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A fundamental question in computational neuroscience is how to connect a network of

spiking neurons to produce desired macroscopic or mean field dynamics. One possible

approach is through the Neural Engineering Framework (NEF). The NEF approach

requires quantities called decoders which are solved through an optimization problem

requiring large matrix inversion. Here, we show how a decoder can be obtained

analytically for type I and certain type II firing rates as a function of the heterogeneity

of its associated neuron. These decoders generate approximants for functions that

converge to the desired function in mean-squared error like 1/N, where N is the number

of neurons in the network. We refer to these decoders as scale-invariant decoders due to

their structure. These decoders generate weights for a network of neurons through the

NEF formula for weights. These weights force the spiking network to have arbitrary and

prescribed mean field dynamics. The weights generated with scale-invariant decoders all

lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of

these scale-invariant decoders and weight surfaces by constructing networks of spiking

theta neurons that replicate the dynamics of various well known dynamical systems such

as the neural integrator, Van der Pol system and the Lorenz system. As these decoders

are analytically determined and non-unique, the weights are also analytically determined

and non-unique.We discuss the implications for measuredweights of neuronal networks.

Keywords:mean field analysis, neural engineering framework, neuronal heterogeneity, integrate-and-fire neurons,

recurrently coupled networks, synaptic weights

1. INTRODUCTION

There are many spikingmodels that exist in the literature that can be fit to reproduce themembrane
potential and the firing rates of real neurons. Examples include the leaky integrate and fire neuron,
the Izhikevich model (Izhikevich, 2003, 2007), the theta model (Ermentrout and Kopell, 1986), the
quartic integrate and fire model (Touboul, 2008) and the adaptive exponential integrate and fire
model (Brette and Gerstner, 2005; Naud et al., 2008). When these models are coupled together
to form networks, one can predict the the macroscopic or mean field behavior of a network of
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these neurons via a suitably derived mean field system (Nicola
and Campbell, 2013a,b; Nesse et al., 2008). This can even be done
when one considers the effects of heterogeneity in the neurons
(Nicola and Campbell, 2013b).

While the mean field system for networks of neurons with
prescribed sources of heterogeneity is important for predicting
the behavior of the network of equal importance is the inverse
problem: given a particular macroscopic behavior or mean
field system, what distributions of heterogeneity, either in the
neuronal parameters themselves, or the synaptic weights are
required to produce said behavior?

One possible numerical solution to the inverse problem is
through the Neural Engineering Framework (NEF) (Eliasmith
and Anderson, 2004). In the NEF approach, one can specify
the macroscopic dynamics or mean field for a spiking neuronal
network. Given a network of neurons with a source of
heterogeneity, one can find a set of optimal linear weights,
referred to as linear decoders, for their firing rates in such a
way that the weighted linear sum of the firing rates optimally
approximates any function of choice. This allows for specifying
the network connectivity in such a way as to obtain arbitrary
dynamics from the network(s) of neurons (Eliasmith, 2005). For
example, the NEF has been used to develop a wide variety of
models, including the most behaviorally sophisticated spiking
neural model to date (Eliasmith et al., 2012) as well as more
specialized models of path integration (Conklin and Eliasmith,
2005), working memory (Singh and Eliasmith, 2006), visual
attention (Bobier et al., 2014), motor control (DeWolf and
Eliasmith, 2011), various cognitive functions (Bekolay et al., 2014;
Rasmussen and Eliasmith, 2014), and many others.

However, the optimality requirement in the linear decoders
introduces complications in the NEF approach. The optimal
decoders are computed via least-squares optimization which is a
computationally-intensive process; and yet very little information
about the network can be determined once the optimal decoders
have been obtained. Additionally, one cannot determine how the
distribution of heterogeneity in the tuning curves of the neurons
is related to the other distributions across the network, such as
the distribution of connection weights.

Here, we will show that if one loosens the optimality
requirement in the linear decoders, it is possible to obtain linear
decoders that converge to any function of choice in the large
network limit. Due to their form, we will refer to these decoders
as scale-invariant linear decoders. These scale-invariant decoders
have several advantages over optimal decoders, at the primary
cost of a slower convergence rate in network size. However, using
any gradient descent algorithm that does not directly compute
the Hessian, one can decrease the error of the scale-invariant
decoders very rapidly with very few iterations for any finite
network size.

In Section 2.1, we will quickly introduce the NEF. A more
thorough introduction can be found in (Eliasmith and Anderson,
2004). This will be followed by Section 2.2 where we will
demonstrate that as the networks become arbitrarily large, the
optimal decoders tend to an asymptotic limit. This will be our
motivation in defining a scale-invariant decoder. In Section 2
we will determine what this asymptotic limit is for the scalar

case and for multivariable functions in Section 2.4. In Section 3
we will demonstrate how the decoders can yield the weights to
couple neurons together and simulate spiking networks with the
specified dynamics by using these weights.

2. METHODS: DETERMINING THE
DECODER SURFACE

2.1. The Neural Engineering Framework
Suppose we knew the firing rate of a class of neurons, f (I) as
a function of the input current I. Then we can take any input
variable x and linearly transform it into a current via I = αx+ β .
If we allow α and β to be drawn from a random distribution,
then we can generate a network of neurons with firing rates
f (αix+βi) where αi, βi are drawn from some specified probability
distribution ρα,β (α, β). As a function of x the curve f (αix+βi) is
typically referred to as the tuning curve of neuron i. The output
of these neurons is the sum of their weighted firing rates:

ĝN(x) =
N
∑

i= 1

φif (αix+ βi). (1)

Thus, the network takes any input x belonging to the appropriate
space, and transforms it into some function ĝN(x). If for example
we wanted to compute the function g(x), we would need to
pick φi such that ĝN(x) ≈ g(x). The φi are referred to as the
linear decoders in the NEF approach (Eliasmith and Anderson,
2004). They can be determined by minimizing the the following
functional with respect to φ over some region X in x (Salinas and
Abbott, 1995; Eliasmith and Anderson, 2004):

C(φ) =
∫

X
(ĝN(x)− g(x))2 dx+ λ

N
∑

i= 1

φ2i

=
∫

X

(

N
∑

i= 1

φif (αix+ βi)− g(x)

)2

dx+ λ
N
∑

i= 1

φ2i (2)

where the first term in 2 corresponds to the error in
the approximation and the second term penalizes large φi.
Minimizing C(φ) for φ yields the following linear system of
equations:

8 = A−1Ŵ (3)

Aij =
∫

X
f (αix+ βi)f (αjx+ βj) dx+ δijλ (4)

Ŵj =
∫

X
f (αjx+ βj)g(x) dx. (5)

Equations (3–5) correspond to standard function approximation
(Bishop, 1995), although the basis functions f are randomly
drawn. We will refer to the optimal decoders as 8 and any other
decoder as φ. There are various functions f that have appeared in
the literature. These are derived from complicated neural models
using topological normal form theory (Ermentrout and Kopell,
1986; Izhikevich, 2007), are fits to experimental data from real
neurons (Shriki et al., 2006), or are analytically derived from
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integrate and fire neurons. The general form the integrate-and-
fire models we will consider is given by

v̇ = F(v)+ I (6)

v(t−) = vpeak, → v(t+) = vreset (7)

f (I) =







(

∫ vpeak
vreset

dv
F(v)+I

)−1
I > 0

0 I < 0
. (8)

Specific examples include:

F(v) = − v

τv
(Leaky Integrate-and-Fire Model (Lapicque, 1907

Abbott, 1999; Brunel and Van Rossum, 2007) (9)

F(v) = v2 (Quadratic Integrate-and-Fire Model)

(Izhikevich, 2003, 2007) (10)

F(v) = v2, vreset = −∞, vpeak = ∞ (Theta Model)

(Ermentrout and Kopell, 1986) (11)

F(v) = exp(v)− v (Exponential-Integrate-and-Fire Model)

(Brette and Gerstner, 2005; Naud et al., 2008). (12)

Other FI curves are fits to the measured FI curves of
more sophisticated conductance based models or experimental
measurements. For example, the function

f (I) =
{

I + c I > 0

0 I < 0
(13)

can be fit to type-II firing rates when c > 0, and can be shown
to be the steady state firing rate for neurons that display spike
frequency adaptation when c = 0 (Ermentrout, 2006). Equation
(13) has also been fit to conductance based models (Shriki et al.,
2006) (with x = 0) and adequately describes the FI curves for
many real cortical neurons (Stafstrom et al., 1984; Azouz et al.,
1997; Ahmed et al., 1998).

