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Cancer immunotherapy, which reactivates weakened immune cells of cancer patients, has yielded great success in recent years.
Among immunotherapeutic agents, immune checkpoint inhibitors have been of particular interest and have gained approval by
the FDA for treatment of cancers. Immune checkpoint blockade through targeting programmed cell death protein-1 (PD-1) has
demonstrated promising antitumor effects in cancer immunotherapy of many different solid and hematologic malignancies.
However, despite promising results, a favorable response is observed only in a fraction of patients, and there is still lack of a
single therapy modality with curative ability. In this paper, we review the current and future perspectives of PD-1/L1 blockade
in cancer immunotherapy, with a particular focus on predictive biomarkers of response to therapy. We also discuss the adverse
events associated with PD-1/L1/2 inhibitors, ranging from severe life-threatening conditions such as autoimmune myocarditis to
mild and moderate reactions such as skin rashes, and explore the potential strategies for improving the efficacy of
immunotherapy with PD-1/L1 checkpoint inhibitors.

1. Introduction lasting response, and low toxicity of PD-1 checkpoint block-
ade have been observed in various malignancies [4, 5]. How-

Currently, cancer is the second leading cause of death glob-  ever, dependence on PD-1/L1 monotherapy has proven to be

ally, after cardiovascular diseases, claiming one in every six
deaths [1]. Immunotherapy, an approach of using drugs that
potentiate the natural body’s immune system to fight neo-
plasms, has contributed significantly to cancer treatment in
recent years [2]. Among different types of immunotherapy,
immune checkpoint inhibitors that target cytotoxic T-
lymphocyte antigen-4 (CTLA-4) and programmed cell death
protein-1 (PD-1) are of particular interest and play a crucial
role in the future of immunotherapy [3]. PD-1/PD ligand
(PDL)-1 blocking antibodies function as tumor-suppressing
agents via modulation of the interaction between immune
cells and tumor cells [4]. Notable clinical efficacy, long-

a shortcoming in various aspects, including immune-related
adverse events, tumor resistance, tumor relapse, and high
costs. In this paper, we will review the current and future per-
spectives of PD-1/L1 blockade in cancer immunotherapy,
and discuss the potential strategies for improving the efficacy
of immunotherapy with PD-1/L1 checkpoint inhibitors.

2. Overview of the History of PD-
1 Immunotherapy

The history of PD-1 discovery dates back to 1992, when
Ishida et al. [6] first described the then-novel member of
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the immunoglobulin gene superfamily, PD-1, on murine
immune cells, and reported that PD-1 can induce a classical
type of programmed cell death [6]. A few years later, in
1999, researchers demonstrated that PD-1-knockout mice
developed lupus-like autoimmune syndromes, signifying that
PD-1 acts as an immune checkpoint [7, 8]. In 2014, the Food
and Drug Administration (FDA) approved the first anti-PD-
1 monoclonal antibody, nivolumab, for second-line treat-
ment of unresectable or metastatic melanoma [9]. Since then,
several other anti-PD-1/L1 antibodies have been approved by
the FDA for cancer therapy [10]. Most recently, on June 10,
2020, the FDA approved nivolumab (OPDIVO, Bristol-
Myers Squibb Co.) for patients with unresectable advanced,
recurrent, or metastatic esophageal squamous cell carcinoma
(ESCC) after prior fluoropyrimidine- and platinum-based
chemotherapy [11].

3. Mechanisms of Action of Immune
Checkpoint Inhibitors

Immune checkpoints such as PD-1 are normal control path-
ways in immune cells, which monitor over activity of the
immune system [9, 12, 13]. PD-1 is a member of the CD28
family and an inhibitory receptor expressed on activated T
cells, B cells, macrophages, regulatory T cells (Tregs), and
natural killer (NK) cells. This receptor has two binding
ligands, PDL-1 and PDL-2 (B7 family) that are expressed
on T cells, B cells, macrophages, dendritic cells, and many
other cells [9, 14]. Binding of PD-1 to either one of the
ligands inhibits T cell activity, induces T cell tolerance, sup-
presses proliferation, reduces the immune response of T cells,
and induces cell death [15-17] (Figure 1).

Tumors cause overstimulation of the PD-1/L1 signaling
pathway to reduce T cell activation and antigen-specific T
cell immune response, thereby bypassing immune surveil-
lance [9, 18, 19]. In addition to expressing PDL-1/2 [20,
21], cancer cells also activate intrinsic cellular signals that
enhance cancer cell survival, regulate stress responses, and
build tumor resistance against proapoptotic stimuli such as
interferons [21-23]. PD-1/L1/2 checkpoint inhibitors block
this pathway [24], increasing immune cell proliferation, and
enhancing the efficacy of the body’s natural antitumor sur-
veillance system [20, 25, 26].

