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Abstract

A fascinating class of familial paraganglioma (PGL) neuroendocrine tumors is driven by the 
loss of the tricarboxylic acid (TCA) cycle enzyme succinate dehydrogenase (SDH) resulting in 
succinate accumulation as an oncometabolite and other metabolic derangements. Here, we 
exploit a Saccharomyces cerevisiae yeast model of SDH loss where accumulating succinate, 
and possibly reactive oxygen species, poison a dioxygenase enzyme required for sulfur 
scavenging. Using this model, we performed a chemical suppression screen for compounds 
that relieve dioxygenase inhibition. After testing 1280 pharmaceutically active compounds, 
we identified meclofenoxate HCl and its hydrolysis product, dimethylaminoethanol (DMAE), 
as suppressors of dioxygenase intoxication in SDH-loss yeast cells. We show that DMAE 
acts to alter metabolism so as to normalize the succinate:2-ketoglutarate ratio, improving 
dioxygenase function. This study raises the possibility that oncometabolite effects might be 
therapeutically suppressed by drugs that rewire metabolism to reduce the flux of carbon 
into pathological metabolic pathways.

Introduction

Metabolic dysregulation underlies many diseases. Cancer 
was characterized by a metabolic perturbation now known 
as the Warburg effect, the observation that cancer cells 
exhibit glycolytic, rather than oxidative, metabolism 
even when oxygen is abundant (Warburg 1956). Since this 
discovery, many cancers have been found to have other 
forms of altered metabolism besides the Warburg effect 
(Pavlova & Thompson 2016, Kozal et  al. 2021). Familial 
paraganglioma (PGL) is a remarkable example. PGL is a rare 
neuroendocrine tumor affecting between 1:100,000 and 
1:300,000 people (Erickson et al. 2001, Berends et al. 2018). 
The most common form of PGL arises in the chromaffin 
cells that make up the adrenal medulla, which is known 
as pheochromocytoma (Lenders et  al. 2005). PGL can be 

characterized by hypertension due to the secretion of 
catecholamines, though most cases are asymptomatic. 
PGL is typically a slow-growing tumor and many cases 
are benign and are curable by surgery. About 25% of PGL 
cases are hereditary, and most hereditary PGLs are linked 
to pathogenic variants in nuclear genes encoding the four 
subunits of the tricarboxylic acid (TCA) cycle enzyme 
succinate dehydrogenase (SDH; also complex II of the 
electron transport chain). Such familial SDH-loss PGL 
cases thus involve mutations in SDHA, SDHB, SDHC, SDHD 
genes, and in SDHAF2, the nuclear gene encoding the 
factor required for flavin assembly in SDHA. For unknown 
reasons, variants in SDHB are mostly penetrant (Baysal 
et  al. 2000, Niemann & Müller 2000, Astuti et  al. 2001,  
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Hao et  al. 2009, Burnichon et  al. 2010). Mutations are 
inherited as heterozygous loss-of-function alleles, and 
tumorigenesis is believed to depend upon sporadic 
mutational loss or silencing of the remaining gene copy 
in chromaffin cells. Why tumorigenesis is limited to a 
particular cell type is also unknown.

It is believed that SDH loss of function drives 
metabolic reprogramming leading to tumorigenesis, but 
the direct links between SDH loss and transformation are 
still being established. Current hypotheses focus on the 
roles of accumulating succinate as an oncometabolite, 
augmented damage by reactive oxygen species (ROS), 
and hypersuccinylation (Ishii et al. 2005, Selak et al. 2005, 
Smestad et  al. 2018). ROS production has been shown to 
increase in SDH loss model organisms, but it is unclear 
how much protein and DNA damage results (Adachi et al. 
1998, Ishii et al. 2005, Smith et al. 2007, Braun et al. 2019). 
Recent work has shown that the loss of SDHB in particular 
disrupts iron homeostasis, leading to exacerbated ROS 
generation and hallmarks of the tumor phenotype such 
as pseudohypoxia and DNA hypermethylation. There is 
evidence that this inherent oxidative stress enhances PGL 
sensitivity to additional oxidative damage caused by pro-
oxidant compounds (Liu et al. 2020, Goncalves et al. 2021). 
Building on this, it is becoming clear that lack of iron 
homeostasis can have a role in tumor development and 
in the epithelial–mesenchymal transition. Notably, iron 
directly regulates 2-ketoglutarate levels, leading to changes 
in dioxygenase activity (Müller et al. 2020).

Succinate accumulation is an intriguing hypothesis 
to explain tumorigenesis, with many studies attempting 
to unravel mechanistic details. SDH loss presumably 
reprograms central metabolism toward glycolysis because 
SDH loss breaks the conventional TCA cycle and may 
alter the flow of high-energy electrons into the electron 
transport chain. Loss of any SDH subunit is believed 
to disrupt the function of the entire SDH complex. 
This could result in an ‘obligatory Warburg effect’ with 
higher dependence on glycolysis and an accumulation 
of succinate due to the inability of the nonfunctional 
SDH to produce fumarate in the TCA cycle (Her & Maher 
2015). However, there is also evidence that chromaffin 
cells may generate ATP from residual steps within the 
TCA cycle and electron transport chain (Kľučková et  al. 
2020). Succinate accumulation may extend as well to 
succinyl-CoA accumulation (one step earlier in the TCA 
cycle) leading to protein hypersuccinylation (Li et al. 2015, 
Smestad et al. 2018). The full effects of lysine succinylation 
on protein function remain incompletely explored. 
In mammalian cells, succinate also acts as a signaling 

molecule to stress responses. These can include cancer-
promoting behaviors such as immunosuppression and 
cell migration (Matlac et al. 2021). Crucially, accumulated 
succinate is a competitive inhibitor of an important class 
of 2-ketoglutarate-dependent dioxygenases. These iron-
dependent enzymes oxygenate a substrate by splitting 
molecular dioxygen. In the process, the 2-ketoglutarate 
(2KG) co-reactant is converted to a succinate byproduct 
(Loenarz & Schofield 2011). Accumulated succinate 
can bind in the enzyme active site, inhibiting such 
dioxygenases and preventing important chemical 
transformations in cells (Koivunen et  al. 2007, Cervera 
et al. 2009, Xiao et al. 2012, Letouzé et al. 2013, Peters et al. 
2015). A greater understanding of the relationship between 
succinate accumulation and tumorigenesis is the goal of 
many studies, but a lack of animal models and PGL cell 
lines continues to challenge progress.

