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Multiple myeloma (MM) is a malignant disorder charac-

terized by the accumulation of neoplastic plasma cells in

the bone marrow. Most patients suffer from osteolytic

lesions that cause pain and reduced quality of life, and

may result in hypercalcemia, fractures, and spinal root

or spinal cord compression. At diagnosis 80% of patients

already have pathological bone findings when evaluated

with conventional radiography (1).

MM causes increased bone resorption through osteo-

clast activation (2–6), and bone resorption is increased

even in patients without osteolytic lesions (7). In addi-

tion, MM also causes decreased bone formation (8–11).
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Bone formation is primarily impaired in patients with

overt osteolysis, whereas no decrease in bone formation

is observed in MM without osteolysis or in monoclonal

gammopathy of undetermined significance (MGUS)

(7, 12). Likewise, osteoblasts from patients with MM

with bone disease are more prone to apoptosis compared

to osteoblasts from patients with MM without bone dis-

ease (13). Thus, it appears that osteolysis becomes appar-

ent only when increased bone resorption is not

compensated for by the formation of new bone (i.e.

‘imbalanced remodeling’).

Bisphosphonates, which are the only registered drugs

for the treatment of osteolysis in MM (14), mainly target

the increased bone resorption caused by osteoclasts (15).

The very significant inhibition of osteoclasts obtained by

treatment with potent bisphosphonates may in fact inhi-

bit bone formation as some osteoclast activity seems to

be important for the stimulation of osteoblasts (16).

Indeed, a 50% reduction of osteoblast activity has been

observed after initiation of bisphosphonate treatment

(17). Accordingly, the protection against osteolysis

offered by bisphosphonate treatment is only partial (18).

Furthermore, osteoblast function remains impaired when

MM has been brought into remission with standard che-

motherapy (19), and healing of established bone lesions

is rarely observed (20).

Evidence suggesting that bortezomib, the first clinically

available proteasome inhibitor, could overcome the

osteoblast inhibition observed in MM was provided from

the APEX trial where serum alkaline phosphatase (AP)

was found to be increased in patients responding to bort-

ezomib treatment (21). It was clearly demonstrated that

the stimulatory effect on bone formation was induced by

bortezomib as no increase in AP was observed in

patients responding to the treatment arm lacking bort-

ezomib. Subsequent clinical studies confirmed and

extended this observation, showing that the increase in

AP was caused by the bone-specific alkaline phosphatase

(bALP) (22–24). Cell culture studies on human as well as

murine osteoblast cell lines and animal studies have dem-

onstrated that bortezomib stimulates osteoblasts and

bone formation (25–30). Furthermore, Giuliani et al. (31)

demonstrated that bortezomib treatment increases the

number of osteoblasts in the bone marrow of patients

with MM. So far, however, the clinical studies have been

performed in patients with relapsing MM who have

received prior chemotherapy, treatment with bisphospho-

nates, and frequently have also been treated with gluco-

corticoids, which are known to inhibit bone formation

(32, 33).

In this study, we report that bortezomib used alone

and in combination with a glucocorticoid as front-line

treatment in previously untreated, bisphosphonate-naı̈ve

patients stimulates bone formation not only as shown

by an increase in bALP but also through the use of a

novel bone marker, pro-collagen type I N-terminal pro-

peptide (PINP) that is released as collagen is deposited

and becomes insoluble during the formation of the

organic bone matrix (34) and may, therefore, be a better

marker for ongoing bone formation. We also found that

the formation of new bone, as reflected by an increase

in serum PINP, was inhibited by the addition of a glu-

cocorticoid to the treatment with bortezomib and

extended the observations by in vitro studies demonstrat-

ing that pulse-treatment with bortezomib induced

osteoblast differentiation which was inhibited by gluco-

corticoid treatment, while osteoblast proliferation was

not affected.