4. The Regulatory Effects of PD-1/L1 Inhibition
on T Cell Function

4.1. Inhibition of T cell Receptor (TCR) Signaling. The PD-1
receptor interacts with its ligands, PDL-1 and PDL-2, to
cause an inhibitory effect on the costimulatory function of
CD80-CD28, resulting in the downregulation of TCR signal
transduction and CD28 costimulation even at very low PD1
expression levels [27]. The PD-1 immunoreceptor tyrosine-
based switch motif (ITSM) attaches to Src homology region
2-containing protein tyrosine phosphatase 2 (SHP-2), close
to TCR. This interaction blocks the activation of TCR proxi-
mal kinases, causing a decrease in Lck-mediated phosphory-
lation of the TCR CD3( chains and zeta-chain-associated
protein kinase 70 (ZAP-70), and the initiation of downstream
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FIGURE 1: Mechanism of action of PD-1/L1 checkpoint blockade.
PD-1: programmed cell death protein-1; TCR: T cell receptor;
PDL-1/2: programmed death-ligand 1/2; APC: antigen presenting
cel, MHCI: major histocompatibility complex 1; CTLA4:
cytotoxic T-lymphocyte-associated protein 4.

events [28, 29]. This process eventually inhibits cytokine pro-
duction, T cell proliferation, and survival through downregu-
lating transcription of the prosurvival factor Bcl-X; [27, 30]
(Figure 2).

4.2. Suppression of the Ras/ MEK/ERK Pathway. The Ras/mi-
togen-activated and extracellular signal-regulated kinase
(MEK)/extracellular signal-regulated kinase (ERK) signaling
pathway is capable of promoting proliferation and malignant
transformation of cells by activating cell growth factors and
preventing apoptosis [31]. This pathway is activated by cal-
cium and diacylglycerol, followed by downstream activation
of RasGRP1, which then stimulates PLC-y1 [23, 27]. PD-1
suppresses this pathway by inhibiting the activation of
PLC-y and Ras [23, 27], leading to suppression of T cell pro-
liferation and subsequent apoptosis.

4.3. Inhibition of the PI3K/Akt Signaling Pathway. The
PI3K/Akt pathway is important in cell proliferation, cell cycle
regulation, apoptosis, and many other pathophysiological
processes, which perform a key role in the development of
tumors [32]. The inhibitory effect of PD-1 on PI3K/Akt sig-
naling pathway in T cells is recognized as primarily promi-
nent in oncogenesis by stimulating downstream targets of
antiapoptosis, cell propagation, and metastasis [27, 33]. PD-
1/L1 checkpoint inhibitor therapy invigorates exhausted
CD8+ T cells in gastrointestinal stromal tumors via blocking
the PI3K/Akt/mTOR signaling pathway [34]. Inhibition of
the PI3K/Akt pathway through PD-1 involves phosphatase
and tensin homolog (PTEN) phosphorylation and phospha-
tase activity, facilitated by CK2 Ser380/Thr382/Thr383 clus-
ter. Furthermore, dephosphorylation of the lipid signaling
intermediate PIP, by PTEN, a tumor suppressor gene, results
in repression of Akt functionality, a pivotal process in the
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F1GURE 2: The regulatory effects of PD-1 inhibition on downstream signaling pathways. TCR: T cell receptor; PD-1: programmed cell death
protein-1; ZAP70: zeta-chain-associated protein kinase 70; AP1: activator protein 1; NF-«B: nuclear factor kappa-light-chain-enhancer of
activated B cells; NFAT: nuclear factor of activated T cells; PLCy: phosphoinositide phospholipase C-y; LCK: lymphocyte-specific protein-
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PI3K axis [35]. Recent studies have revealed that the
PI3K/Akt signaling axis is an effective inhibitor of Treg
development [36].

In summary, PD-1 activates signals that suppress specific
signaling pathways in T cells, leading to T cell anergy or
exhaustion, and thus inhibits T cell immune response [37].
The basis of using immune checkpoint inhibitors such as
PD-1 or PD-L1 blocking antibodies in cancer therapy is to
enhance T cell-mediated antitumor immune responses and
to generate functional tumor-specific CTLs capable of killing
tumor cells [37, 38].

5. PD-1/L1 Blockade in Patients with
Various Malignancies

Since the arrival of PD-1/PDL-1 blockade drugs on the mar-
ket in 2014, their greatest clinical benefit has been observed
among patients with melanoma [9, 14, 39]. These drugs are
now considered as first-line treatment for patients with mel-
anoma and have proven to be better than traditional drugs
such as dacarbazine in terms of increasing overall survival
[9, 14] (Table 1).

In the management of advanced metastatic melanoma,
pembrolizumab has improved the overall survival of patients,
with relatively minimal toxicity [44].

Apart from melanoma, PD-1 inhibitors have also shown
clinical efficacy in both solid and liquid cancers such as blad-
der, pancreatic, and non-small-cell lung cancer (NSCLC),
follicular B cell, and non-Hodgkin lymphoma [45]
(Table 2). Both nivolumab and pembrolizumab have pro-

vided encouraging results with respect to increased survival
benefit and safety in NSCLC patients compared with other
drugs such as docetaxel [46]. Evidence suggests that highly
immune-cell infiltrate tumors show a better prognosis com-
pared with desert tumors [47]. Tumors with high mutation
capacity and antigenicity including tumors with high micro-
satellite instability (MSI), high tumor mutation load (TML),
and mismatch repair deficiencies (AIMMR) are also good can-
didates for PD-1 blockade treatment regimens [48-53].
However, cancers that have a favorable response to PD-
1/L1/2 inhibitors are not completely distinguishable by bio-
markers [22].