As x is often thought of as a real world input variable in
the NEF approach, the αi, βi distribution can only be known
once one specifies a distribution of maximal firing rates, ri and
x-intercepts, ai for the tuning curves. For the time being, we
will restrict the variable x to the interval [−1, 1]. It can be
rescaled to an arbitrary interval, so this is no loss of generality.
We will show later how x can also be extended to a vector as
in the original NEF framework (Eliasmith and Anderson, 2004;
Eliasmith, 2005). Once one specifies the distribution of (ri, ai),
one can obtain a transformation of random variables. First, let
us consider a population of neurons such that the maximal firing
rate is achieved at x = 1:

ri = f (αi + βi)
0 = αiai + βi

We will refer to these neurons as ON neurons as the neurons
can either increase in firing rate with respect to x (ON neurons)
or decrease (OFF neurons). The maximal firing rate for the ON
population is reached at x = 1 (Eliasmith and Anderson, 2004)

while themaximal firing rate for the OFF population is reached at
x = −1. To generate a population of OFF neurons, we can reflect
the tuning curves in the x = 0 axis by multiplying αi by −1,
which yields the following pair of transformations:

αi = ± f−1(ri)

1− ai
(14)

βi = −aif
−1(ri)

1− ai
(15)

where the± indicates ON/OFF, respectively and by f−1(x). Note
that one can generate a population of ON and OFF neurons in
different ways, for example by reflecting about the x = ai axis
for each neuron. We will treat ai and ri as our primary sources
of heterogeneity in the case of approximating a function of a
single variable and we will assume that the marginal densities
are given by ρa(a) and ρr(r). Furthermore, we will write a±i and
r±i to distinguish between the heterogeneous parameters for the
ON(+) and OFF(−) populations. In this case, we can rewrite the
sum (1) as

ĝN(x) =
N/2
∑

i= 1

φ+i f

(

f−1(r+i )

(

x− a+i
1− a+i

))

+
N/2
∑

i= 1

φ−i f

(

f−1(r−i )

(

−x− a−i
1− a−i

))

(16)

where the first half represents the population of ON neurons
and the second half of the sum represents the population of
OFF neurons. Note that when we refer to the heterogeneous
parameters rmax

i and ai for the ON and OFF populations, we do
not imply that they have the same value for both populations for
i = 1, 2, . . .N and they should have a superscript ± to denote
which population the parameter belongs to. We do not include
this superscript and note the abuse of notation for readers.

Suppose, for example, we wanted to approximate the function
g(x) = x using a population of 50 quadratic integrate and fire
tuning curves with 25 ON and 25 OFF neurons. This is shown in
Figure 1 where the decoders are given by Equation (5). Note that
reasonable accuracy is achieved despite the small population of
neurons.

So far this has been fairly standard function approximation
with a non-orthogonal basis (Bishop, 1995). The difference in the
NEF approach is that one uses these linear decoders obtained
from the firing rate curves to design a network of spiking
neurons and the function is represented in the output of the
network simulation. For example, the differential equation for the
quadratic integrate and fire model is given by

v̇i = v2i + αix+ βi (17)

where if v(t−) = ∞, v(t+) = −∞. This can be written as
the equivalent θ model with the transformation v = tan(θ/2)
yielding:

θ̇i = 1− cos(θi)+ (1+ cos(θi))(αix+ βi) (18)
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FIGURE 1 | Function approximation with neuronal tuning curves. (A)

The tuning curves for a population of 50 quadratic integrate and fire neurons

with their intercepts and maximum firing rates drawn from independent

uniform random variables on [−1,1] and [100,200]. The maximum firing rate is

in Hz. (B) The function g(x) = x, in addition to the approximation ĝ(x) using the

tuning curves from (A). (C) The squared error in the approximation ĝ(x).

which produces a spike when θ(t−) = π and is reset to
θ(t+) = −π .

Each of these differential equations generates a sequence of
action potentials at specific spike times, tjk where tjk is the time
of the kth spike fired by the jth neuron. These spike times are
then fed into a post-synaptic filter s(t);

ṡ(t) = − s(t)

τs
+ 1

τs

N
∑

j= 1

∑

tjk < t

φjδ(t − tjk). (19)

The linear decoders, φj are used to weight the spikes for their
respective neuron. This post-synaptic filter equation can be
explicitly integrated to yield:

s(t) =
N
∑

j= 1

∑

tjk < t

φj exp

(

tjk − t

τs

)

=
N
∑

j= 1

∑

tjk < t

φjE(t − tjk) (20)

where E(t) = exp(−t/τs). The integrated spike train for the jth
neuron is approximately equal to its tuning curve, f (αjx+ βj):

∫ t

0

∑

tjk < t

δ(t − tjk) dt ≈
∫ t

0
f (αjx+ βj) dt,

provided that x varies on a suitably slow time scale (Dayan and
Abbott, 2001; Eliasmith and Anderson, 2004). In this case, the
dynamics in Equation (19) are approximately given by

s′ = − s

τs
+ 1

τs

N
∑

j= 1

φjf (αjx+ βj) (21)

This allows one to approximate an arbitrary dynamical system
(Eliasmith, 2005). For example, if we consider a recurrent
network (x = s), then to approximate the dynamics s′ = F(s)
we merely require

N
∑

i= 1

φif (αis+ βi) ≈ s+ τsF(s) = ĝN(s) (22)

and where the φi are given by Equation (3). Returning to the
neural equations, if we take x = s and consider a recurrently
coupled network of neurons then we have the following:

v̇i = F(vi)+ αis+ βi (23)

= F(vi)+ αi
N
∑

j= 1

∑

tjk < t

φjE(t − tjk)+ βi (24)

= F(vi)+
N
∑

j= 1

∑

tjk < t

ωijE(t − tjk)+ βi (25)

where ωij = αiφj is the NEF equation for the weight coupling
neuron j to neuron i (Eliasmith and Anderson, 2004; Eliasmith,
2005) and the quantity

Isyn,i =
N
∑

i= 1

∑

tjk < t

ωijE(t − tjk)+ βi

is the post-synaptic current going to the ith neuron.
For example, if we wanted the macroscopic dynamics to be

exponential decay, F(x) = ks, then we require ĝ(s) = s(1 + τsk).
We would obtain the φi by using Equations (3–5) which yields
the optimal decoders 8i for ĝ(x) = x(1 + τsk) and simulate
our spiking network using the weights ωij = αi8j. This yields
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a recurrently coupled spiking neural network with macroscopic
dynamics s′ = ks.