In an attempt to envision therapeutics and probe 
PGL mechanisms, several model systems, including 
Caenorhabditis elegans, zebrafish, rodents, mammalian cell 
lines, and the yeast Saccharomyces cerevisiae, have been used 
in lieu of conventional cancer models (Smith et  al. 2007, 
Bancos et  al. 2013, Smestad et  al. 2017, Lussey-Lepoutre 
et al. 2018, Braun et al. 2019, Dona et al. 2021). Yeast models 
of PGL have exploited the conserved mitochondrial role 
of SDH for studies of metabolic disorders (Smith et  al. 
2007, Kregiel 2012, Bancos et  al. 2013, Lussey-Lepoutre 
et al. 2018). S. cerevisiae offers many advantages as a model 
organism, including its fully sequenced genome and rich 
genetics (Goffeau et al. 1996, Feyder et al. 2015). The ease of 
laboratory maintenance and well-documented techniques 
for yeast analysis makes it well-suited for high-throughput 
assays as well (Bancos et  al. 2013). Haploid SDH subunit 
deletion strains are readily available, and yeast show 
profound succinate accumulation upon SDH loss, as do 
mammalian cells (Feyder et al. 2015, Smestad et al. 2018).

Yeast also encode 2-ketoglutarate-dependent 
dioxygenases and can therefore serve as a model for 
succinate accumulation and the subsequent inhibition 
of these enzymes in this class (Zhang et  al. 2020). One 
dioxygenase, in particular, Jlp1p (Fig. 1), is required 
for sulfur scavenging, converting sulfonates (such as 
isethionate, ISE) into readily metabolizable sulfites (Hogan 
et  al. 1999). Because Jlp1p is a 2-ketoglutarate-dependent 
dioxygenase, it can be inhibited by excess succinate. When 
ISE is the only sulfur source, Jlp1p becomes an essential 
enzyme for growth. This allows Jlp1p function to be 
easily monitored simply by assaying cell growth as optical 
density change over a specified time. In our previous study, 
we found that a jlp1∆ strain is disabled for growth on ISE 
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medium, as expected (Smith et  al. 2007). Interestingly, 
sdh∆ strains are also partially disabled for growth on ISE, 
consistent with Jlp1p inhibition by excess succinate. 
In contrast, jlp1∆ and sdh∆ strains grow equally well on 
ammonium sulfate (AS), a sulfur source whose utilization 
does not require Jlp1p activity (Smith et al. 2007).

We reasoned that the dependence of yeast on Jlp1p 
activity in the presence of ISE as a sole sulfur source 
would provide the potential for a chemical suppression 
screen to identify compounds capable of mitigating Jlp1p 
inhibition when SDH is lost. Such compounds might act 
by reducing succinate accumulation or by moderating ROS 
production that could inhibit Jlp1p through oxidation 
of the Fe2+ ion required for catalysis (Fig. 1). It has been 
shown that a reduction in the levels of Fe2+ due to the 
Fenton reaction can lower dioxygenase activity (Gerald 
et al. 2004, Goncalves et al. 2021). Based on this concept, 
we report the results of a screen of the 1280-compound 
LOPAC library (Sigma #LO1280) and focus on the analysis 
of one particularly interesting compound, meclofenoxate, 
and its derivative, dimethylaminoethanol (DMAE), as 
leads that suppress Jlp1p poisoning in SDH-loss yeast 
strains. To the extent that SDH-loss yeast mimic the 
stresses of SDH-loss human tumors, meclofenoxate, 
and DMAE exemplify a class of compounds that might 
suppress tumorigenic dysfunction in SDH-loss cells by 
rewiring metabolism to reduce the flux of carbon into 
pathological metabolic pathways.

Materials and methods

Yeast strains

S. cerevisiae sdh1∆, sdh2∆, jlp1∆ strains and their WT parent 
BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0) were kindly 
provided by David Katzmann. Strains were maintained 
on YPGal agar plates (1% yeast extract, 2% peptone, 2% 

galactose, 2% agar, all (w/v)) and YPGal liquid media  
(1% yeast extract, 2% peptone, 2% galactose, all (w/v)) at 
25°C. Most growth experiments were performed using 
minimal medium supplemented with 20 µM AS or ISE 
as indicated (Supplementary Table 1, see section on 
supplementary materials given at the end of this article; 
(Cherest and Surdin-Kerjan 1992)).

Yeast genotyping

Yeast genotyping was performed as described in 
Supplementary methods by growing cultures (5 mL) to 
saturation in YPD (1% yeast extract, 2% peptone, 2% 
dextrose, all (w/v)) at 30°C with shaking at 250 rpm.

LOPAC screen

The Library of 1280 Pharmacologically Active Compounds 
(Sigma #LO1280) was plated by the Institute for 
Therapeutics Discovery and Development at the University 
of Minnesota – Twin Cities. 200 nL of 10 mM stock of each 
compound in DMSO were deposited into each well of a 
96-well polystyrene plate (Corning #3595). Additional 
wells received 200 nL of DMSO to serve as controls. For the 
screen, 200 µL of sdh1∆ yeast culture grown to 0.1 OD600 
in minimal medium containing 20 µM ISE as sulfur source 
were added to each well (so final compound concentration 
was 10 µM) and growth was monitored at 600 nm in a 
plate reader over the course of 24 h at 30°C with constant 
shaking at 250 rpm. The screen was accomplished with 16 
96-well plates.