6. Clinical Superiority of PD-1/L1 Blockade over
Conventional Cancer Therapies

Compared with other cancer therapies, the advantage of
immunotherapy lies in the functionality of the immune sys-
tem; the adaptability and specificity of established immuno-
therapy to a specific tumor makes a lasting memory of
similar antigenic provocation [45]. Additionally, monothera-
pies of PD-1 inhibitors are associated with higher overall sur-
vival rates than monotherapies of other immune checkpoint
inhibitors such as ipilimumab (anti-CTLA-4 monoclonal
antibody) and BRAF/MEK inhibitors; also, they can be used
for the treatment of a variety of cancers [54, 55]. Moreover,
the PD-1 blocker, pembrolizumab, is now recognized as a
new standard of care and frontline drug for the treatment
of ipilimumab-refractory melanoma [56, 57]. There is sub-
stantive scientific evidence from various studies indicating



TaBLE 1: Comparison of survival probability with various regimens
for advanced melanoma after 12 months of treatment.

Treatment regimen Survival probability (%) Reference
Dacarbazine 12 [40]
Dabrafenib + trametinib 46 [41]
Ipilimumab 46 [42]
Nivolumab 72.9 [42]
Pembrolizumab 74.1 [42]
Vemurafenib+ cobimetinib 73 [43]

that the toxicity associated with PD-1 blocking agents is less
than the toxicity associated with other immunotherapies
such as interleukin-2 and CTLA-4 blockade [14, 58]. Gener-
ally, immunotherapy including PD-1/L1 blockade is safer
when compared with other oncotherapy approaches, includ-
ing irradiation, chemotherapy, and surgery, since it is nonin-
vasive and natural, as the treatment mechanism lies at
capacitating self immune cells to fight against neoplasia [48,
54, 59]. Checkpoint immunotherapy is highly specific to the
target cells [60]; hence, accompanied by less hazardous side
effects [61]. Furthermore, immunotherapy can keep cancer
antigen memory [62, 63].

7. Disadvantages of PD-1/L1 Inhibitors in
Cancer Management

7.1. PD-1/L1-Induced Immune-Related Adverse Events. PD-
1/L1-induced immune-related adverse events (irAEs) are
one of the drawbacks of this type of oncotherapy. Unlike
anti-CTLA-4 agents, anti-PD-1/L1 antibodies produced fatal
xenogeneic hypersensitivity reactions in a murine model of
breast cancer after repeated PD-1/L1 antibody administra-
tion [64]. Moreover, anti-PD-1 antibodies have the potential
of causing a myriad of immune-related side effects in various
organs and systems, including the pancreas, skin, liver, gas-
trointestinal tract, endocrine, and renal system [65]. Gener-
ally, the toxicity associated with PD-1/L1 agents is reported
to be less than that with anti-CTLA-4 antibodies, although
certain organ-specific side effects, such as pneumonitis, have
only appeared under PD-1 blockade therapy [66, 67]. PD-1
blockade-associated pneumonitis is an important adverse
event, which is mainly seen in patients with NSCLC [68-
71]. In addition, systemic effects, such as meningoradiculitis,
polyradiculitis, cardiac arrhythmia, asystole, and paresis,
have been noted with PD-1/L1 treatment [72]. Furthermore,
severe side effects such as acute heart failure, resulting from
myocarditis and induced by the PD-1 inhibitor pembrolizu-
mab, have been reported in patients [73].

7.2. Disease Recurrence and Development of Progressive
Disease (Hyperprogression). PD-1 blocker agents are reported
to be associated with higher rates of disease recurrence com-
pared with CTLA-4 inhibitors [12]. Although most patients
treated with checkpoint inhibitors eventually develop pro-
gressive disease [74, 75], up to 18% of patients treated with
checkpoint inhibitors can develop oligoprogression; how-
ever, local therapy can offer long-lasting progression-free
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survival (PFS) in some of these patients [75]. Identifying pre-
dictors of disease recurrence or hyperprogression is of signif-
icant importance in order not to treat patients who might not
benefit from receiving immune checkpoint inhibitors [76,
77]. Clinicians are encouraged to consider balancing the risks
of toxicity with potential benefits and to make such decisions
based on data from challenging patient populations, such as
patients with autoimmune disorders, organ transplant,
chronic viral infections, ongoing immunosuppressant use,
organ dysfunction, pregnancy, brain metastases and
impaired functional status [78].

7.3. Nonspecific Biomarkers. The expression of PDL-1 is cur-
rently a validated and important predictive biomarker; how-
ever, this alone is not sufficient and specific enough for
determining which patients should be offered PD-1/L1
blockade therapy [59, 79, 80]. In addition, PDL-1 single-
nucleotide polymorphisms (SNPs), such as rs4143815 and
rs2282055, have been used to further select the final
responders [81]. The hypothesis that a tumor expressing
the highest level of PDL-1/2 is the most responsive to therapy
has not been approved yet [82]. Similarly, MSI and dAMMR
have been suggested as predictive biomarkers of response to
anti-PD-1/L1 antibodies, irrespective of tumor type [83];
however, these phenotypes are also not sufficient to fully pre-
dict drug response since they are frequently observed in
many cancers and therefore lack specificity [49, 84]. Such
findings request for more research to identify novel predic-
tive biomarkers of response to therapy.