In addition to recurrent networks, one can also construct
feedforward networks with the NEF approach. For example, we
can also treat x as an input variable. This allows a network to
represent an input variable x in terms of its spiking. If τs is not
large, then one can represent the input variable x as a postsynaptic
current s:

s ≈
N
∑

i= 1

φif (αix+ βi) = ĝN(x) ≈ x (26)

assuming that x varies on a suitably slow time scale (slower
than τs). This is shown for example with networks of various
sizes in Figure 2, with a synaptic time constant of τs = 5 ms
approximating the function g(x) = x. The network of differential
equations for the neurons is simulated using Equation (17). These
neurons then generate a spike train which is weighted by the
decoders. The weighted spike train is fed into the post-synaptic
current variable s(t), which acts as the approximation for g(x) =
x. A time varying x(t) is used that varies on a suitably slow time
scale.

It is clear that given the fact that arbitrary functions or
dynamics (via recurrent networks) can be computed, then one
can generate multiple networks that perform different functions,

and feed into one another. In this way, one could create
large networks composed of interconnected subnetworks that
perform functions such as controlling limbs, detecting objects,
and performing tasks by using the mathematical approaches that
already exist for accomplishing these feats and translating them
into an equivalent neural network representation. This is the core
idea in the NEF (Eliasmith and Anderson, 2004; Eliasmith et al.,
2012).

Although a network of N = 100 neural tuning curves f (αix+
βi) is sufficient for a good approximation of many functions,
depending on the dynamics being computed, significantly more
neurons are needed in spiking simulations, as shown in Figure 2.
Hundreds, if not thousands, of neurons are necessary for
adequate approximation when spikes are used. The network size
becomes even larger when we want to perform complicated
functions involving more then one variable x or functions
with higher frequency oscillations present. As the decoders
are determined by large matrix inversion (Equation 3), this
can take quite a while when dealing with more then 5000
neurons on a conventional computer. Furthermore, the smaller
the synaptic time constant τs, the more neurons are required.
This is due to the fact that Equation (21) is effectively a kernel
density estimator of the firing rate and when the bandwidth
is too small, the resulting estimate is under-smoothed, thus
requiring more neurons for a comparable degree of accuracy

FIGURE 2 | Representation with a spiking neuronal network. (A) A sample raster plot of a neural network with 1000 neurons performing representation. (B–D)

The representation problem is approximated by networks of various sizes by imposing the condition (26). The neurons are quadratic integrate-and-fire neurons given

by Equation (17). The spike train for (B) is plotted in (A). A time varying randomly generated signal (red) is fed into the network, and is computed via the synaptic

current variable s(t) using Equation 19 (blue). As the network size increases, the approximation becomes better.
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as that of a network with larger τs. Furthermore, as the NEF
weights are numerically determined (via the NEF decoders), the
possible analysis is very limited. Thus, an analytical solution
to the NEF decoders (and thus weights) would allow a greater
insight into large networks and may also facilitate faster
numerics.

2.2. Decoder Asymptotics as N → ∞
In order to proceed analytically, we will first look at the behavior
of the optimal decoders 8 for large networks (N → ∞). To
facilitate plotting, let us consider the case where for an arbitrary
neural model, f−1(r±i ) = ±1−a±i , that is themaximim firing rate
is given by r±i = f (±1−a±i ), which reduces the random variables
associated with the heterogeneity to the intercept variable, a±i .
Additionally, note that for Type-I neurons:

f

(

f−1(r±i )

1− a±i
(±x− a±i )

)

=

√

√

√

√

r±i
2

1− a±i
(±x− a±i )

= r±i
√

1− a±i

√

±x− a±i (27)

which immediately implies that we can absorb the quantitiy
r±i

√

1−a±i
into the decoder φ±i and rescale any solution we obtain by

this quantity at the end. With Equation (27), the sum in Equation
(16) becomes:

ĝN(x) =
N/2
∑

i= 1

8+
i f (x− a+i )+

N/2
∑

i= 1

8−
i f (−x− a−i ) (28)

where the 8i are determined by Equation (5). One should note
that there is an abuse of notation here, as the optimal decoders
differ for the ON/OFF subpopulations for i = 1, 2, . . .N however
we have used the same symbol to denote the optimal decoders,8i

for both populations. Additionally, the value a+i is the threshold
to firing for the ith ON neuron while the quantity −a−i is the
threshold to firing for the ith off neuron. If one were to plot the
decoders for large N, then one can easily see that in the limit
of large network size (N → ∞), the individual decoders vanish
(8i → 0, not shown here). However, for increasing N, it seems
that the quantity γi = N8i/2 converges to some non-zero value
γ (ai) and thus it appears that γi converges to some function of the
x-intercept, ai, the source of heterogeneity for the neurons. This is
shown in Figure 3 for increasingly large networks. The quantity

FIGURE 3 | Convergence of the optimal decoders to an invariant surface. (A–D) The function g(x) = x is approximated by networks of various sizes using

Equation (17) with firing rate curves. Plotted are the optimal decoders 8i scaled up by the network size N for ON (black dots) and OFF (red dots) neurons as a function

of the intercept, f (0) for QIF firing rate functions. The quantity N8i appears to converge as N → ∞ to the blue curve. The blue curve is determined by using a uniform

grid of neurons over the heterogeneous parameter ai and optimizing for the resulting decoders.
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N8i/2 is plotted vs. ai. The predicted surface for convergence,
γ (a), is also plotted which is determined by optimizing over a
uniform mesh in the parameter space. We will refer to any γi
that satisfies γi = φiN/2 for some decoder φi as scale invariant
decoders and γ±(a) as the decoder surface. We will not necessarily
use the same decoders for the ON and OFF neurons hence the
superscipt on γ (a). We will show in the subsequent sections
how to determine the decoder surfaces for the type-I and type-
II (approximate) firing rates for single variable and multivariable
functions.

In order to determine the decoder surface analytically, we
need to understand the behavior of the network as N → ∞.
Using the scale invariant decoders from Equation (28):

ĝN(x) =
N/2
∑

i= 1

φ+i f (x− a+i )+
N/2
∑

i= 1

φ−i f (−x− a−i ) (29)

= 2

N

N/2
∑

i= 1

γ+(a+i )f (x− a+i )

+ 2

N

N/2
∑

i= 1

γ−(a−i )f (−x− a−i ) (30)

= γ+
i f (x− a+i )+ γ

−
i f (−x− a−i ) (31)

where the overline denotes the finite average over the
inhomogeneity in the intercepts. We should expect that as N →
∞, the finite network averaging turns into an expectation:

γif (x− a+i ) → E(γ+(a+i )f (x− a+i ))

=
∫ x

−1
γ+(a)ρa(a)f (x− a) da (32)

γif (−x− a−i ) → E(γ−(a−i )f (−x− a−i ))

=
∫ −x

−1
γ−(a)ρa(a)f (−x− a) da (33)

where ρa(a) is the probability density describing the
heterogeneity variable ai for the neurons. For the Equations (32,
33) to be valid for the optimal decodoers, we would need to
formally show that 8i → 2γ (ai)/N, where 8i are the optimal
decoders for some particular scale-invariant decoder γ (ai).
However, this is unnecessary as we can regard φi = 2γ (ai)/N as
a suboptimal decoder and independent of the optimal decoders
which are generated by minimizing the integral Equation (2).
In which case, the limit exists by the law of large numbers.
Furthermore, as we shall show later, 8i will not necessarily
converge to γ (ai) as γ (ai) is non-unique, where as 8i is the
optimal decoder which is unique due to the quadratic error
surface in C(φ).