Material and methods

The study was conducted as a prospective bicenter non-

randomized phase II clinical trial in accordance with the

Helsinki declaration and ‘Good Clinical Practice’ guide-

lines, and was approved by the Danish Medicines

Agency, the Regional Ethical Committee, and the Dan-

ish Data Protection Agency. All patients gave informed

consent. The study received EudraCT number 2006-

002464-26 and trial registration number NCT00436059

at clinicaltrial.gov.

Only previously untreated newly diagnosed patients

with MM were included in the trial. Patients who had

previously received bisphosphonate treatment intrave-

nously or orally for any indication were excluded from

the study. A performance status of three or better and a

life expectancy of at least 3 months and measurable dis-

ease were required for inclusion. All patients received

four cycles of bortezomib 1.3 mg ⁄m2. Each cycle lasted

3 wk and bortezomib was administered by i.v. push on

day 1, 4, 8 and 11. The first cycle was given as monother-

apy and in the three subsequent cycles bortezomib was

given in combination with dexamethasone 20 mg on the

day of bortezomib infusion and on the following day.

Patients

Twenty consecutive patients from Vejle Hospital or

Odense University Hospital were included in the trial

(ten males and ten females). The median age of the

patients was 68.5 yr (range: 51–85 yr), 15 patients had

IgG myeloma, three patients IgA myeloma and two

patients had light chain disease only. Response was mon-

itored at least every third week, prior to the initiation of

a new treatment cycle by measurements of serum

M-component (IgG or IgA), serum-free light kappa ⁄
lambda chains (FLC), creatinine, ionized serum calcium

and other relevant laboratory parameters. Likewise, a

careful physical examination, evaluation of performance
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status, registration of side effects and concurrent medica-

tion were conducted every 3 wk. Thrombocyte levels

were measured prior to each bortezomib infusion.

After four treatment cycles, treatment response was

evaluated according to the International Uniform

Response Criteria for Multiple Myeloma (35).

Markers of bone turnover

The bone turnover markers bALP, PINP, Dickkopf 1

(DKK-1) and N-terminal crosslinked telopeptide of type

I collagen (NTX-I) were measured together with parathy-

roid hormone (PTH), calcium and albumin during the

study period. Blood samples, used for the measurement

of bone turnover, were collected in the morning from

fasting patients. Urine samples were collected as fasting

second void morning urine. The samples were immedi-

ately centrifuged and stored at )80�C. Samples were col-

lected before the first infusion of bortezomib on day 1

and subsequently on days: 2, 3, 4, 8, 9, 10, 11, 21, 24,

28, 31, 42, 52, 63 and 73 of the study period. All samples

from the individual patients were analyzed in the same

batch to minimize analytical variation. Serum bALP was

measured with a non-competitive enzyme immunoassay

technique (Quidel Corporation, San Diego, CA, USA).

Serum PINP was measured by a two-site immunoassay

detecting both mono and trimetric forms of intact PINP

(Roche Diagnostics, Hvidovre, Denmark). DKK-1, an

osteoblast inhibitor, was measured in plasma using an

enzyme-linked immunoassay (Biomedica, Wien, Austria).

To evaluate bone resorption, we measured urine NTX-I

(Ostex International, Seattle, WA, USA) by competitive

enzyme immunoassay techniques. bALP, PINP, DKK-1

and NTX-I were all analyzed in duplicates. PTH was

measured by an electrochemiluminescence technique that

measures intact PTH (Roche Diagnostics). Calcium and

albumin were measured by colorimetric methods (Roche

Diagnostics).

In vitro studies of osteoblasts

Human adipose-derived stem cells (ADSCs) (Invitrogen,

Taastrup, Denmark) capable of differentiating into

osteoblasts, and which serve as a model for pre-osteo-

blasts, were used to analyze the effects of bortezomib

and glucocorticoid administration on osteoblastic precur-

sor cells (undifferentiated ADSCs) and on more mature

osteoblasts (differentiated ADSCs) (36–38). The cells

were grown in a humidified incubator with 5% CO2 at

37�C. For experiments on osteoblastic precursors, the

cells were grown in MesenPro RS Medium (Invitrogen)

and cultured for a maximum of four passages. For

experiments on more mature osteoblasts the ADSCs

were taken into culture, grown for one passage and

reseeded at a density of 5000 cells ⁄ cm2 in well plates.