The power of the chemical screen setup was measured 
using a conventional Z score (see below). Growth of WT 
yeast in ISE media was compared to the growth of sdh1∆ 
and sdh2∆ strains by Z score calculation at multiple time 
points over the course of 24 h. At each point, the Z score 
was greater than 0, indicating the difference in growth 
between WT and SDH-loss strains was compatible with a 

Figure 1
Dioxygenase inhibition in SDH-mutant yeast. Jlp1p 
dioxygenase conversion of 2KG and sulfonate 
(ISE) into bioavailable sulfite, with succinate and 
an aldehyde (glycolaldehyde in this case) as 
byproducts. The reaction uses molecular oxygen 
and an enzyme-bound Fe2+ ion that undergoes 
REDOX cycling. In SDH-loss cells, both ROS and 
succinate accumulate. Depicted are possible 
mechanisms of Jlp1 inhibition under such 
conditions. Accumulated succinate causes 
competitive inhibition at the enzyme active site. 
Increased ROS depletes Fe2+, inhibiting 
dioxygenase activity.
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chemical screen. Potential hits were subsequently judged 
by calculating a Z score according to Eq. 1:

Z
p n

p n
= -

+( )
-

1

3* s s

m m
	  (1)

where σp is the s.d. of experimental growth wells (the 
sdh1∆ yeast strain grown in ISE minimal medium in 
wells with treatment) and σn is the s.d. of negative 
control growth wells (the sdh1∆ strain grown in ISE 
minimal medium in wells with vehicle). µp and µn are the 
corresponding means of experimental growth wells or 
negative control growth wells (Zhang et al. 1999). Because 
each screened compound provided data for a single well 
vs 4 data points for the control, the s.d. of the control 
was used as a mock parameter for the experimental s.d. 
in the calculation. Potential hits were identified among 
compounds that stimulated sdh1∆ growth with a Z score 
greater than zero. Compounds formulated with sulfate 
ions were excluded from consideration as they provided 
alternative sources of metabolizable sulfur that bypass the 
reliance on Jlp1p activity.

Yeast growth assay

WT, sdh1∆, sdh2∆, and jlp1∆ strains were grown overnight 
at 30°C in 10 mL YPGal with shaking at 250 rpm. Cultures 
were then diluted and grown to mid-log phase. Equal 
numbers of cells of each strain were harvested and washed 
three times with water by centrifugation at 2500 g. Cells 
from WT, sdh1∆, sdh2∆, and jlp1∆ strains were resuspended 
in minimal media supplemented with either AS or ISE  
(20 µM final concentration) to an OD600 of 0.1. Yeast culture 
(100 µL) was pipetted into each well along with 100 µL of 
vehicle or drug identified as a hit in the LOPAC screen to a 
starting OD600 of 0.05. Each condition was performed with 
four technical replicates. The growth assay was performed 
in a 96-well clear plate (Corning #3595) using a SpectraMax 
Plus 384 UV/Vis cuvette/microplate reader (Molecular 
Devices; San Jose, CA). The plate was loaded onto the reader 
and kept at 30°C without shaking with readings taken 
every 30 min for 24 h. Aeration was deemed adequate as 
the oxygen-dependent Jlp1p-catalyzed processing of ISE 
to sulfite was supported in WT cells. As described, yeast 
formed a uniform lawn at the bottom of each well for OD600 
readings (Hung et  al. 2018). Growth effect of drug was 
measured by percent growth difference between treated 
and untreated at the end of the 24 h growth period. Hits 
were judged on the magnitude of the effect on sdh1∆ and 

sdh2∆ vs WT and jlp1∆. Error was calculated in R through 
quadruplicate technical replicates using a one-way ANOVA 
with a post hoc Tukey’s HSD test for significance. Growth 
curves were generated in R and data were analyzed using 
Microsoft Excel and R.

Metabolite analysis

WT, sdh1∆, and sdh2∆ strains were grown in triplicate for 
24 h in 10 mL ISE minimal media cultures supplemented 
with 100 µM DMAE (Sigma, 471453-100ML). After 24 
h, four OD600 units of each sample were harvested and 
media was saved for analysis. Cells were washed by 
centrifugation twice with PBS, then resuspended in 400 µL 
of H2O containing 30 µL of concentrated HClO4. This cell 
suspension was vigorously agitated for 25 s and subjected 
to three freeze/thaw cycles on dry ice to promote cell lysis. 
Cell debris was removed by centrifugation and the lysate 
was collected and neutralized with 170 µL of 2M KHCO3 on 
ice for analysis as described in Supplementary methods.

Mitochondrial purification and proteomic analysis

WT, sdh1∆, and sdh2∆ yeast strains were grown in triplicate 
to saturation in 1 L cultures at 30°C with shaking at  
250 rpm. Isolation of mitochondria was performed as 
described from 8 g wet weight yeast (Gregg et  al. 2009) 
and proteomic analysis was conducted as described in 
Supplementary methods.

Western blotting

WT, sdh1∆, and sdh2∆ strains were grown in 10 mL 
cultures in minimal media supplemented with 20 µM 
ISE for 24 h at 30°C with shaking at 250 rpm. Samples 
were pelleted by centrifugation at 2500 g and washed 
in DTT buffer (100 mM Tris pH 9.4, 10 mM DTT), then 
resuspended in 100 µL zymolyase buffer (1 M sorbitol, 
20 mM Tris pH 7.5, 50 mM EDTA, 1% β-mercaptoethanol 
(v/v), 1–2 mg/mL Zymolyase (AMSBIO, 120493-1)) for 
lysis at 30°C for 15 min. Resulting spheroplasts were 
pelleted by centrifugation at 2000 g and resuspended 
in chilled lysis buffer (2% Triton X-100 (v/v), 1% SDS 
(w/v), 100 mM NaCl, 10 mM Tris pH 8, 1 mM EDTA) and 
50 µL of chilled glass bead were added. Samples were 
subjected to three to five cycles of vortex mixing (1 min 
per cycle) with storage on ice between rounds. Samples 
were subjected to centrifugation at 14,000 g and the 
supernatant was stored at −80°C or collected for protein 
quantification using a BCA assay kit according to the 
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manufacturer’s instructions (ThermoFisher 23227). Equal 
volumes of whole-cell protein extract were subjected 
to electrophoresis through denaturing 10% bis-Tris 
polyacrylamide gels and transferring to PVDF membrane. 
Equal loading was demonstrated by staining in parallel 
using Coomassie blue (BioRad). After blocking (5% non-
fat dry milk (w/v), Tris-buffered saline, 1% Tween 20 
(v/v)), membranes were probed with rabbit polyclonal 
anti-pan-succinyl lysine antibody (PTM Biolabs, PTM-
401) at a dilution of 1:1000. Membrane was washed 
and incubated with IRDye® 800CW goat anti-rabbit IgG 
secondary antibody (Licor, 926-32211) and imaged using 
an Amersham Typhoon instrument.