Note that γ (a)ρa(a) appears as a product in the integral.
These terms can be collapsed into a single function P̂±(a) =
γ±(a)ρa(a). We will refer to these quantities as the weighted
decoders of the ON/OFF neurons and use the weighted decoders
to define the linear operators;

L+(P̂+) =
∫ x

−1
P̂+(a)f (x− a) da = ĝ+(x) (34)

L−(P̂−) =
∫ −x

−1
P̂−(a)f (−x− a) da = ĝ−(x) (35)

M(P̂+, P̂−) = L+(P̂+)+ L−(P̂−) = ĝ(x). (36)

which we will refer to as the tuning curve transforms (TCT). The
TCTs map functions from the space of the variable(s) assigned
to the heterogeneous parameters to the space of functions
we are trying to approximate. Note that these operators are
actually applied to different weighted decoders as the decoder
surfaces are different for ON and OFF neurons. Furthermore,
the density ρa(a) need not be identical for both ON and OFF
neurons. However, in all numerical implementations, ρa(a) will
be identical for the sake of simplicity.

Suppose we could determine P̂(a) analytically. In this case,
as γ (a)ρa(a) = P̂(a), whenever ρa(a) 6= 0, we can compute
γ (a) = P̂(a)/ρa(a) and leave γ (a) undefined otherwise (as there
is no neuron that has parameter(s) in this region). Now, given
the fact that we obtain a linear operator as N → ∞ case, the real
problem becomes in finding the (P̂+, P̂−) such that M(P̂+, P̂−)
maps to g(x), the function we want to approximate. That is, we
have to invert the operator M for these P̂. If we know these P̂,
then as we presumably know the distribution of tuning curve
intercepts, we can determine the decoders φi with:

φ±(a±i ) =
2γ±(a±i )

N
= 2

N

P̂±(a±i )

ρa(a
±
i )

(37)

and thus the analytically determined scale-invariant decoders
γ (ai) are effectively weights for a Monte Carlo estimate of the
integral operator TCTs.

Here, we will explicitly invert the tuning curve transforms for
single variable functions in Section 2.3. The resulting equation for
the weighted decoders is a convolution integral. In Section 2.4 we
will show that with a basis to basis mapping, one can also invert
the tuning curve transforms for multi-variable functions.

2.3. Single Variable Functions
If we work with the operators L+ and L− separately, the problem
becomes entirely tractable. One of the surprising things about
the operators L+ and L− is that provided that the functions
we are considering are constrained to a subset where g+(x)
vanishes to first order at x = −1 and g−(x) vanishes to first
order at x = 1, and are both smooth, then the operators are
invertible analytically on this constrained subspace of functions
using Laplace transforms (see Appendix). Additionally, by using
both P̂+(a) and P̂−(a), one can compute any smooth function
irrespective of the conditions at x = ±1. Furthermore,
piecewise smooth continuous functions can also be computed
(see Supplementary Materials). Closed form solutions do not
exist for all neuronal firing rates as the Laplace transform cannot
always be inverted explicitly. However, the type-I and type-II
firing rate models do have analytically determined decoders. For
the type-I/theta neuron firing rate, we have (see Appendix for
derivation):

P̂+(a) = 2

π

(

g(−1)+ g(1)

2
+ g′(−1)

)

1√
1+ a
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+
∫ a+1

0
g′′(a− t)

2

π
√
t
dt (38)

P̂−(a) = 2

π

(

g(−1)+ g(1)

2
− g′(1)

)

1√
1+ a

+
∫ a+1

0
g′′(t − a)

2

π
√
t
dt (39)

The weighted decoder solutions for the type-II firing rate are also
contained in the Appendix. For example, we have approximated
the function g(x) = sin(2πx) using 10,000 type I tuning curves,
as shown in Figure 4. An important thing to notice is the linearity
in Equations (38,39) and (36) in the target function g and thus
linearity for the scale-invariant decoders γ (a). Furthermore, due
to the fact we have considered P̂±(a) to be separate for the ON
andOFF populations, our operator for determining g(x) is ĝ(x) =
M(P̂+, P̂−) = L+(P̂+) + L−(P̂−). However, while our range in
L+ and L− was constrained, it was not constrained enough to
provide a unique solution to M(P+, P−) = g(x). In particular, if
we consider any function ǫ(x) that lies in both admissable spaces
(vanishes to first orders at x = 1 and x = −1), then ǫ(x) can
be represented by both populations with P̂±ǫ (a), respectively and
thus

P̃+
g(x)+ǫ(x)(a) = P̂+

g(x)
(a)+ P̂+

ǫ(x)
(a) (40)

P̃−
g(x)−ǫ(x)(a) = P̂−

g(x)
(a)− P̂+

ǫ(x)
(a) (41)

are also valid solutions to M(P+, P−) = g(x). One can interpret
this as a degree of freedom in terms of the decoders (and thus the
synaptic weights). For example, we can use e(x) to minimize the
expected squared error or other criterion. Thus, in the following
we will strictly assume that e(x) = 0.

We should note that it is possible to numerically invert the
Laplace transforms resulting from the derivation process for the
other firing rate curves. However, for now we will primarily
work with the type I and type II curves. Our numerics will also
primarily consist of networks of theta neurons (type-I).

2.3.1. Convergence Rate for Single-Variable

Functions
With our decoder surfaces in hand, we can now proceed to
determine the various convergence properties in the limit as
N → ∞. In particular, we have the following:

Ea((g(x)− ĝN(x))
2) = 2

N

( ∫ x
−1 γ

+(a)2ρa(a)f (x− a)2 da

− g+(x)2

)

FIGURE 4 | Comparison of the scale-invariant decoders and the NEF decoders. (A) A sample subset of tuning curves from a population of 1000 neurons. The

function g(x) = sin(2πx) is approximated using populations of N = 103 ON and OFF neurons. (B) The scale invariant decoders (blue), the scale invariant decoders with

conjugate gradient descent fine-tuning (red) and the optimal decoders multiplied by N (green) for both the ON (solid) and OFF (dashed) groups of neurons. (C) The

different decoders correspond to different g± (x). (D) Summing the g± (x) yields approximations to g(x). The conjugate gradient descent improves the approximation

(from 6*10−1 to 7*10−5) of magnitude while still maintaining a tight correlation with the scale-invariant decoders (p = 0.9811). The optimal decoders have a

mean-squared error of 9*10−7 for comparison purposes.
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+ 2

N

( ∫ −x
−1 γ

−(a)2ρa(a)f (−x− a)2 da

−g−(x)2

)

(42)

which immediately implies that our approximant ĝN(x)
converges in mean-square to g(x) pointwise in x provided that:

∫ 1

−1
γ±(a)2ρa(a) da =

∫ 1

−1

P̂±(a)2

ρa(a)
da <∞. (43)

A derivation of Equation (42) can be found in the Supplementary
Materials. Letting γN = (γ (ai)/N, . . . γ (aN)/N), then we can
also consider how the distribution of the quadratic cost function
C(γN) scales as N → ∞ ; from Equation (2):

C(γN) =
∫

X

(

1

N

N
∑

i= 1

γ ei (ai)f (eix− ai)− g(x)

)2

dx

+ λ

N2

N
∑

i= 1

γ (ai)
2 (44)

where ei is the symbolic variable ± denoting the identify of a
neuron as OFF/ON. One can show that provided that Equation
(43) holds, and γ±(a) is bounded on [−1, 1], then we have the
following

E(C(γN))≤O(N−1), E(
(

C(γN)− E(C(γN))
)2
) ≤ O(N−2)(45)

which implies that as N → ∞, then C(γN) → 0 in a mean-
square sense. This is proven in the Supplementary Materials. As
the cost function is strictly positive, then we can interpret this as
γN minimizing the cost asymptotically.