The cells were then cultured for 24 h in MesenPro RS

Medium where after the medium was exchanged with

medium from the StemPro Osteogenesis Differentiation

kit (Invitrogen), and the cells were allowed to differenti-

ate for 10 d with medium renewal every 3–4 d.

To test the effects of bortezomib and glucocorticoid

treatment on undifferentiated or differentiated ADSCs,

the cells were exposed during in vitro culture conditions

to: (i) a 3-h pulse treatment with bortezomib 25 nm as

described previously (39) and then placed in control

medium, (ii) continuous exposure to 5 lm prednisolone

(corresponding to a daily oral dose of approximately

20 mg dexamethasone) for 48 h or (iii) control medium.

For all conditions, 0.5% DMSO (solvent of predniso-

lone) was added. The cells were harvested after 48 h for

response evaluation. We chose to use pulse-treatment

with bortezomib to better mimic the in vivo conditions

where the drug is given as a bolus infusion and the

serum level quickly reaches a peak after which it is rap-

idly taken up by the tissue and is subsequently followed

by a slow release and elimination (39, 40).

AP activity of cultured cells

Human ADSCs were washed after defined periods in cul-

ture, lysed in reaction buffer (60 mm Na2CO3, 40 mm

NaHCO3, 0.1% TritonX-100, 2 mm MgSO4, 4 mm

4-nitrophenyl phosphate) and incubated in the dark for

30–60 min until a yellow color was visible. A sample of

the lysate was taken aside and used to determine the pro-

tein concentration according to the instructions by the

supplier of the kit (Bio-Rad Protein Assay; Bio-Rad,

Copenhagen, Denmark). The remaining solution was

mixed with 1 volume of 1 m NaOH and OD405 was

measured on a plate reader (Synergy HT; Bio-Tek,

Winooski, VT, USA) along with a standard curve of

4-nitrophenol. Results are given both as total AP activity

and as AP activity per lg of protein in the extract. The

measurements were done in five replicates.

Cell proliferation

Undifferentiated ADSCs were seeded in culture wells at

a density of 7.1 · 103 cells ⁄ cm2 and incubated for 24 h.

Subsequently, cells were pulse-treated with bortezomib as

described, washed and cultured for 48 h or alternatively

exposed to prednisolone for 48 h. The cells were then

fixed and stained with May-Grünwald as previously

described (41). Cell proliferation was determined by

counting the surface in the culture well covered by cells

using a graticule with 100 points inserted into the ocular

using a 10· objective (Zeiss AxioVert; Carl Zeiss,

Birkerød, Denmark). Wells of a 96 well-plate were
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divided into 19 squares using the graticule and counted.

The percent cell surface area was determined as an aver-

age for the 19 squares in five replicates.

Analysis of gene expression

For gene expression analysis, ADSCs were seeded at a

density of 4.3 · 104 cells ⁄ cm2 and incubated for 24 h using

either immature or differentiated osteoblasts derived as

described earlier. The cells were then either pulse-treated

with bortezomib or exposed to prednisolone for 24 h as

described. Medium was removed, the cell layer was

washed three times in PBS followed by lysis of the cells in

the plate and isolation of RNA according to the instruc-

tions by the supplier of the kit (Trizol Plus RNA Purifica-

tion kit; Invitrogen). cDNA was generated using 500 ng

RNA and the iScript kit (Bio-Rad) according to the

instructions by the supplier. Subsequently, Q-PCR was

performed using the TaqMan approach according to

instructions by the supplier. The Q-PCR was run on a

Realtime PCR machine (7900HT; Applied Biosystems,

Foster City, CA, USA). As reference genes, Abl and GUS

were used. The expression levels of both genes were con-

verted into relative values by the use of an internal stan-

dard curve. Five replicates were done per sample. The

overall average expression levels of Abl and GUS were

used to normalize the expression levels of the genes of

interest. All TaqMan primer ⁄probe sets were inventoried

and used according to the instructions by the supplier

(Applied Biosystems) (used primer ⁄probes: GUS,

Hs99999908_m1; Abl, Hs00245443_m1; osteopontin,

Hs00959010_m1; collagen type I, Hs00164004_m1).