Fluorescence microscopy

For live-cell detection and quantitation of ROS, cells were 
grown in minimal media (10 mL) at 30°C with shaking at 
250 rpm for 24 h to mid-log phase (0.5 OD600). ROS were 
detected by including H2DCF-DA (ThermoFisher #D399) at 
a final concentration of 10 µM during the 24 h incubation. 
Dihydroethidium (DHE) ROS detection was performed 
according to previously published methods (Liao et  al. 
2020). Cells were then harvested as 1 mL at a time, 
subjected to centrifugation at 10,000 g, and washed three 
times with H2O. The resulting cell pellet was resuspended 
in 20 µL of H2O and 5 µL was pipetted onto a glass 
microscope slide and spread into a thin layer with a glass 
coverslip. Images were captured at room temperature using 
an Olympus IX70-S1F2 fluorescence microscope equipped 
with an Olympus UPIanApo 100× numerical aperture in 
1.35 oil objective with the complementing immersion 
oil (n = 1.516, Applied Precision, Issaquah, WA), Standard 
DeltaVision filters FITC and Rhodamine and Photometrics 
CoolSNAP HQ CCD monochrome camera (Teledyne 
photometrics, Tucson, AZ). Image was acquired using 
Delta Vision softWoRx (version 3.5.1, Applied Precision, 
Issaquah, WA) and subsequently processed by FiJi (version: 
2.1.0/1.53c, NIH). Captured images were exported under 
the standard DeltaVision file format and converted into 
16-bit TIFF images by using Bio-Formats Importer available 
within Fiji. The contrast and brightness of images were 
subsequently adjusted within Fiji as well. Data represent 
quantification from a minimum of three independent 
labeling experiments with each experiment quantified at 
least 30 cells. Average cellular fluorescence was quantified 
using CellProfiler software. Statistical significance was 
assessed in R by a two-way ANOVA with a post hoc Tukey 
HSD test.

Protein carbonyl colorimetric assay

Protein carbonyl levels in yeast whole-cell lysates were 
assessed using a colorimetric assay (Sigma–Aldrich, 
MAK094). WT, sdh1∆, and sdh2∆ strains were grown in 
10 mL minimal media cultures supplemented with ISE  
(20 µM) with or without indicated concentrations of 
DMAE for 24 h at 30°C with shaking at 250 rpm. Protein 
lysates were prepared as described for Western blotting. 
Carbonyl levels were assayed according to manufacturer’s 
instructions. Data analysis was performed in Microsoft 
Excel. Statistical significance was assessed in R by a two-
way ANOVA with a post hoc Tukey HSD test in R.

Results and discussion

Yeast strain characterization

As the present study was based on the previous work 
of Smith et  al. (2007), we began by validating the four 
experimental yeast strains (WT, sdh1∆, sdh2∆, and 
jlp1∆) required for interpreting chemical suppression 
screen results. PCR genotyping confirmed the identity of 
each strain (Supplementary Fig. 1). Growth testing was 
performed in AS and ISE minimal galactose liquid media to 
avoid glucose repression while still enabling fermentation 
and oxidative metabolism (Kayikci & Nielsen 2015).

When oxygen is available, S. cerevisiae cells grow 
preferentially by fermentation until fermentable substrates 
are depleted. A transition to oxidative metabolism then 
occurs to metabolize the products of fermentation. This 
transition is evidenced by a diauxic shift and growth 
deceleration between two distinct periods of growth. 
Absence of this diauxic shift suggests glycolytic growth 
without transition to oxidative metabolism. For example, 
growth curves for the four yeast strains in this study  
(Fig. 2A and B) reveal the presence of an expected diauxic 
shift in the WT and jlp1∆ strains in AS medium, indicating 
sufficient oxygen and an intact TCA cycle and electron 
transport chain for oxidative growth. In contrast, SDH-
loss strains appear to grow only by fermentation. Statistical 
analysis of growth at 24 h is shown in Fig. 2C. Similar overall 
levels of growth in AS media are observed, as expected. In 
contrast, growth in ISE minimal galactose media reveals 
large differences in fitness, also as expected (Smith et  al. 
2007). Compared to growth in AS, WT growth in ISE is 
most robust, with sdh1∆ and sdh2∆ showing impaired 
growth, and the jlp1∆ strain strongly disabled for growth 
in ISE media (Fig. 2B), as previously reported (Smith 
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et  al. 2007). These growth differences were statistically 
significant except that the growth of the SDH-loss strains 
was indistinguishable (Fig. 2D). We interpret the growth 
defect of SDH-loss yeast strains in ISE medium as evidence 

that Jlp1p dioxygenase function is compromised in these 
strains, either due to succinate inhibition or oxidative 
stress affecting the required ferrous ion. These data confirm 
the findings of Smith et al. and lay the basis for screening 

Figure 2
Representative yeast growth phenotypes.  
(A) Growth in ammonium sulfate medium.  
(B) Growth in ISE medium. (C) Growth in 
ammonium sulfate medium at 24 h. (D) Growth in 
ISE medium at 24 h. Statistical significance 
reflecting four replicates is reported using a 
one-way ANOVA with a post hoc Tukey HSD test for 
significance. P-values: *< 0.05, **< 0.01, ***< 0.001.