For other neuronal models, one can merely use the maximum
firing rates and intercepts to approximate their tuning curves
with the type I standard form or the linear firing rate tuning
curves. This will yield scale-invariant decoders that can be used
on the tuning curves for the actual neuronal model with some
degree of error. Additionally, gradient descent algorithms can
be used to refine the scale-invariant decoders and that take into
account the systematic error in using the type-I/type-II tuning
curve approximation.

2.4. Multivariable Functions
It is clear that in the preceding section, one could approximate
any arbitrary single variable function using scale invariant
decoders. The same can be said about multi-variable functions.
We will first introduce linear encoding for multi-variable inputs.
In the NEF, it is assumed that the current input into each neuron
takes the form:

Ii = αi〈e, x〉 + βi

where e is the encoding vector that lies on the n-dimensional
unit sphere and x lies in the interior; 〈e, x〉 is the standard dot-
product. The maximum firing rate occurs when x = e, and thus
〈e, x〉 = 1 is the maximum. The vector e is also referred to as
the preferred direction vector. In this case, there are no ON and

OFF neurons as they are effectively taken care of by the angle
in between x and e. If x and e are colinear, then the maximum
firing rate occurs when e = x, and the firing rate is zero when
〈e, x〉 = a, the equation for the hyperplane with normal vector e.
Note that because the unit sphere in one-dimension is merely±1,
we have a direct correspondence with the ei from the single
variable analysis in the previous section.

Once again, we can non-dimensionalize:

f (αi〈ei, x〉 + βi) = f

(

f−1(ri)

1− ai
(〈e, x〉 − ai)

)

.

To simplify the situation, we will again assume that f−1(ri) =
1 − ai, to remove this term. As before, for type-I firing rates this
occurs without any loss of generality.

While it may seem like this setup complicated matters
somewhat, in the limit that N → ∞, the end result is
simpler then the single variable case as we can make use
of the orthogonality of the trigonometric functions to derive
an appropriate basis to basis mapping. Consider suboptimal

decoders of the form φ = γ (e,a)
N = γe(e)γa(a)

N . For a separable
decoder we have:

ĝN(x) =
1

N

N
∑

i= 1

γe(ei)γa(ai)f (〈ei, x〉 − ai)

which in the large network limit becomes:

ĝN(x) =
∫

‖e‖=1

∫ 〈e,x〉

−1
γe(e)γa(a)f (〈e, x〉 − a)ρe(e)

ρa(a) da de (46)

=
∫

‖e‖=1

∫ 〈e,x〉

−1
P̂e(e)P̂a(a)f (〈e, x〉 − a) da de (47)

From our previous work, we know that the weighted decoder
P̂a(a) can be chosen such that:

∫ 〈e,x〉

−1
P̂a(a)f (〈e, x〉 − a) da = (〈e, x〉 + 1)n (48)

by treating z = 〈e, x〉 and using Equation (38) to determine
P̂(a). The specific form of P̂a(a) that performs this transformation
varies from neural model to neural model. For the type
I/type II firing rate, it is given by a recurrence relationship
in terms of the binomial exponent n and is included in the
Supplementary Materials. With P̂a(a) determined, the decoders
P̂e(e) are characterized by the integral equation:

ĝN(x) =
∫

‖e‖=1
P̂e(e)(〈e, x〉 + 1)n de

To proceed further, we will exploit the orthogonoality of the
Fourier series in a hyper-spherical coordinate system. For
example, in two-dimensions we have:

ĝN(x) =
∫ 2π

0
P̂θ (θ)(cos(θ)x+ sin(θ)y+ 1)n dθ (49)

Frontiers in Computational Neuroscience | www.frontiersin.org 9 February 2016 | Volume 10 | Article 15

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Nicola et al. Obtaining Prescribed Mean-Field Dynamics

The second term in the integrand is a polynomial in cos(θ)
and sin(θ). By DeMoivres formula, this can be expressed as a
Fourier series with coefficients that depend on x and y where
the series contains no cos(mθ) or sin(mθ) for m > n. Thus, we
can extract out polynomial basis functions in the x and y using
P̂(θ) = cos(mθ) sin(kθ) for m, k < n. For example, the first few
P̂(θ) and the corresponding ĝN(x) are shown in Table 1.

As we can obtain a polynomial basis where the maximum
polynomial power is arbitrary, we can approximate any
arbitrary integrable function. In general, one uses a sequence
of trigonometric basis in the heterogeneous space to yield a
polynomial basis in the function approximation space. One may
wonder if the non-uniqueness in the scalar case was due to the
peculiarities of the unit sphere in 1-dimension (an isolated pair
of points). This turns out not be the case (see Supplementary
Materials).

2.4.1. Convergence Rate for Multivariable Functions
One can again determine the order of convergence for the scale-
invariant decoders for a multi-variable funciton. An application
of the law of large numbers yields:

E(ĝN(x)) = E
(

γ (ei)γ (ai)f (〈ei, x〉 − ai)
)

= g(x) (50)

E((ĝN(x)− E(ĝN(x)))
2) = E((ĝN(x)− g(x))2)

= 1

N

[

E
(

γ (ei)
2γ (ai)

2f 2(〈ei, x〉
−ai)

)

− g(x)2

]

(51)

and thus the expected square error converges like 1/N implying
that ĝN(x) converges to g(x) in mean-squared. The expectation
is taken over the random variables ei and ai. As the convergence
rate is somewhat slow, it is natural to ask whether or not it is
possible to improve the the expected squared error.

While there are many analytical paths one may take, we leave
these approaches for future work. We will primarily use gradient
descent variants that do not require computing the Hessian.
If we knew the Hessian, then for a finite network we could
immediately solve the system of Equations (3–5) as the problem
is entirely quadratic and can be resolved numerically with the
Hessian matrix. However, solving the quadratic problem with
the Hessian requires large matrix inversion, and this is simply
not feasible for large networks. Thus, we can use Hessian-free
gradient descent methods. For example, one can use various
conjugate gradient type algorithms to improve the expected

TABLE 1 | The basis-to-basis mapping for a polar coordinate system for

the first few n.

ĝN(x) P̂(θ ) n

1 1
2π 1

x cos(θ )
π 1

y sin(θ )
π 1

x2 + y2 + 2 1
π 2

1
2 (x

2 − y2 ) sin(2θ )
π 2

xy cos(2θ )
π 2

squared error significantly with only a few iterations, and no
large matrix inversion. Additionally, one can use the methods
of stochastic gradient descent, such as weight perturbation, and
node perturbation (Werfel et al., 2005). We will primarily use
conjugate-gradient descent implemented with the PCG function
in MATLAB (MATLAB, 2014). The crucial thing about these
approaches is that we can obtain substantial improvements to
the expected squared error with only slight perturbations to the
scale-invariant decoders, as we shall see when we look at specific
examples.