Statistical analysis

Changes in serum or urine levels of bALP, PINP, DKK-1,

NTX-I, PTH and calcium were analyzed by comparison

of the value of each marker at a given time point with

the same marker pre-treatment using a Wilcoxon signed

rank test. Spearman’s test was used to analyze for corre-

lation between calcium and PTH. Urine NTX-I was nor-

malized to urine creatinine and expressed as relative

values. Calcium levels were adjusted for variations of

serum albumin. Patients who left the protocol before

response evaluation was possible were analyzed as

responders. Cell culture experiments were analyzed using

an unpaired t-test. When analyzing Q-PCR levels, the

control values were normalized to one. All P-values are

two sided, and the significance level was set at P £ 0.05.

Results

Twenty patients were included in the protocol. Fourteen

responded to treatment with a partial response or better,

and ten of these with a very good partial response or

better. Four patients responded with less than a partial

response. Two patients died before the final response

evaluation could be conducted, one because of cerebral

hemorrhage the other because of gastro-intestinal bleed-

ing. These two patients were evaluated as responders.

Two patients underwent major orthopedic surgery pre-

ceding protocol inclusion causing abnormal high bone

formation markers (42). These two patients were

excluded from further analysis. Thus, fourteen patients

were evaluated as responders and four patients as non-

responders.

Markers of bone turnover in patients

Both bALP and PINP increased in patients responding

to bortezomib treatment (Fig. 1A,B). Their development

showed many similarities. Both markers reached a peak

value on day 42 after which the increase diminished.

The magnitude of changes was also strikingly similar

when analyzing values prior to each treatment cycle. At

the beginning of cycle two, bALP and PINP had

increased by 64.4% and 62%, respectively; at cycle three

by 98% and 101%; and at cycle four by 51% and 45%.

However, there were obvious dissimilarities when com-

paring bALP and PINP in responding patients. While

bALP showed no fluctuation, a rapid and transient

decrease of 61% on average in PINP was observed dur-

ing cycle two to four. No decrease was seen in the first

treatment cycle which was also the only cycle during

which bortezomib was given without the addition of

dexamethasone.

In patients who did not respond to treatment with a

partial response or better, no significant changes in

bALP or PINP were observed (Fig. 1C,D).

Two patients received off-protocol treatment with glu-

cocorticoid prior to the planned time point. Patient A

received 100 mg prednisolone from day 12 to 53 because

of the risk of spinal cord compression. Patient B received

20 mg dexamethasone on day 11 and 12. Both patients

responded with an instant decrease in PINP, whereas

bALP remained unchanged (Fig. 2).

In responding patients, the osteoblast inhibitor

DKK-1 decreased rapidly after one treatment cycle and

reached a plateau at about 25% of the initial value

around day 30 (Fig. 3A). In patients not responding

to treatment, DKK-1 remained elevated (data not

shown).

The levels of the bone resorption marker NTX-I were

reduced by approximately 50% after one treatment

cycle in responding patients and remained relatively

constant thereafter (Fig. 3B). Patients with less than a

partial response showed a small but significant decrease

in NTX-I (data not shown). PTH increased significantly
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after only 1 wk of treatment, reaching a maximum of

threefold of the baseline value at the beginning of cycle

two and then leveling off into a plateau around 2.5-fold

of the baseline level (Fig. 3C). The increase in PTH was

inversely correlated to decreasing calcium levels,

R = )0.465, P < 0.0001 (Fig. 3D). A similar but

statistically insignificant trend for both calcium and

PTH was found in non-responding patients (data not

shown).