Figure 3
Proteomic comparison of sdh1Δ and sdh2Δ yeast strains. (A and B) Volcano plots. Shading denotes significance (P  < 0.05 and |log2 (fold-change)| > 1.5. 
Protein counts in each category are indicated. (C) Venn diagram indicating relationship between proteins significantly different from WT for sdh1∆ and 
sdh2∆ cells. (D) Correlation between sdh1∆ and sdh2∆ proteome alterations. Gray points indicate genes with non-significant fold changes. (E) Results of 
DAVID functional analysis indicating loss of TCA cycle enzyme polypeptides, especially SDH subunits, in sdh1∆ yeast.
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for compounds that suppress the sdh1∆ and sdh2∆ growth 
defect in ISE media.

Proteomic analysis

Previous data indicated that both sdh1∆ and sdh2∆ 
strains lack SDH activity but that some Sdh1p protein 
could be detected in sdh2∆ yeast (Smith et  al. 2007). In 
preparation for the chemical suppression screen to identify 
compounds that rescue Jlp1p activity, we studied potential 
subtle differences between sdh1∆ and sdh2∆ strains to 
select one for screening. We therefore performed a detailed 
proteomic analysis of WT, sdh1∆, and sdh2∆ yeast strains. 
Mitochondria were isolated from replicate strains grown 
in YP-rich media containing galactose. Extracted proteins 
were digested with trypsin and peptide lysines acylated 
using isobaric tags, and the resulting samples were analyzed 
by LC-MS. Approximately, 6000 proteins were detected, 
indicating that even the purified mitochondrial fractions 
contain a representation of much of the yeast proteome. 
Quantitative analyses compared detected proteins between 
WT/sdh1∆, WT/sdh2∆, and sdh1∆/sdh2∆ and reported 
as log2(fold-change) with statistical significance as an 
adjusted P-value (significance < 0.05).

Volcano plots (Fig. 3A and B) indicate differences 
between WT and SDH-loss strains. In the WT/sdh1∆ dataset, 
1015 proteins were significantly different between WT and 
sdh1∆ yeast, with 911 more abundant in WT and 104 more 
abundant in sdh1∆. In the WT/sdh2∆ dataset, 1068 proteins 
were significantly different between WT and sdh1∆ yeast, 
with 946 more abundant in WT and 122 more abundant 
in sdh1∆. These results confirm the large remodeling of the 
yeast proteome driven by SDH loss. Data for the most altered 
proteins are found in Supplementary Table 3. Many of the 
highlighted proteins are from central metabolic pathways, 
including TCA cycle proteins (SDH, Cit3p, Idp3p). Other 
TCA cycle proteins are among those with significantly 
reduced expression in SDH-loss yeast, suggesting a general 
loss of mitochondrial oxidative phosphorylation functions, 
as expected. Other important mitochondrial proteins, 
such as those from the electron transport chain, were 
significantly reduced in SDH-loss yeast (Nde2p, Cox16p, 
Cyb2p). Some other proteins higher in WT than SDH-loss 
cells are peripherally related to respiratory metabolism, 
including mitochondrial pyruvate transporters (Mpc2p) and 
respiratory growth-induced protein 2 (Rgi2p). Additionally, 
Ftr1p, the yeast cell surface iron importer, is greatly reduced 
in SDH-loss cells. This indicates that iron uptake and 
regulation are dysregulated upon SDH-loss, consistent 
with mammalian cell models (Goncalves et  al. 2021). In 

contrast, the few proteins that are significantly increased 
upon SDH loss yeast are more difficult to rationalize. These 
include histone H2B (Htb2p), Bud21p, a protein involved 
in transcription regulation and several other proteins 
related to gene transcription and regulation (Taf7p, Rad33p, 
Ty3B-Gp, and Cin5p). Overall, proteins reduced upon SDH 
loss include mitochondrial proteins, enzymes of aerobic 
respiration, and iron import factors. Because SDH plays a key 
role in both the TCA cycle and electron transport chain, it 
is reasonable that proteins representing both the TCA cycle 
and electron transport chain are impacted by SDH loss. 
Despite these changes to mitochondrial physiology, levels 
of glycolytic enzymes were not significantly changed upon 
SDH loss. Thus, hexokinase, phosphofructokinase, and 
pyruvate kinase all experienced changes between 0.8- and 
1.2-fold upon SDH loss.

We compared the SDH-loss strains in greater detail. Of 
the 1092 proteins that were differentially expressed upon 
SDH loss, 991 of these (91%) were shared between both 
sdh1∆ and sdh2∆, 77 (7%) were unique to the WT/sdh1∆ 
dataset, and 24 (2%) were unique to the WT/ sdh2∆ dataset 
(Fig. 3C). This analysis confirms that sdh1∆ and sdh2∆ 
are proteomically comparable and this is affirmed by a 
correlation plot (Fig. 3D).

Applying pathway analysis using the DAVID Functional 
Annotation Tool (DAVID Bioinformatics Resources 6.8, 
NIAID/NIH), we found, as expected, that major proteomic 
changes in SDH-loss cells focused on enzymes of the TCA 
cycle. Quantitation of these enzyme changes is shown 
in (Fig. 3E). In this case, ratios are rough estimates due to 
peptide counting methods, such that complete absence 
of Sdh1p in sdh1∆ compared to WT yields a nominal ~10-
fold change. Interestingly, loss of Sdh1p reduced most TCA 
cycle enzymes by 2- to 3-fold but reduced SDH subunits 
(including Shh3p and Shh4p) to a greater extent.

The current proteomic data also allowed verification 
of the prior finding that both Sdh1p and Sdh2p are lost in 
sdh1∆ yeast, but a fraction of Sdh1p remains detectable in 
sdh2∆ yeast (Smith et al. 2007). Such evidence is shown in 
Supplementary Fig. 4. This result is reminiscent of reports 
from mammalian cells where a complex of the SDHA 
catalytic subunit and chaperones appears to persist in the 
absence of SDHB (Bezawork-Geleta et  al. 2018). Though 
there is no evidence of enzyme activity for the residual 
catalytic subunit, it might contribute in subtle ways to the 
different phenotypes of tumors driven by loss of different 
SDH subunits (Guzy et al. 2008). Thus, the small proteomic 
differences between sdh1∆ and sdh2∆ yeast may serve as a 
paradigm for small but important differences in comparable 
mammalian mutants affecting different SDH subunits. 
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For example, the yeast Sdh3p subunit also functions as 
a component of the TIM22 mitochondrial translocase 
system, and yeast also express Shh3p and Shh4p paralogs 
of Sdh3p and Sdh4p but with unknown functions (Gebert 
et al. 2011). The overall strong phenotypic and proteomic 
similarity of sdh1∆ and sdh2∆ strains led us to select the 
sdh1∆ strain as representative and appropriate for chemical 
suppression screening.