The predictive value of PDL-1 expression alone as a bio-
marker is currently insufficient to understand the depth of
tumor immune landscape and deserves further investigation
to identify other markers such as TIL, TMB, the genetic and
epigenetic variation of IFN-y, circulating biomarkers, and
gut microbiota [22]. Based on the current evidence, tumors
exhibiting a high PDL-1 expression level as well as TMI,
MSI, or dAMMR have higher response rates to PD-1 blockade
[85]. Also, the quantity as well as the quality of tumor-
infiltrating lymphocytes (TILs) is an indicator of response
to checkpoint inhibitor therapy [86].

Several studies reported that copy number gains (CNGs)
in chromosome 9p24 involving PD-L1 were identified in
many cancer types, including lung cancer, melanoma, blad-
der cancer, head and neck cancer, cervical cancer, soft tissue
sarcoma, prostate cancer, gastric cancer, ovarian cancer, and
triple-negative breast cancer [87, 88]. In Hodgkin lymphoma,
Reed-Sternberg cells and Epstein Bar virus infection stimu-
late the PD-L1 CNG leading to overexpression of PD-L1
receptors [89]. This shows that PD-L1 CNG is a potential
predictive biomarker of response to PD-1 blockade, as wit-
nessed in patients with relapsed or refractory Hodgkin lym-
phoma, primary mediastinal large B cell lymphoma, and
diffuse large B cell lymphoma [89].

Another potential approach to predicting and monitor-
ing clinical response to immunotherapy involves enzy-
matic deglycosylation of the natural heavily glycosylated
PD-1 molecules on cell surfaces during immunohisto-
chemistry. This method, also known as sample deglycosyl-
ation, improves anti-PD-L1 antibody binding affinity and
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TaBLE 2: FDA-approved PD-1/L1/2 inhibitors for various malignancies.

Target Agent

Class

Cancer

Pembrolizumab (MK-3475,
Keytruda)

PD-1

Nivolumab (MDX1106, Opdivo)

Cemiplimab (Libtayo)

Humanized IgG4k

Humanized IgG4

Monoclonal antibody/antibody-drug
conjugate

Melanoma
Breast cancer
Non-small-cell lung cancer
Small-cell lung cancer
Head and neck squamous cell cancer
Hodgkin lymphoma
Gastric/gastroesophageal junction (GE])
adenocarcinoma
Cervical cancer
Endometrial carcinoma
Primary mediastinal large B cell lymphoma
Hepatocellular carcinoma
Merkel cell carcinoma
Renal cell cancer
Urothelial cancer
Melanoma
Non-small-cell lung cancer
Small-cell lung cancer
Renal cell cancer
Hodgkin lymphoma
Head and neck squamous cell cancer
Urothelial cancer
Colorectal cancer
Hepatocellular carcinoma

Metastatic esophageal squamous cell carcinoma
(ESCC)

Cutaneous squamous cell carcinoma

Atezolizumab (MPDL-3280A,
Tecentriq)

PD-L1
Durvalumab (MEDI4736, Imfinzi)

Avelumab (MSB0010718C,
Bavencio)

Humanized IgGlk

Human IgG1k

Human IgG1

Urothelial carcinoma
Non-small-cell lung cancer
Small-cell lung cancer
Hepatocellular carcinoma
Breast cancer
Urothelial carcinoma
Non-small-cell lung cancer
Small-cell lung cancer
Merkel cell carcinoma
Urothelial carcinoma
Renal cell cancer

Data are included as of June 5, 2020. Ig: immunoglobulin; PD-1: programmed cell death protein 1; PD-L1: programmed death ligand 1.

signal intensity for easy detection, leading to more precise
PD-L1 quantification and prediction of the clinical out-
come on bioassays [90].

7.4. Cost-Effectiveness of PD-1 Blockade. From the economic
perspective, PD-1 blockade monotherapies are generally
more expensive than other immunotherapy regimens and
conventional cancer therapies [55]. Globally, advanced age
is a significant risk factor for developing cancer, which could
be attributed to the general decline in immune cell generation

and atrophy of the major immunogenic organs with an
increase in age. This interprets the large number of elderly
patients with cancer [91], highlighting a burden placed on
older individuals whose income may be relatively lower than
the rest of the population. Kelly and Davar stated that the two
problems of checkpoint inhibitors are physical toxicity
(irAEs) and financial toxicity [92]. Introducing more specific
biomarkers will improve the cost-effectiveness of treatment
through optimal patient selection and may escalate the usage
of checkpoint blockade [93]. In addition, there is still debate



regarding the cost-effectiveness of combination therapy over
monotherapy with immune checkpoint inhibitors.

7.5. PD-1/L1 Blockade Therapy in Patients with an
Underlying Primary Immunodeficiency and/or
Autoimmunity. When using immunotherapy, one critical
group of patients are those who already have defects in their
primary immunity [94]. Defects of the immune system,
involving both hyperactivity and hypoactivity, or even com-
plete malfunctioning, all put patients at risk [94, 95]. Various
immunotherapies have been used to treat these immune defi-
ciencies [96, 97], but applying cancer immunotherapy to
patients with underlying primary immune deficiencies, such
as antibody deficiency disorders and hereditary angioedema,
has been problematic [94]. In addition, due to the irAEs asso-
ciated with immune checkpoint inhibitor agents, patients
with autoimmune diseases are generally not considered as
potential candidates for receiving these types of therapies.
Recent studies showed that patients with autoimmune dis-
eases may benefit from immune checkpoint inhibitor ther-
apy; however, the occurrence of irAEs was associated with
shorter survival rates [98].