Effect of bortezomib and glucocorticoid on osteoblast
precursors and differentiated osteoblasts in vitro

Human osteoblast precursors and differentiated osteo-

blasts were exposed to either bortezomib or prednisolone

as described in the Materials and Methods section.

Osteoblast precursors responded to the treatment with a

significant increase in levels of AP activity (Fig. 4A), but

the difference became insignificant when AP levels were
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bALP remained unchanged, whereas an imme-

diate decline in PINP was observed.
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tocol on bone-specific alkaline phosphatase

(bALP) and pro-collagen Type I N-terminal pep-

tide (PINP) in responders and non-responders.

bALP increased twofold in responding patients

(A). PINP showed a similar increase (B). Both

values reached a maximum value at day 42.

Furthermore, PINP showed a transient signifi-

cant decrease every time dexamethasone was

added. No significant changes were observed in

non-responding patients (C–D). Response is

defined as partial response or better. Results

are shown as mean values ± SEM from 14

(A–B) and 4 (C–D) patients. ***P < 0.001;

**P < 0.01; *P < 0.05 using a Wilcoxon signed

rank test.
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adjusted to the total protein content of the lysates, sug-

gesting that the increase in AP activity may reflect cell

proliferation (Fig. 4B). This assumption was supported

by the findings presented in Fig. 4C showing increased

cell growth with both treatments.

The impact of bortezomib or glucocorticoid on the

differentiation of osteoblast precursors was studied by

measuring an early osteoblast differentiation marker,

osteopontin, by Q-PCR (43). Treatment with bortezomib

resulted in a fivefold increase in levels of osteopontin

while treatment with the glucocorticoid caused a strong

reduction of osteopontin (Fig. 4D). Thus, bortezomib

seems to induce both proliferation and differentiation of

osteoblast precursors, whereas the stimulation of osteo-

blast proliferation induced by glucocorticoides, from a

bone formation perspective, was counteracted by inhibi-

tion of differentiation.

When ADSCs were induced to differentiate into more

mature osteoblast-like cells before treatment with bort-

ezomib or glucocorticoid, AP levels were not significantly

different from controls (Fig. 4E,F). However, in more

mature osteoblast-like cells, we found that treatment

with glucocorticoid induced a less mature phenotype as

shown by suppression of the differentiation marker colla-

gen type I (Fig. 4G). Thus, our in vitro findings show

that bortezomib and glucocorticoids may both induce

proliferation of osteoblasts, and that bortezomib may

also induce differentiation of osteoblast precursors while

glucocorticoids appear to inhibit the differentiation of

osteoblast precursors and induce an immature phenotype

in mature osteoblasts.

Overall, our in vitro findings seem consistent with the

interpretation that the increased serum bALP level in

patients could be because of enhanced growth and differ-

entiation of osteoblast precursors. The observed transient

decrease in PINP probably reflects reduced collagen type

I synthesis caused by treatment with the glucocorticoid.