LOPAC suppression screen

High-throughput screening is an essential approach 
in drug discovery research (Macarron et  al. 2011). We 
previously conducted a lethality screen of more than 
200,000 compounds seeking agents selectively toxic to 
SDH-loss yeast cells as models of SDH-loss human familial 
PGL (Bancos et  al. 2013). The current suppression screen 
focuses on the concept that the fundamental pathologies 
of SDH-loss cells are driven by the accumulation of 
succinate as an oncometabolite inhibiting 2-ketoglutarate-
dependent dioxygenases (Koivunen et  al. 2007, Cervera 
et  al. 2009, Xiao et  al. 2012, Letouzé et  al. 2013). We 

hypothesized that ameliorating succinate toxicity may 
normalize cell function. Beyond succinate intoxication, it 
has been proposed that ROS also accumulate in SDH-loss 
cells, potentially compromising dioxygenase function 
by oxidation of the ferrous ion critical to dioxygenase 
function (Liu et al. 2020). The present suppression screen 
therefore was developed to identify compounds that 
selectively rescue the growth of sdh1∆ yeast by restoring 
Jlp1p function using growth in ISE as the selection.

The LOPAC1280 library (Sigma–Aldrich) was screened at 
10 µM in 16 96-well plates with 80 compounds per plate, 
allowing for growth controls (WT and sdh1∆ strains in AS 
and ISE media). Each experimental well was seeded with 
sdh1∆ yeast in ISE media and OD600 readings were taken at 
seven timepoints over a 24-h period and a score modeled 
on the conventional Z statistic was calculated for each 
treatment and time (Materials and methods). Compounds 
characterized by Z > 0 for at least 6 of 7 timepoints were 
classified as hits (30 of 1280 compounds; Fig. 4A).

Hit validation

Because the suppression screen was based on sulfur 
scavenging, drugs formulated with sulfate or related 
compounds (16/30 hits) were either excluded or more 

Figure 4
Results of LOPAC chemical suppression screen. (A) Effects of LOPAC 
compounds on sdh1∆ yeast growth in ISE medium, ranked for 
compounds with Z Scores > −5. Red box at upper right indicates 
compounds with Z > 0. (B) Detail of LOPAC compounds inducing Z Scores 
> 0, indicating whether the compound formulation itself did (+) or did not 
(−) contain bioavailable sulfate. Arrow indicates meclofenoxate HCl 
(Z = 0.40).

Figure 5
Dose–response data (percent change relative to untreated) for the 
indicated yeast strains in ISE medium and the indicated concentrations of 
(A) meclofenoxate and (B) DMAE, both dissolved in water. For statistical 
analysis, normalization was performed by converting OD600 readings to 
percent growth change (treated cells vs control cells). Thes.e. of the four 
technical replicates was also propagated from an OD600 error to a 
percentage growth change error and plotted as error bars.
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rigorously tested (Fig. 4B). Four of the initial 30 hits 
formed colored solutions that interfered with OD600 
readings so were excluded. Seven compounds with highest 
Z-scores not attributable to sulfur content or formulation 
(phenanthroline, phentolamine, reserpine, protoporphyrin 
IX, minocycline, pyrrolidinedithiocarbamate, and 
meclofenoxate) were repurchased and subjected to further 
validation (Supplementary Fig. 2). Some of these top hits had 
been deemed intriguing because of reported metal chelating 
properties. Validation assays were performed in 96-well 

plates grown without shaking. Oxygenation was judged 
adequate by the observation that the oxygen-dependent 
Jlp1p dioxygenase in WT cells allowed strong growth in 
minimal ISE galactose media. Validation screening compared 
concentration-dependent effects of test compounds on the 
growth of WT, sdh1∆, sdh2∆ and jlp1∆ strains on both ISE 
and AS media, seeking compounds that selectively improved 
growth only of sdh1∆ and sdh2∆ strains and only on ISE 
media. A summary of the findings of follow-up validation 
studies is presented in Supplementary Table 2.

Figure 6
Effect of 25 µM treatment of the indicated drugs 
on yeast growth at 24 h in (A) AS and (B) ISE 
media. Drug effects are shown as % growth 
change in (C) AS and (D) ISE media for the 
indicated drug treatments. Statistical significance 
is reported using two-way ANOVA with a post hoc 
Tukey HSD test for significance. P -values: *< 0.05, 
**< 0.01, ***< 0.001. In panel B, error bars indicate 
s.d. of four technical replicates propagated to % 
growth effect vs untreated.

Figure 7
Effect of 100 µM DMAE on (A) intracellular 
succinate and (B) intracellular 2KG concentrations 
in ISE medium after 24 h. Indicated level of 
statistical significance from a two-way ANOVA 
with a post hoc Tukey HSD test for significance. 
 *P < 0.05 based on three replicates. (C) Ratio of 
succinate concentration to 2KG concentration in 
samples. Error bars represent s.d. for three 
replicates.
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This procedure led to the identification of 
meclofenoxate HCl (Goldman & Klatz 2003) as the most 
robust and reproducible hit (Fig. 5A). Meclofenoxate 
is an ester reported to rapidly hydrolyze in water to its 
substituents, DMAE and 4-chlorophenoxyacetic acid 
(Supplementary Fig. 3; (Yoshioka et  al. 1987)). Testing of 
these substituents showed DMAE to be the active agent 
(Fig. 5B and Supplementary Fig. 4). Meclofenoxate HCl and 
DMAE (25 µM) were then validated in a full comparative 
growth assay (Fig. 6), demonstrating their ability to 
selectively suppress the growth defect of SDH-loss yeast 
on minimal galactose medium with ISE as sulfur source. 
Selective partial suppression of the growth defect of SDH-
loss yeast in ISE medium, without growth stimulation of 
WT or jlp1∆ strains in ISE media, or any of the strains in AS 
media, suggests that meclofenoxate HCl and DMAE act by 
improving Jlp1p catalysis of ISE conversion to sulfite. We 
sought evidence for potential mechanisms of this effect.