B cell auto-reactivity is more common among patients
with certain underlying conditions, such as thyroid abnor-
malities (thyroiditis and hypothyroidism) and diabetes.
Abdel-Wahab et al. found that patients with preexisting
autoimmune disease suffer more disease flares when treated
with anti-PD-1/PD-L1 agents compared with de novo irAEs
reported with anti-CTLA-4 agents [99]. Evidence of higher
toxicity with CTLA-4 inhibitors than with PD-1/PD-L1
inhibitors is attributed to their “global” activation of naive
and memory T cells from the lymph nodes, unlike PD-
1/PD-L1 inhibitors, which modulate T cell activity “locally”
in the peripheral tissues [100].

7.6. Resistance to Immune Checkpoint Blockade. Although
PD-1 signaling blockade significantly enhances antitumor
response, produces a long-lasting clinical response, and pro-
longs survival in some cases, approximately 30%-60% of
patients show no response to PD-1/PD-L1 blockade [101].
So far, several mechanisms of resistance to immune check-
point blockade have been investigated, such as defects in class
I antigen presentation, the Wnt/B-catenin pathway, and
defects in interferon signaling [102]. In addition, emerging
adaptive resistance against PD-1/PDL-1 receptor blockers
has been reported [4, 23, 103]. In a study by Stenehjem
et al,, resistance to anti-PD-1 treatment and T cell immuno-
globulin and mucin domain-containing molecule-3 (TIM-3)
overexpression occurred once the PD-1/PDL-1 pathway was

blocked [104].

8. Potential Strategies for Improving the
Efficacy of PD-1/L1 Blockade Therapy

8.1. Identifying Novel Specific Biomarkers for Prediction of
Response to Therapy. We recommend prospective studies to
focus on the predictive biomarkers of response to immuno-
therapy, especially PD-1 blockade, which can anticipate the
relative treatment efficacy before drug administration. This
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will minimize the required cost and time, as well as reducing
the adverse events related to these drugs that may result in
worse disease prognosis [105].

The use of PDL-1 as a biomarker needs more combina-
tions to make it more specific for selecting which patients
fit best for single PD-1 therapy or combined therapy. The
combination of PDL-1 and T cell infiltration assessment or
interferon- (IFN-) gamma gene signature could be a promis-
ing suggestion for future studies on predictive biomarkers of
PD-1/L1 therapy [106]. Since highly mutated tumors show a
favorable response to therapy, more insight is needed at the
gene level to determine the mutations which are prorespon-
sive and thus have the potential to be used as predictive bio-
markers [107].

Several other potential biomarkers have been recently
investigated in the context of response to immunotherapies
targeting the PD-1/L1 axis that include the following:

8.1.1. The Gut Microbiome. Recent studies have enriched the
understanding of the role played by the gut microbiota in
cancer progression and response to immunotherapy. These
studies have shown that the gut microbiome may determine
the clinical efficacy of PD-1-based immunotherapies in can-
cer patients. A murine study by Routy et al. demonstrated
that antibiotics against the commensal Akkermansia mucini-
phila inhibited the efficacy of anti-PD-1 immunotherapy,
while oral supplementation with the same bacterium after
fecal microbiota transplantation (FMT) from nonresponding
patients improved the clinical outcomes in mouse models of
renal cell carcinoma (RCC) and NSCLC [108]. They also
observed that antibiotic use in patients with RCC and
NSCLC reduced the quantity of Akkermansia muciniphila,
which potentiates PD-1 blockade by stimulating IL-12 secre-
tion from dendritic cells and promoting the recruitment of
CCR9+ CXCR3+ CD4+ T lymphocytes into mouse tumor
beds [108]. Similar findings were observed in the gut micro-
biome profile of patients with hepatocellular carcinoma
(HCC) [109] and melanoma [110] who were treated with
anti-PD-1 immunotherapy. These results present an essential
opportunity for the gut microbiome to be used as a potent
predictor and also modulator of response to anti-PD-1
immunotherapy in cancer patients. Currently, studies are
investigating the clinical application of manipulating the
gut microbiota by using methods such as prebiotics, probio-
tics, FMT, or capsule loaded with bacteria with the intention
of enhancing clinical response in cancer patients treated with
PD-1-based immunotherapies. In addition, the mechanisms
by which the commensal microbiome modulates response
to checkpoint blockade immunotherapy need to be further
elucidated [111].

8.1.2. Peripheral Blood Biomarkers. Several studies
highlighted that elevated pretreatment neutrophil to lym-
phocyte ratio (NLR) values were associated with shorter
overall survival in patients with metastatic melanoma treated
with either ipilimumab or nivolumab [112, 113]. NLR was
also found to be correlated with survival in patients with
NSCLC and RCC receiving immune checkpoint blockade
[114]. Other peripheral blood biomarkers, such as absolute
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lymphocyte count (ALC), absolute neutrophil count (ANC),
and absolute eosinophil count (AEC), were related to survival
in melanoma patients undergoing treatment with immune
checkpoint inhibitor therapy [115, 116]. Such findings sug-
gest that these routinely collected host-related biomarkers
could be used as predictors of response to PD-1-based immu-
notherapy prior to initiation of treatment [117].