3. RESULTS

To simulate networks with arbitrary dynamics, we can use the
decoders derived in the previous sections along with neurons
that correspond to the appropriate firing rates (Eliasmith and
Anderson, 2004). Suppose the variable s(t) represents a vector of
decoded firing rates given by the following equation:

si(t)
′ = − si

τs
+ 1

τs

N
∑

j= 1

φji
∑

tj,k<t

δ(t − tj,k) (52)

s = − s

τs
+ 1

τs

N
∑

j= 1

φj

∑

tj,k<t

δ(t − tj,k) (53)

≈ − s

τs
+ 1

τs

N
∑

j= 1

φjf (〈e, s〉 − ai) (54)

Where φj is the decoder for the jth neuron. Equation (54)
is referred to as the rate equation while Equation (52) is the
equation for si under neuronal spiking with a simulated spiking
neuronal network. The time constant used will be 50 ms unless
otherwise stated.

Using the same procedure as before, by integrating the spiking
equation for s(t) explicitly, one can derive the NEF equation for
the synaptic weights:

ωij = αi〈ei,φj〉 (55)

where ωij is the synaptic weight for the post-synaptic neuron i
and the presynaptic neuron j in a recurrent neuronal network and
φj is the scale invariant decoder for the function

F(s)τs + s

For a scale invariant decoder, this yields the following synaptic
weight:

ωij =
1

Nρ(aj)ρe(ej)

f−1(ri)

1− ai

〈

ei, P̂e(ej)P̂a(aj)
〉

(56)

Note that ωij = F(ai, aj, ri, rj, ei, ej), is a function of random
variables for the presynaptic and post-synaptic neurons. Thus,
instead of thinking the weights as a matrix of numerical values,
or as a direct graph, one may think of the weights as defining
a hypersurface in a higher dimensional space. For example, the
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formula (Equation 56) describes a hypersurface with 2m + 4
dimesions wherem is the dimension of the dynamics the network
simulates.

In the following examples, we will generate networks with
these analytically determined weights using scale-invariant
decoders that display the prescribed dynamics. Additionally, we
will assume that

rmax
i = M

√

1− ai (57)

ρa(a) = 1

2
√
2
√
1+ a

(58)

The variableM controls the maximum firing rate of the neurons,
with the range of maximum firing rates being between [0,

√
2M].

We take M to be 60 Hz for all subsequent numerics, unless
otherwise specified. Note that we need αi to compute the weights.
The αi differs depending on whether or not we are simulating a
scalar system or amulti-variable system. For a scalar system, αi =
M2ei where ei = 1 for ON neurons and−1 for OFF neurons. For
a vector, αi = M2. For multi-variable dynamics we will assume
uniform distributions in the hyperspherical coordinate systems.
With the former assumption, the tuning curves for the neurons
simply become M

√
〈e, x〉 − a where the M can be absorbed into

the decoder. We will generate networks of spiking theta neurons
that simulate a neural integrator, a Van der Pol Oscillator, and the
Lorenz system.

3.1. Example 1: Neural Integrator
A neural integrator is a recursively coupled neural network that
integrates an incoming signal, u(t). The coupling variable s(t),
will have dynamics given by

s′(t) = u(t) = − s

τs
+ 1

τs

N
∑

i= 1

φi
√

ei(s(t)+ τsu(t))− ai (59)

where ei = 1 if neuron i is an ON neuron and −1 for OFF
neurons. Note that we have scaled u(t) by τs as this allows us to
write:

τsu+ s =
N
∑

i= 1

φi
√

ei(s+ τsu)− ai. (60)

We then require the scale invariant decoders such that ĝ(z) =
∑N

i= 1 φi
√
eiz − ai ≈ z. A set of g±(x) and the corresponding

scale-invariant decoders is given by:

g+(x) = 1

2
(1+ x) , g−(x) = −1

2
(1− x) (61)

P̂+(a) = 2

π

1√
1+ aM

, P̂−(a) = − 2

π

1√
1+ aM

(62)

φ±i = γ±(a)

N
= ei

4
√
2

NMπ
(63)

which yields ĝ(z) = z. From formula (14) for αi and (58) for the
density of ai, and we have αi = eiM

2 and the neuronal weight

ωij = αiφj = eiej
4
√
2M

Nπ
. (64)

All the synaptic weights here are given by 4
√
2M/(Nπ) for

ON/ON and OFF/OFF connections and −4
√
2M/(Nπ) for

ON/OFF and OFF/ON connections. Now, we will exploit
symmetry and non-uniqueness to generate two more neuronal
integrators with the same initial distributions of heterogeneity
ρa(a). In particular, consider the function ǫ(x) = (1 − x2)2,
this function lies in both function spaces for g±(x) as it vanishes
to second order at both boundaries. Additionally, it can be
computed using the following scale-invariant decoders:

P̂±
ǫ(x)

(a) = 32π

5M
(4a2 − 2a− 1)

√
a+ 1 (65)

φi =
γ (a±i )

N
=ei

64
√
2

5MπN
(1+ a±i )(4a

±2
i − 2a±i − 1)(66)

which implies the following decoders for the ON/OFF population
still give us g(x) = x

φ±i = ei
4
√
2

NMπ
+ ei

64
√
2

5MπN
(1+ a±i )(4a

±2
i − 2a±i − 1) (67)

which yields the weight matrix

ωij = αiφj = eiej
4
√
2M

Nπ
+ eiej

64M
√
2

5πN
(1+ aj)

(4a2j − 2aj − 1) (68)

Additionally, we can exploit symmetry to derive yet another
weight matrix with precisely the same network of neurons:

g+(x) = 1

4
(1+ x)2, g−(x) = −1

4
(1− x)2 (69)

P̂+(a) = 1

Mπ

√
1+ a, P̂−(a) = − 1

Mπ

√
1+ a (70)

φ±i = γ (a±i )

N
= ei

2
√
2(1+ a±i )

MNπ
(71)

ωij = eiej
2
√
2(1+ a±i )M

Nπ
(72)

and thus, we have the following three separate weight matrices

ωij = αiφj = eiej
4
√
2M

Nπ
(73)

ωij = αiφj = eiej
4
√
2M

Nπ
+ eiej

64M
√
2

5πN
(1+ aj)(4a

2
j − 2aj − 1)

(74)

ωij = eiej
2
√
2(1+ aj)M

Nπ
(75)

for i, j = 1, 2, . . .N that yield identical macroscopic dynamics
from the same network of neurons as N → ∞. Furthermore,
while all the weights converge to 0 asN → ∞, the scaled weights
Nωij do not converge toward one another in the same limit. One
important point is that none of the weights necessarily satisfy
the constraint that the action of neuron j on all its downstream
targets is the same, either excitatory or inhibitory. Or more
precisely that

sign ωij = sign ωi′j
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for all i, i′, j = 1, 2, . . .N. Fortunately however, this issue has
already been dealt with in the existing literature (Parisien et al.,
2008). To summarize, one is able to take the weights generated
by the NEF solution, and linearly transform them to yield a new
network consisting of excitatory and inhibitory neurons (instead
of ON/OFF) with weights that respect this constraint, which is
related to Dale’s principle.