Metabolomics

Meclofenoxate HCl and DMAE have been studied as anti-
aging treatments in animals and in assays of improved brain 

function (Goldenberg 1969, Miyazaki et  al. 1976, Marcer 
& Hopkins 1977, Zuckerman & Barrett 1978, Dowson 
1985, Petkov et al. 1990, Kovalev et al. 2008) but with little 
mechanistic detail. There is early published evidence that 
DMAE activates certain enzymes, including glucose-6-
phosphate dehydrogenase (Bielenberg et  al. 1986). We 
used NMR metabolomics to quantify key identifiable 
metabolites in WT, sdh1∆, and sdh2∆ yeast with and 
without treatment with 100 µM DMAE. The primary goal 
was to monitor intracellular levels of succinate and 2KG, 
the metabolites whose concentration ratio is thought to 
determine dioxygenase inhibition (Fig. 7A and B). Other 
metabolites were detected and quantitated, including TCA 
metabolites, pyrimidine biosynthesis intermediates, and 
amino acids. We profiled a total of 46 metabolites, 43 with 
accurate concentrations from the Chenomx database, and 3 
with relative concentrations from the Human Metabolome 
Database. Concentrations and s.d. (from three replicates) 
for all metabolites are provided in Supplementary Table 4.

Metabolic profiling of WT, sdh1∆, and sdh2∆ yeast 
follows known effects of SDH loss on eukaryotic cells. 
Succinate accumulated up to five-fold higher in sdh1∆ 
and sdh2∆ than in WT cells. Amino acids such as glycine, 
leucine, phenylalanine, and tryptophan also accumulate 
in SDH-loss cells, while there was a reduction in levels 
of thiamine, uridine, pyruvate, glycerol, glutamate, and 
notably, 2-ketoglutarate. Other metabolites showed 
smaller, but significant, differences.

Remarkably, DMAE treatment significantly reduced 
intracellular succinate concentrations in both sdh1∆ 
and sdh2∆ yeast strains but not in WT yeast. Because the 
succinate/2KG ratio determines dioxygenase function, 
this partial normalization of the ratio (Fig. 7C) suggests 
the basis for meclofenoxate as a hit on this screen. Besides 
succinate reduction, DMAE has other interesting effects on 
SDH-loss yeast metabolites. As a choline precursor, DMAE 
increases choline by eight- to nine-fold in treated strains. A 
downstream metabolite, sn-glycero-3-phosphocholine, was 
also increased in SDH-loss strains treated by DMAE. Valine 
and leucine amino acid degradation pathways appear to be 
enhanced by DMAE, with both amino acids showing lower 
abundance in DMAE-treated SDH-loss strains, while their 
downstream compound, 3-isopropylmalate, is increased. 
Other notable DMAE-induced changes are reductions 
in tryptophan, phenylalanine, and ornithine, as well as 
increases in nucleotide-related compounds thiamine and 
orotidine. Higher levels of orotidine imply a diversion of 
carbon from glycolysis to the pentose phosphate pathway 
(PPP) and pyrimidine biosynthesis, but we detect no 
obvious shunting of carbon from the TCA cycle (pyruvate 

Figure 8
Effect of 100 µM DMAE treatment on measures of oxidative stress in ISE 
medium after 24 h. (A) Assay of protein carbonyl products. (B) Assay of 
ROS in live cells. Indicated level of statistical significance from a two-way 
ANOVA with a post hoc Tukey HSD test for significance. *P < 0.05 and  
**P < 0.01 based on 12 replicates (A) and 30–60 cells (B).
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and citrate levels are not changed). A simple rationale for 
DMAE-induced succinate reduction is thus elusive.

ROS assays

Though succinate toxicity is thought to be the primary 
oncometabolite in SDH-loss PGL, evidence shows that ROS 
may also accumulate and contribute to the development of 
a cancer phenotype (Ishii et al. 2005, Smith et al. 2007). An 
altered intracellular redox state has the potential to shift 
the Fe2+: Fe3+ balance required for cycles of dioxygenase 
activity (Guzy et  al. 2008, Liu et  al. 2020). SDH-loss yeast 
have been shown to suffer increased ROS production with 
some increase in the formation of protein carbonyl damage 
(Weber et  al. 2015) but no acute evidence of toxic DNA 
damage (Smith et al. 2007). Assays monitoring the effects 
of DMAE treatment on protein oxidative damage yielded 
mixed results (Fig. 8A). DMAE treatment significantly 
reduced protein carbonyl levels in sdh1∆ cells but not in 
sdh2∆ or WT cells.

To more directly monitor ROS production, live cells were 
imaged via fluorescence microscopy after treatment with a 
fluorescein derivative activated by ROS. Results are shown 
in Fig. 8B, and example images are shown in Supplementary 
Fig. 5. Both sdh1∆ and sdh2∆ show significant decreases 
in fluorescence after treatment with DMAE, while WT 
showed no effect. Interestingly, untreated sdh2∆ cells 
demonstrated a lower mean fluorescence intensity than 
untreated WT cells, different from earlier findings that 
ROS production was similarly increased in both sdh1∆ and 
sdh2∆ yeast (Smith et  al. 2007). Replicative experiments 
were performed with DHE staining. DMAE exhibited 
similarly subtle anti-oxidant activity (Supplementary Fig. 
6). These results suggest that anti-oxidant effects could 
also play a role in DMAE suppression of Jlp1p inhibition. 
Previous studies of such effects for DMAE have been limited 
to much higher concentrations (Malanga et al. 2012).

