resulted in 
endometriosis (Marquardt et al. 2019; Wagner and Lehmann 
2006). Estrogen is an important mediator of endometrial 
homeostasis, and its anabolic or regulatory imbalances can 
cause pathological changes in the endometrium. High levels 
of estrogen have been shown to induce the generation of 
prostaglandins, which in turn stimulate cyclooxygenase 2, 
promote the expression of aromatase, and establishe a posi-
tive feedback to further enhance the production of estrogen 
(Bulun et al. 2002; Lai et al. 2019; Tamura et al. 2004). The 
endometrial glands contain 17β-Hydroxysteroid dehydro-
genase type 2 (17HSD2), which causes the inactivation of 
E2 (Aka et al. 2010; Husen et al. 2001; Zeitoun et al. 1998). 

Fig. 6  DNA2 knockdown inhibits the growth and migration of endo-
metrial adenocarcinoma cell line in  vitro. a DNA2 expression was 
significantly downregulated in KLE cells following transfection with 
the DNA2 siRNA compared with the control siRNA. The expres-
sion of DNA2 and CHK1 was normalized to beta-ACTIN. b DNA2 
knockdown inhibits the cell cycle of KLE cells. FCM was used to 

detect the cell cycle. Cells transfected with DNA2 siRNA accumu-
lated in the G2/M phase. c Proliferation of KLE cells was inhibited 
after DNA2 siRNA administration. d KLE cells transfected with the 
DNA2 siRNA decreased cell migration compared with siRNA con-
trol. (*P < 0.05, **P < 0.01). Scale bars = 50 μm. DNA2 DNA replica-
tion ATP-dependent helicase/nuclease 2; CHK1 checkpoint kinase 1
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However, ectopic endometrial glands do not have 17HSD2, 
leading to a defect in the inactivation of E2. In contrast, they 
contain 17βHSD type1, which can promote the conversion 
of estrone to more effective E2 (Hudelist et al. 2007; Zei-
toun et al. 1998). Thus, abnormally expressed enzymes in 
ectopic endometrial glands result in estrogen aggregation 
and ectopic endometrial proliferation.

In the present study, we found that human eutopic/ectopic 
endometrium displayed an accumulation of DNA2. These 
data were consistent with the findings of multiple tumor 
studies that showed that DNA2 is overexpressed, which 
could be the result of increased tolerance to replication stress 
by the activation of an oncogenic factor. Subsequently, we 
isolated EMSCs from both the control and eutopic/ectopic 
endometrial tissues. Multiple functional analysis data sug-
gested that EMSCs derived from ectopic endometrium 
bear the highest levels of DNA2 and CHK1 as well as the 
strongest proliferation and migration capabilities. Moreover, 
eutopic/ectopic endometrium-derived EMSCs were highly 
sensitive to the E2 treatment, while the control EMSCs were 
not sensitive to the same dose of E2 administration. Finally, 
we used specific siRNA to knockdown the DNA2 expression 
in KLE cells and EMSCs from the ectopic endometrium. 
As expected, the proliferation and migration were declined 
when cells were transfected with DNA2 siRNA.

The findings of this study suggest that the temporary inhi-
bition of DNA2 nuclease represents a promising strategy 
for the treatment of endometriosis. The next step will be to 
discover and test DNA2 inhibitors both in vitro and in vivo, 
which could be invaluable for endometriosis therapy either 
alone or in combination with other established strategies.
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