We have simualted four neural networks with 5000 neurons
each all generated with the same random sample drawn from the
distribution (Equation 58) using the weights given by Equations
(73–75), in addition to the weights generated by determining the
optimal decoders. The scale-invariant decoders that correspond
to Equations (73–75) were put through conjugate gradient fine-
tuning with the final decoders being correlated to the initial
decoders with a correlation coefficient greather than 0.98 in
all cases. This lowered the root-mean-squared-error by 2–3
orders of magnitude with only slight perturbations off the scale-
invariant decoding surface in each case. A sample set of tuning
curves is shown in Figure 5A with the ĝ±(x) that correspond
to the four different weight structures in Figure 5B. The neural
integrators are shown in Figures 5C–F. The synaptic weights that
correspond to the integrators are shown in Figure 6. The neurons
have been sorted into ON/OFF populations and increasing a
within a sub-population prior to plotting the weight matrix in
the left column of Figure 6. A sub-sample of 20 neurons is also
selected (which is identical across the four integrator networks)
and their weights are plotted in the right column of Figure 6.
For the optimal decoders, g±(x) ≈ ±(1 ± x)/2, which results
in a weight structure similar to Equation (73). The weights differ
substantially however in comparison to Equations (74) and (75)
as the ĝ± differ substantially from±(1± x)/2

This example illustrates that identical networks of neurons
can have identical macroscopic dynamics with vastly different
weight matrices. While this is not particularly surprising as going
from a microscopic description (the individual weights) to a
macroscopic description (the dynamics) of a dynamical system is
seldom a unique process, the surprising thing is one can explore
this issue analytically. An important point to note is that even
though the weight matrices are non-unique, they all have the
form

ωij = f (ei, ej, ai) (76)

and the weight matrices are nothing more than sample points
drawn from different surfaces.

3.2. Exampe 2: Van der Pol Oscillator
The Van der Pol oscillator (Van der Pol, 1926) is given by the
dynamical system:

ẋ = µ

(

x− 1

3
x3 − y

)

= F(x, y) (77)

ẏ = x

µ
= G(x) (78)

Here, we will simulate the oscillator with large networks
of neurons using the scale-invariant decoders with conjugate

gradient descent fine tuning. As the decoding is linear, then
from the above equations we only require the decoders for the
functions f (x, y) = x, f (x, y) = y and f (x, y) = x3. We use
a two-dimensional spherical coordinate system for the encoding
ei = (cos(θi), sin(θi)) and assume uniform distributions in the ai
and the θi. Note that:

x =
∫ 2π

0

∫ cos(θ)x+sin(θ)y

−1

cos(θ)

π

2

π
√
1+ a

√

cos(θ)x+ sin(θ)y− a dadθ

y =
∫ 2π

0

∫ cos(θ)x+sin(θ)y

−1

sin(θ)

π

2

π
√
1+ a

√

cos(θ)x+ sin(θ)y− a dadθ

x3 + 3x =
∫ 2π

0

∫ cos(θ)x+sin(θ)y

−1

cos(3θ)+ cos(θ)

π

16(
√
1+ a)3

π
√

cos(θ)x+ sin(θ)y− a dadθ

which, immediately allows us to use the following scale-invariant
decoders for the sub-functions x, y, and x3:

φxi = 4
√
2 cos θi

MNπ
(79)

φ
y
i = 4

√
2 sin θi

MNπ
(80)

φx
3

i = 32
√
2
(

cos(3θi)+ cos(θi)
) (1+ ai)

2

πMN
− 3φxi (81)

which yields the decoders for F(x, y) and G(x, y):

φFi = φxi + τsµ
(

φx − 1

3
φx

3 − φy
)

(82)

φGi = φ
y
i + τs

φx

µ
(83)

Thus, the weights are given by

ωij = ω(θi, θj, aj) = M2 cos(θi)φ
F
j +M2 sin(θi)φ

G
j (84)

Both the rate equations and the spiking neural network are
simulated using the scale invariant decoders to weight the firing
rates/spikes. To more explicitly show the effects of the conjugate-
gradient descent fine tuning, we have plotted the scale-invariant
decoder surfaces NφF and NφG in Figure 7, in addition to the
decoders after conjugate gradient descent fine tuning. The scale-
invariant decoders and the conjugate gradient descent fine-tuned
decoders are again very tightly correlated with r > 0.95. We have
simulated the Van der Pol Oscillator, as shown in Figure 8 in
both the relaxation (µ = 5) and harmonic (µ = 0.7) oscillator
regimes. In both cases, we have excellent correspondence with the
network and the actual oscillator. The synaptic weight matrices
are also shown in Figure 8 for a subset of neurons. Like the neural
integrator, the weights again lie on a surface, only the surface is
3-dimensional.
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FIGURE 5 | Neural integrators generated using the same initial heterogeneous network of N = 5 · 103 Theta neurons. (A) A subset of 20 tuning curves

from the network. (B) The different neural integrators are generated by using different g± (x) to form g(x). (C–F) The integrators generated using optimal decoders and

decoders from Equations (63),(66), and (71) which results in weight matrcies Equations (73),(74), and (75). The scale-invariant decoders are fine-tuned with conjugate

gradient descent. In all cases the fine-tuned decoders are very highly correlated (p > 0.98) with the scale-invariant decoders indicating only small perturbations off the

scale-invariant decoder surface with substantial improvements in the root mean-squared error (RMSE) in computing ĝ(z) = z. The RMSE was O(10−5 ) with

conjugate-gradient descent vs O(10−2 ) without. The variable λ = 0.01 was taken in the conjugate gradient descent fine-tuning.

3.3. Example 3: Lorenz Attractor
The Lorenz system is given by the equations

ẋ = σ (y− x) = F(x, y) (85)

ẏ = x(ρ − z)− y = G(x, y, z) (86)

ż = xy− βz = H(x, y, z) (87)

and is known to exhibit chaotic behavior for specific values of σ , ρ
and β (Lorenz, 1963). In order to approximate the Lorenz system,

we require the decoders for the functions x, y, z, xz and xy.
With a 3-dimensional spherical coordinate system, the encoding
vectors e are given by e = (sin(θ) cos(ψ), sin(θ) sin(ψ), cos(θ))
where θ ∈ [0, π] ψ ∈ [0, 2π]. The decoders as a function of
(ψ, θ, a) are given by:

φxi = 4
√
2 cos(ψi)

NMπ
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FIGURE 6 | (A–H) Different connectivity weights can generate identical macroscopic dynamics from identical neuronal populations. Shown above are the weight

matrices generated for the neural integrators in Figure 5. On the right are smaller sub-matrices of weights between 20 randomly selected neurons (the same 20 in

each case).
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FIGURE 7 | The Van der Pol Oscillator is approximated by using a scale-invariant decoder surface. The two functions F (x, y) and G(x, y) that are responsible

for the dynamics of the Van der Pol Oscillator have scale-invariant decoder surfaces given by Equations (82,83). (A,B) The equations for the scale-invariant decoder

surfaces are plotted in 3D. These surfaces are used to initialize conjugate gradient descent fine-tuning for a network of 5000 neurons. (C,D) The fine-tuned decoders

Nφ̄i . They are slightly perturbed off of the surfaces in (A,B). (E,F) The strong linear relationship in the scale-invariant surface and the conjugate gradient descent

optimized decoders Nφ̄i . The correlation coefficient r ≥ 0.95 in both cases, while the root mean squared error was reduced from O(10−2 ) to O(10−5). The parameter µ

for the Van der Pol Oscillator was taken to be 0.7.