Implications

The disease consequences of metabolic perturbation are 
of central importance in medicine. Metabolic changes in 
cancer have been detected and discussed since the discovery 
of the Warburg effect (Warburg 1956, Pavlova & Thompson 
2016, de Alteriis et  al. 2018, Kozal et  al. 2021). SDH-loss 
familial PGL presents a unique metabolic state with its 
fragmented TCA cycle. The highly conserved nature of SDH 
across evolution makes our detailed proteomic comparison 
of sdh1∆ and sdh2∆ strains particularly interesting and 
relevant for understanding the long-standing paradox that, 

contrary to expectation for a multi-subunit enzyme, SDH-
loss tumors show phenotypes dependent on the affected 
SDH subunit (Neumann et  al. 2004, Guzy et  al. 2008, 
Andrews et  al. 2018, Rijken et  al. 2019). While loss of any 
SDH subunit might be predicted to be equally disturbing 
to cell metabolism, there is evidence from human familial 
PGL that this is not true. By analogy with the mammalian 
case where residual SDH complexes may differ upon loss of 
certain subunits (Bezawork-Geleta et al. 2018), it is intriguing 
that SDH-loss yeast lacking Sdh1p show subtle proteomic 
differences from strains lacking Sdh2p. Rather than stressing 
the similarities between sdh1∆ and sdh2∆ for the purposes 
of our yeast screen, the subtle differences between the two 
strains may illuminate the differential penetrance of PGL 
caused by SDHA loss vs SDHB loss in humans. There are 
~20 differentially expressed proteins between sdh1∆ and 
sdh2∆ yeast strains and two interesting cases are Cox19p 
and Cox16p, both assembly factors for cytochrome c 
oxidase. These proteins are less abundant in the sdh2∆ strain 
than sdh1∆ strain, giving us a clue as to subtle proteomic 
differences that might have larger differences on disease 
progression among different human SDH-loss PGLs.

Research in familial PGL has focused primarily on three 
potential oncogenic mechanisms upon SDH loss: succinate 
accumulation driving dioxygenase inhibition (Selak et  al. 
2005, Koivunen et al. 2007, Smith et al. 2007, Xiao et al. 2012), 
ROS overproduction with corresponding damage and redox 
imbalance (Ishii et al. 2005, Saffi et al. 2006, Kregiel 2012, Her 
& Maher 2015, Liu et al. 2020), and succinylation of proteins 
leading to dysfunction (Smestad et  al. 2017, 2018). It is 
becoming more apparent that all of these mechanisms play 
a role in oncogenesis through analysis of recently developed 
cell lines model. By comparing SdhB and SdhD loss mouse 
chromaffin cells that model adrenal PGL, researchers have 
shown how the residual SDH left by SdhB loss contributes to 
a more aggressive phenotype than SdhD loss by triggering 
iron imbalance and ROS generation (Goncalves et al. 2021). 
Using the linkage between SDH loss and dioxygenase 
inhibition as a paradigm, the present chemical suppression 
screen exploited our ability to connect the inhibition of 
sulfur scavenging dioxygenase Jlp1p to a nutritional growth 
assay in a sulfur source requiring Jlp1p function in S. cerevisiae 
(Hogan et al. 1999, Smith et al. 2007). The leading hit from 
this screen, meclofenoxate HCl, and its active derivative 
DMAE, selectively increase the growth of SDH-loss yeast 
strains by 10–20% in ISE media. Considering the role played 
by iron in modulating dioxygenase activity in mammalian 
cells, an analogs screen might be envisioned that focuses on 
the restoration of mammalian iron homeostasis rather than 
fungal sulfur metabolism. Because iron drives the epithelial–
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mesenchymal transition in mammalian cells, compounds 
that increase iron availability might restore dioxygenase 
function in cells where it is inhibited by excess succinate 
(Müller et al. 2020).

Though studied superficially over many years, 
potential mechanisms of meclofenoxate and DMAE effects 
on metabolism, physiology, and lifespan remain poorly 
understood. Initial studies in the 1970s suggested that these 
drugs substantially enhance the lifespan of mice (Hochschild 
1973, Miyazaki et al. 1976). DMAE was found to affect brain 
tissue, reducing levels of lipofuscin, an oxidative plaque 
associated with aging. Lohr and Acara noted that DMAE is 
similar in structure to choline and could potentially serve 
as a precursor and that it could also inhibit choline oxidase 
(Lohr & Acara 1990), reducing levels of betaine. Anti-aging 
effects of DMAE have been studied with an eye to a potential 
free-radical scavenging mechanism (Malanga et al. 2012).

Perhaps the most tantalizing published mechanistic 
observation for DMAE is its reported ability to increase 
the activity of glucose-6-phosphate dehydrogenase, the 
rate-limiting initial enzyme of the PPP (Roy & Singh 1983). 
The PPP runs parallel to glycolysis but generates reducing 
equivalents and key carbon skeletons for nucleotide 
biosynthesis without generating ATP. We hypothesize that 
agents such as DMAE may enhance dioxygenase function 
in SDH-loss cells by shunting carbon flux away from 
glycolysis and the TCA cycle, reducing the production of 
succinate at the SDH blockade. We find minor indications 
of increased flux through the PPP resulting from DMAE 
treatment, though the metabolic origin of succinate 
decrease remains unclear. We provide further evidence that 
DMAE relieves oxidative stress by reducing ROS, perhaps 
normalizing the obligatory Fe2+:Fe3+ equilibrium essential 
to the dioxygenase catalytic cycle.

Thus, this work illustrates a new paradigm for rewiring 
metabolism through a small molecule cue that reduces 
oncometabolite accumulation. Searching for effective 
small molecules of this type that might affect SDH-loss PGL 
tumor cells offers a potential route to normalizing inhibited 
dioxygenase function in such cells. Because dioxygenase 
inhibition by succinate causes both pseudohypoxia and 
histone and DNA hypermethylation, such metabolic 
rewiring could have broad therapeutic effects in familial PGL.

Supplementary materials
This is linked to the online version of the paper at https://doi.org/10.1530/
ERC-21-0349.
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