8.1.3. Circulating MicroRNAs. Growing evidence shows that
epigenetic markers could be used as potent predictive bio-
markers associated with response to therapy and survival in
cancer patients treated with immune checkpoint inhibitors.
For example, circulating microRNAs (miRNAs) are able to
alter the expression of PD-L1 on cancer cells, which may ulti-
mately result in increased overall survival in cancer patients
[118]. In a study by Halvorsen et al., a 7-miRNA signature
(miR-215-5p, miR-411-3p, miR-493-5p, miR-494-3p, miR-
495-3p, miR-548j-5p, and miR-93-3p) was associated with
survival in nivolumab-treated NSCLC patients [119]. Some
researchers have speculated that these miRNAs might induce
cell cycle arrest or regulate interferon-Al [120, 121]. In
another study, Shukuya and colleagues demonstrated that
the concentration of specific circulating miRNAs and miR-
NAs packaged in extracellular vehicles was significantly dif-
ferent between responder and nonresponder NSCLC
patients treated with anti-PD-1/L1 therapy [122]. Similarly,
the expression profile of serum miRNAs was associated with
response to therapy as well as survival in a study conducted
on NSCLC patients receiving anti-PD-1 treatment [123].
miRNAs have also been investigated as predictive biomarkers
in patients with malignant melanoma; Nakahara et al. found
that the serum expression level of three miRNAs (miR-16-5p,
miR-17-5p, and miR-20a-5p) was an independent predictor
of response to nivolumab/pembrolizumab [124]. Altogether,
circulating miRNAs could be introduced as useful predictors
of efficacy of anti-PD-1/L1 immunotherapy given their sta-
bility and presence in biofluids. However, the exact mecha-
nisms and target molecules of these miRNAs are not clearly
understood.

8.2. Combination Therapies. In 2015, Mahoney et al. [14,
125] found that cancers that expressed PDL-1 receptors were
more responsive to treatment with single-agent PD-1
blockers than tumors without PDL-1 expression. Tumor
immune-cell infiltration is generally divided into three pat-
terns: (i) “immune-desert” or noninflamed, (ii) “hot” or
inflamed, and (iii) immune-excluded [126, 127]. Though T
cell infiltration is not a definitive diagnostic/prognostic
marker for PD-1 blocker activity, several researchers have
reported a better response of highly infiltrated “hot” tumors
to PD-1 blockers compared with other infiltration patterns
[126, 128, 129]. The fact that anti-CTLA-4 agents improve
T cell infiltration into the tumor microenvironment [130]
provides an opportunity for PD-1 blockade agents to work
more efficiently, hence, proving that combination therapy
of the two agents is most superior.

Another approach that clinicians used to convert a cold
tumor into a hot, inflamed tumor, which is more responsive
to immunotherapy, was amalgamating PD-1 blockade with

oncolytic viruses, such as the Newcastle virus [131]. Oncoly-
tic virotherapy with talimogene laherparepvec increased
cytotoxic T cell infiltration and therapeutic efficacy of the
anti-PD-1 antibody, pembrolizumab, in advanced melanoma
[105].

Combination therapy is a well-warranted tactic in cancer
management [132]. The objective response rate, disease con-
trol response, and PFS all showed superiority in patients
treated with combined chemotherapy and PD-1 blockade in
comparison with either single therapies [131, 133]. More-
over, uniting local ablation and immunotherapies such as
PD-1 inhibitors is one of the most potent regimens that
oncologists can manipulate. One vital weakness of PD-1
blockers is their inability to penetrate the cancer microenvi-
ronment in cold tumors [134], which can be gained with
the assistance of local ablation [135]. Hence, this combina-
tion will potentiate the effectiveness of both treatments, espe-
cially in solid tumors [136]. Many forms of local ablation can
be combined with immune checkpoint inhibitors, including
stereotactic body radiotherapy (SBRT), a method of killing
tumor cells by damaging DNA, which makes the growing
tumor cells more sensitive to radiation than normal tissues,
and cryoablation, which destroys tumor tissue through sev-
eral cycles of extremely cold temperatures and thawing
[137]. These are relatively novel and minimally invasive local
therapeutic options used for several solid tumors [136].

Moreover, studies have reported a synergistic combina-
tion of cancer vaccines and checkpoint blockers, in which
cancer vaccines prime patients for PD-1 inhibitor therapy
by inducing effector T cell infiltration into the tumors and
immune checkpoint signals, basically turning “cold” tumors
to “hot” T cell infiltrative tumors, improving the effectiveness
of PD-1 blockers [132, 138].

8.3. Further Research. Currently, there is a need for improv-
ing the effectiveness of PD-1/L1 blockade by discovering
novel predictive, diagnostic, and prognostic pharmacological
biomarkers to make immunotherapy a more specific treat-
ment with better clinical results and fewer adverse effects.
Investigating new immunotherapeutic approaches that
would inhibit a wider spectrum of inhibitory receptors, such
as T cell immunoglobulin and mucin domain-containing
protein 3 (TIM-3), lymphocyte-activation gene-3 (LAG-3),
T cell immunoglobulin and ITIM domain (TIGIT), and B-
and T-lymphocyte-associated protein (BTLA) receptors
associated with T cell exhaustion as well as V-domain immu-
noglobulin suppressor of T cell activation (VISTA) is an
achievable milestone [139], for instance, the inhibitory recep-
tor VISTA on tumor-infiltrating myeloid cells, whose inhibi-
tion promotes antitumor immune responses in mice, and
CD96, which is shown to inhibit NK cell activity in murine
cancer models [12, 140].