Discussion

Osteolysis remains a major problem in MM and approxi-

mately 80% of patients have a pathological bone status

already at diagnosis. Impaired bone formation is a major

contributor to the development of clinically apparent

osteolysis. Over recent years, it has been shown that bort-

ezomib, the first clinically approved proteasome inhibitor,

may increase the markers of bone formation, bALP and

osteocalcin, which are usually suppressed in MM. How-

ever, previously reported studies have been conducted on

a very heterogeneous population of patients with MM,

both with regard to earlier treatment regimens and with

regard to concurrent treatment with drugs known to have

an impact on bone remodeling, e.g. dexamethasone and

bisphosphonates. Here, we have studied for the first time

DKK-1 in responders

** ******** ** *****D
ic

kk
o

p
f-

1 
p

g
/m

L

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

*

Normal range

DKK-1
Bortezomib
Dexamethasone

Day

Ca in responders

0 10 20 30 40 50 60 70 80

Normal range

Calcium
Bortezomib
Dexamethasone

Day

2.0

2.1

2.2

2.3

2.4

2.5

2.6

***

******** **
** **

**

C
al

ci
u

m
 m

m
o

l/L

PTH in responders

0 10 20 30 40 50 60 70 80

Normal range

PTH
Bortezomib
Dexamethasone

Day

0

2

4

6

8

10

12

* **

**
**

***

*** ** ** **
**

P
ar

at
hy

ro
id

 h
o

rm
o

n
e

P
m

o
l/L

NTX-1 in responders

Normal range

NTX-1
Bortezomib
Dexamethasone

Day
0 10 20 30 40 50 60 70 80

0

50

100

150

*

*
*

**

*** *

*

N
-T

er
m

in
al

 c
ro

ss
lin

ke
d

te
lo

p
ep

ti
d

e 
o

f 
ty

p
e-

I c
o

lla
g

en
/

C
re

at
in

in
e

A

C

B

D

Figure 3 Effect of treatment on Dickkopf-1 (DKK1), N-terminal crosslinked telopeptide of type I collagen (NTX-I), parathyroid hormone (PTH), and

calcium in responders. DKK-1 showed a fourfold decline in responding patients (A). No changes were observed in non-responding patients (data

not shown). NTX-I declined twofold, however significance is lost after the addition of dexamethasone (B). PTH increased significantly from day 8

and onward (C). The changes in PTH were mirrored by a simultaneous decrease in calcium (D). The correlation coefficient between calcium and

PTH is )0.465 P < 0.0001 (data not shown). Calcium levels were corrected to albumin levels. Response is defined as partial response or better.

Results are shown as mean values ± SEM from 14 patients. ***P < 0.001; **P < 0.01; *P < 0.05; using a Wilcoxon signed rank test.

Lund et al. Bortezomib increases bone deposition

ª 2010 John Wiley & Sons A/S 295



the effect of bortezomib on bone formation markers

when used as frontline treatment in bisphosphonate-naı̈ve

patients. We demonstrate that treatment with bortezomib

not only results in increased osteoblast activity but also

in an increase in actual bone matrix deposition evaluated

through the novel marker PINP (44). Owing to multiple

measuring points during the treatment period, we were

able to demonstrate a very early response after only 1 wk

of treatment, and after the first treatment cycle both

bALP and PINP levels exceeded the upper normal range

of healthy adults.

The positive effect of bortezomib on bone formation

as demonstrated by biochemical markers reached a maxi-

mum after 6 wks, after which a slight decline was
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observed. This is in perfect agreement with observations

from the APEX trial, where bortezomib was given as

single agent (21). One explanation for the biphasic devel-

opment of the curve could be that an initial direct osteo-

blast stimulation caused by bortezomib is later

counteracted by a decrease in total bone remodeling as

indicated by a decrease in the bone resorption marker

NTX-I. The decline observed in NTX-I was probably

caused partly by a reduced tumor burden, partly because

of a direct inhibitory effect of bortezomib on bone

resorption by osteoclasts (39, 45).

The delay of the addition of glucocorticoid treatment

in this study until cycle two made it possible to discrimi-

nate to some extent between the effect of bortezomib as

single agent vs. the effect of the combination of bortezo-

mib and dexamethasone. Unlike bALP which was rela-

tively unaffected by the addition of the glucocorticoid,

PINP showed a profound but transient decline each time

dexamethasone was given to the patient. As PINP better

reflects actual bone deposition than bALP, our finding

suggests that the beneficial effect of bortezomib on bone

formation in vivo is partly inhibited by co-treatment with

a glucocorticoid. To elaborate further on this, we con-

ducted in vitro experiments on both osteoblast precursors

and more differentiated osteoblasts.