In an effort to noninvasively monitor T cell infiltration
within the tumor microenvironment and to predict response
to treatment, novel radiolabeled tracers have been developed.
Ongoing clinical trials are currently investigating the clinical
utility of PD-1/L1-targeted positron emission tomography-
(PET-) based imaging biomarkers, such as64Cu-WLI12,
99mTc-NM-01, 89Zr-envafolimab, 18F-BMS-986192, 89Zr-



durvalumab, 89Zr-labeled avelumab, 89Zr-labeled atezolizu-
mab, 89Zr-CX-072, 89Zr-labeled atezolizumab, 89Zr-nivolu-
mab, and 89Zr-pembrolizumab for detection of PD-1/L1
expression, T cell activation, or assessment of response to
treatment in cancer patients [141, 142]. Recently, Niemeijer
et al. showed that noninvasive evaluation of PD-1/L1 expres-
sion is feasible with PET-CT using the radiotracers 18F-
BMS-986192 and 89Zr-nivolumab in patients with advanced
NSCLC [143]. A phase II clinical trial is aimed at evaluating
the correlation of uptake of an 89Zr-labeled anti-CD8 mini-
body (89Zr-labeled-IAB22M2C) with clinical response in
patients with metastatic solid tumors treated with immuno-
therapy [144]. Although immunoPET imaging seems to
show promise for optimizing individualized medicine in can-
cer immunotherapy, this approach faces many challenges.
For example, the imaging tracers currently being used are
not solely specific to T cells [142]. Another concern is that
the T cells detected through immunoPET imaging may be
anergic or exhausted, thereby not contributing to anti-
tumor response [141]. Thus, the development of novel radio-
tracers that can be attributed more specifically to activated T
cells may be essential in the future.

Recent advancements in the field of cellular and molecu-
lar immuno-oncology have revealed that cellular heterogene-
ity of TILs as well as the diverse and complex interactions
between tumor and immune cells play a pivotal role in anti-
tumor immune response and in response to cancer therapies
including immune checkpoint blockade. Single-cell sequenc-
ing technologies are capable of providing a detailed charac-
terization of individual immune cells, which may facilitate
the efficacy of anticancer immunotherapies [145]. In a
single-cell RNA sequencing study, Sehgal and colleagues
found that a cancer cell subpopulation expressing Snail and
Sca-1, namely, immunotherapy persister cells (IPCs),
escaped CD8+ T cell-mediated killing after effective PD-1
blockade. They also showed that the combination of PD-1
blockade with Birc2/3 antagonists resulted in durable
responses in mice through decreasing IPCs [146]. In another
study, which used high-dimensional single-cell mass cytom-
etry, the frequency of CD14+CD16-HLA-DRhi monocytes
before treatment was found to be a predictor of response to
anti-PD-1 immunotherapy in patients with melanoma
[147]. Mass cytometry, also known as Cytometry by Time-
Of-Flight (CyTOF), is an innovative next-generation flow
cytometry platform that allows for high-dimensional pheno-
typic and functional analysis of single cells with several tech-
nological advantages over fluorescence-based flow
cytometry. The platform enables the simultaneous quantifi-
cation of over 40 parameters in individual cells with minimal
overlap between channels [148, 149]. Better understanding of
the tumor immune atlas through advanced single-cell tech-
nologies could revolutionize cancer immunotherapy and
guide physicians in clinical practice.

Genomic approaches to predicting response or resistance
to immunotherapy is an exciting strategy in the field of can-
cer immunology research. As mentioned earlier, studies have
shown that tumor mutation burden is associated with
response to anti-PD-1 immunotherapy in cancer patients.
Incorporating high-resolution assays including single-cell
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gene expression profiling, T cell repertoire sequencing,
whole-exome sequencing (WES), and targeted sequencing
on circulating tumor cells (CTCs), cell-free DNA (cfDNA),
and tumor tissue may shape the future of precision medicine
by identification of genes in both tumors and T cells that are
involved in response or resistance to cancer immunotherapy
[150, 151]. In a recent study by Giroux Leprieur et al., WES
performed on circulating tumor DNA (ctDNA) in advanced
NSCLC patients showed that clonal selection with molecular
alterations of Wnt pathway-related genes, increase of copy
number aberrations in cancer-related genes, and loss of
tumor-suppressor genes or genes associated with immune
response seem to be associated with late progression under
immune checkpoint inhibitor monotherapy [152]. Also,
WES of NSCLC tumors treated with immune checkpoint
inhibitors revealed that activating mutations in receptor tyro-
sine kinase (RTK) genes were significantly enriched in non-
responders [153]. In addition, decrease in tumor fraction
(TFx) of cfDNA has been reported as an early biomarker of
response to therapy in patients with castration-resistant
prostate cancer [154]. However, the association between
TFx decline and response to immune checkpoint blockade
has not been studied yet. Single-cell T cell receptor (TCR)
sequencing, which allows for sequencing of paired alpha
and beta chains, is a novel but relatively expensive approach
that may help in monitoring response to immunotherapies
such as anti-PD-1/L1 immunotherapy [155, 156]. In a study
sequencing the complementarity-determining region 3
(CDR3) of TCRp chains isolated from peripheral PD-1+
CD8+ T cells, high PD-1+ CD8+ TCR diversity before anti-
PD-1/L1 immunotherapy was positively correlated with
PES and response to therapy in patients with NSCLC. More-
over, increased PD-1+ CD8+ TCR clonality after therapy was
associated with longer PFS [157]. Similarly, a diverse baseline
TCR repertoire was associated with a better response to anti-
PD-1 therapy in patients with classical Hodgkin lymphoma
(cHL). Also, CD4+ TCR diversity significantly increased dur-
ing treatment, as cHL is a tumor with frequent major histo-
compatibility complex (MHC) class I loss [158].