It has previously been shown in cell culture studies on

human as well as murine osteoblast cell lines and in animal

models that bortezomib may induce proliferation and dif-

ferentiation of osteoblast precursors and stimulate bone

formation (25–30). In our in vitro model of human osteo-

blast precursors, we found that not only bortezomib but

also glucocorticoid induced proliferation of osteoblast

precursors (46). However, unlike bortezomib, which stim-

ulated osteoblast differentiation, treatment with glucocor-

ticoid inhibited differentiation (47, 48). The inhibition of

osteoblast maturation by the glucocorticoid was found

both in osteoblast precursors (reduced osteopontin) and in

more mature osteoblasts (reduced collagen type I). The

expression of osteopontin by osteoblast precursors and col-

lagen type-1 by more mature osteoblasts was suppressed

by the glucocorticoid in both cases to levels that were

lower than the untreated control, suggesting that glucocor-

ticoids not only inhibit differentiation, but may actually

induce de-differentiation of osteoblast precursors and

osteoblasts. This is probably reflected in the clinical study

by a significant drop in PINP levels, indicating the loss of

osteoblast maturity and capacity to form the organic bone

matrix by deposition of collagen type I. The persistently

elevated serum bALP in the clinical study could suggest

that bALP is clinically less relevant as a marker than

PINP, as bALP may just reflect proliferation of osteoblast

precursors with or without the capacity to form bone.

In the literature, the increased osteoblast activity seen

after bortezomib treatment has been ascribed to a decrease

in the osteoblast inhibitor DKK-1. We observed a rapid

decrease in DKK-1 after one treatment cycle in respond-

ing patients. However, it has been shown that DKK-1 also

declines in responding patients receiving non-bortezomib-

containing regimes (49). This result corresponds well with

DDK-1 over-expression being induced by the myeloma

cells (11). However, only bor-tezomib-containing regimens

have resulted in increased osteoblast activity. In our study,

there was no increase in bALP in patients without

response to treatment. Non-responders also had elevated

or stable DKK-1 levels. A possible explanation as to why

we observed no increase in bone formation markers in

non-responding patients, despite a direct positive effect of

bortezomib on osteoblasts precursors, could be that a con-

tinued high myeloma tumor burden resulted in high levels

of osteoblast inhibitors e.g. DKK-1 abrogating any such

effect. This hypothesis is in accordance with an observa-

tion showing that patients with lower levels of DKK-1

have greater increases of bALP (24).

In the paper by Zangari et al. (21), an increase in PTH

was noted along with an increase in bALP. In our study,

we observed a similar increase in PTH, which was tightly

correlated to, and may have been caused by a simulta-

neous decrease in calcium levels. Indeed, patients went

from having calcium levels in the upper normal range to

outright hypocalcaemia. Treatment with oral calcium

during this period could perhaps improve healing of

osteolytic bone lesions.

Here, we show that bortezomib when used in previ-

ously untreated and bisphosphonate-naı̈ve patients

increases both osteoblast activity and bone matrix depo-

sition. When using computer tomography, we could in

two cases demonstrate signs of actual healing only

3 months after initiation of therapy. The positive effect

of bortezomib is probably mediated through increased

proliferation and differentiation of osteoblast precursor

cells. However, we also show that the addition of a glu-

cocorticoid to bortezomib may inhibit the beneficial

effect of bortezomib on bone formation. The inhibition

of osteoblasts by glucocorticoids was not detected by the

commonly used marker of bone formation, bALP.

Regarding MM treatment strategies, our results may sug-

gest that while at the time of diagnosis of MM the com-

bination of bortezomib and glucocorticoids with or

without the addition of other drugs is needed to obtain

rapid control of the disease, later in the course of the dis-

ease, when myeloma as such is well under control, sin-

gle-agent treatment with bortezomib may be justified in

order to improve healing of osteolytic lesions. A clinical

study in which patients with MM are randomized to

treatment with bortezomib or no treatment after high-

dose therapy and autologous stem cell transplantation

with a focus on bone healing has now been initiated

(EudraCT:2008-004264-39).
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