Chimeric antigen receptor (CAR) T cell therapy is
another effective and promising immunotherapy approach,
which involves the genetic alteration of patients’ T cells to
express a CAR that is specific for a tumor antigen [159,
160]. This genetic modification may occur either via viral-
based gene transfer methods or nonviral methods such as
DNA-based transposons, clustered regularly interspaced
short palindromic repeats/CRISPR associated protein
9(CRISPR/Cas9) technology, or direct transfer of in vitro
transcribed-mRNA by electroporation. Clinical trials have
shown promising results with CAR T cell therapy in end-
stage patients with acute lymphocytic leukemia (ALL) with
a full recovery of up to 92% [161]. This immunotherapeutic
approach also holds much potential for osteosarcoma treat-
ment [162]. The combination of CAR T cell therapy and
PD-1 blockade is a highly potential strategy that enhances
the therapeutic effects of CAR T cell therapy, especially in
hematological cancers [163]. The pursuit of finding combi-
nation therapies should be further explored to establish
combination-based clinical parameters, such as individual
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tolerability, dose, safety, durability, and efficacy [164]. It
should be noted, however, that combination therapies carry
the risk of toxicity to normal tissues expressing the same anti-
gens as the tumor cells, and so, strategies are needed to
reduce the on-target off-tumor toxicities [165].

Finally, the hallmark of the maximum clinical benefit of
PD-1/L1 blockers in immunotherapy would be realized by
combining them with other oncotherapies. Possible collabo-
rators include other checkpoint inhibitors, kinase inhibitors,
chemoradiotherapeutics, ablation, and cryoradiotherapies
[166-168]. For example, combined oncolytic viral therapy
and PD-1/L1 blockade have yielded favorable results with
an objective response rate of 62% compared with 33% of
PD-1/L1 monotherapy and a complete response rate of
33% per immune-related response criteria [105].

9. Conclusion

It is well-known that the PD-1/L1 pathway promotes cancer
development and progression through negatively regulating
T cell-mediated immune responses and suppressing prolifera-
tion, migration, and effector function of T cells. The introduc-
tion of PD-1/L1 blockade therapy has demonstrated
promising antitumor effects in cancer immunotherapy of
many different solid and hematologic malignancies. This form
of immunotherapy is especially effective in tumors exhibiting
high PDL-1/2 expression, MSI, TML, and dMMR; however,
tumors not expressing any of these biomarkers have also
responded well to treatment with immune checkpoint inhibi-
tors. The use of multiple biomarkers is likely to be more effec-
tive for predicting responders than each of these biomarkers
alone. In addition, defining an optimal cut-point of TMB for
selecting patients with different cancer types is necessary.
Developing novel drugs that block other coinhibitory recep-
tors, such as TIM-3, LAG-3, TIGIT, BTLA, and VISTA,
deserves more attention in the future. Finding novel strategies
for converting “cold” to “hot” tumors with higher T cell infil-
tration in the tumor microenvironment will provide more
desirable response rates with PD-1/L1 blockade therapy.

The sophisticated tumor immune microenvironment
makes it difficult to utterly suppress the inhibitory microen-
vironment by a single-agent therapy. In this review, we dis-
cussed the benefits of combination therapy in terms of both
reducing toxicities and increasing efficacy. A perfect example
in this regard is the combination treatment of anti-CTLA-4
and anti-PD-1 antibodies, which has proved to be a feasible
strategy significantly increasing overall response rate and
demonstrating an acceptable safety profile compared with
anti-PD-1 or anti-CTLA-4 monotherapy [58]. Other than
anti-CTLA-4, several other interventions such as cancer vac-
cines, oncolytic viruses, and radiotherapy have been adopted
to enhance the efficacy of PD-1 blockade therapy. One of the
mechanisms of this enhanced efficacy is through increasing T
cell infiltration in the tumor microenvironment. Considering
the wide range of potential combinations, a deeper under-
standing of the cellular and molecular mechanisms of resis-
tance and synergies will help improve the rational design of
combination therapeutic strategies that can translate basic
science to patient care. Taken together, the future landscape

of these combination strategies seems to be very promising.
To apply these novel strategies in the clinic, identifying more
specific biomarkers is of utmost importance. There is still
vast research that needs to be undertaken to rightfully select
the most appropriate cancers which deserve to be treated
with PD-1/L-1/2 blockers as immunotherapy. Furthermore,
the identification of dynamic rather than static biomarkers
that could predict response or resistance to anti-PD-1/L1
immunotherapy will have a significant impact in routine
clinical management of cancer patients.
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