φ
y
i = 4

√
2 sin(ψi)

NMπ

φzi = 8
√
2 cos(θi)

NMπ

φxzi = 24
√
2 cos(θi − ψi)(1+ ai)

2NM
− 3π

4
φ
y
i

φ
xy
i = 64

√
2 sin(2ψ)(1+ ai)

NMπ

which yields the decoders for F,G,H as:

φFi = σ (φ
y
i − φxi ) (88)

φGi = φxi ρ − φxzi − φyi (89)

φHi = φ
xy
i − βφzi (90)

The strange attractor generated by the Lorenz system and the
neural rate equations using the decoders from Equations (88–90)
are shown in Figure 9. The chaotic behavior and the strange
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FIGURE 8 | (A,B) The Van der Pol oscillator is simulated using a network of 105 theta neurons with scale-invariant decoders after conjugate-gradient descent fine

tuning in the relaxation oscillator regime (µ = 5, left column) and in the harmonic oscillator regime (µ = 0.7, right column). Shown in the top row is the comparison

between the oscillator (red), the rate equations (green), and the spiking network (blue). (C,D) Shown in the middle is the spike raster plot for a 10 s interval of both

networks. (E,F) The last row consists of a computed weight matrix for 2000 randomly selected neurons in the network.

attractor is also preserved when one uses a spiking neuronal
network with the decoder weights on the spikes. Note that a great
many neurons are required to adequately visualize the strange
attractor, however the chaotic behavior is present even for smaller
networks. We have also plotted the location of neural spiking
with regards to the strange attractor. The neurons tend to spike
more in specific regions of the strange attractor in accordance
with their preferred orientation vectors and their ai parameters.
The weights are again given by the NEF formula:

ωij = ω(θi, θj, ψi, ψj, aj) = M2 sin(θi) cos(ψi)φ
F
j

+M2 sin(θi) sin(ψi)φ
G
j +M2 cos(θi)φ

H
j (91)

which defines a five dimensional surface.

4. DISCUSSION

The NEF has been used to develop a wide variety of neural circuit
models. The spiking networks generated from the NEF approach
are spiking neural networks that are capable of functionally
reproducing very sophisticated behaviors (Eliasmith, 2005). In
the NEF approach, a synaptic weight between two neurons is
a dot product of the post-synaptic neuron’s preferred direction
vector and the presynaptic neuron’s linear decoding vector
or “decoder.” The decoders weight the tuning curves for the
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FIGURE 9 | (A–D) The Lorenz attractor generated with a spiking neuronal network (blue) the neural rate equations (green) and integrating the Lorenz system (red) with

neural networks of increasing size in figures. The decoders used are scale-invariant with conjugate gradient descent fine-tuning. The synaptic time constant was

τs = 50 ms. (E) The spike raster plot for 100 neurons chosen at random from the N = 106 neuron simulation. (F) The location of the spikes with regards to the strange

attractor for three randomly selected neurons are shown in (F).

neurons and are determined by an optimization criterion that
minimizes the L2 error in the linear combination of tuning curves
and the target dynamics of the network in addition to a factor
that punishes the size of the decoders. The optimal decoders
are unique, as they are determined by a convex optimization
problem.

The first main point of this study is that in the large
network limit, one can define a scale-invariant decoder that
scales in inverse proportion to the network size N such that
the scale-invariant decoders zero the cost function used to
define the optimal decoders asymptotically in the mean-squared

error. In the asymptotic limit, the scale-invariant decoders
multiplied by the probability density governing the source(s)
of heterogeneity converge to a constant function. The resulting
linear combination of weighted firing rates converges to the
tuning curve transforms asymptotically. We have determined
this to also be the case with optimal decoders given by large
matrix inversion, where the product of the optimal decoders
and the heterogeneous density also converges to the weighted
decoder. Furthermore, we have shown how one can invert tuning
curve transform operators for type-I (theta model) and type-
II firing rates. It turns out that the inversion is non-unique,
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which results in an infinite-dimensional family of scale-invariant
decoder surfaces and thus synaptic weights.

The second contribution of this paper is a method of finding
the scale-invariant decoders analytically from the decoded
function and the probability density of the neuronal parameters.
Additionally, we have demonstrated that as the weighted decoder
is non-unique for any particular dynamics, the NEF solution
to the weights with scale-invariant decoders also becomes non-
unique.

Finally, we have demonstrated how the weights that couple
neurons together can actually be thought of as surfaces defined
entirely by the source(s) of heterogeneity in the network. In
particular, a weight ωij is defined as the inner product of a scale-
invariant decoder γ (ej, aj)/N of the post-synaptic neuron j with
the encoding vector ei of the presynaptic neuron i. Thus, one
can consider this inner product as a function over a higher
dimensional space and the weights are merely sample points
on this hypersurface. Furthermore, the weights generated via
this approach have the advantage that the coupling between
the jth presynaptic neuron and the ith postsynaptic neuron
depends only upon the local properties of neuron i and neuron
j for any specified dynamics. This is different from Hebbian
plasticity, in that the coupling does not depend on presynaptic
and postsynaptic activity, but rather on an intrinsic property
of the presynaptic neuron times an intrinsic property of the
postsynaptic neuron. While this perspective has been used before
in the literature, for example to model hypercolumns in the
primary visual cortex in (Shriki et al., 2006), here we show how it
can be extended to arbitrary (smooth) dynamics.

4.1. Relationships between the Analytical
and Optimal Decoders
The optimal decoders appear to have an asymptotic weighted
decoder, the product of the density function multiplied by the
scaled optimal decoder, N8i, when one computes this quantity
numerically after large-matrix inversion (see Figure 2). For the
optimal decoders, the weighted decoder has high frequency
oscillations that are related to the idiosyncracies of the particular
sample of random neurons generated. These seem to attenuate
with increasing network size, and regularization parameter λ.
These high frequency oscillations are for example eliminated
when the neurons are drawn from a grid. Indeed, when the
neurons are drawn from a grid, the optimal decoders for a much
larger network can be approximated by simply interpolating
between the decoder values for the smaller grid network, and
rescaling the interpolated decoders in accordance with the
network size.

Thus, one may ask is the weighted decoder generated by the
optimal decoders (1) convergent as N → ∞, and (2) does it
converge to any particular weighted decoder in the set defined by
the requirement that ĝ(x) = M(P+, P−) = L+(P+)+ L−(P−) =
g(x)? It seems that numerically the quantity Nρa(ai)8i does
converge to some surface P± that varies depending on the
identity of neuron i as an ON/OFF neuron. The likely candidate
for the specific P̂± in the set defined byM(P+, P−) is the surface
that minimizes Equation (42). However, the relationship between

the optimal decoders, and any particular scale-invariant decoder
as N → ∞ is outside of the scope of this paper and is best
left for future work. Relatedly, there seem to be some systematic
differences between scale-invariant and optimal decoders due to
finite neurons. For example, a scale-invariant decoder surface can
have discontinuities, while corresponding regularized optimal
decoder surfaces do not, even with very large numbers of neurons

4.2. Relationship to Other Approaches
We have demonstrated that if one defines a scale-invariant
decoder that is a function of the source(s) of heterogeneity of
the neurons, one can obtain arbitrary macroscopic dynamics
with the NEF weight solution, which is the dot product of the
decoder for the presynaptic neuron, and the preferred orientation
vector or encoding vector for the post-synaptic neuron. Thus,
both the weights and the decoders for the neurons can be thought
of as surfaces as they are merely functions of the sources of
heterogeneity of the network. While this perspective is novel in
the sense that we have shown one can obtain arbitrary dynamics
with this approach, similar decoders and weights have been
suggested in previous work. In particular, the scale-invariant
decoders here can be thought of as an extension of the neuronal
population vectors of Georgopolous (Georgopoulos et al., 1986,
1994). It has been previously noted (for example in Eliasmith and
Anderson, 2004) that the population vector from (Georgopoulos
et al., 1986, 1994) is similar to the case where one uses the
encoding vectors ei as the decoding vectors φi. Here, we have
derived a more general approach where φi is a function of ei
and the other sources of heterogeneity in the tuning curves.
Additionally, weights that are a function of the presynaptic and
post-synaptic preferred orientations have been also used in the
literature (Ben-Yishai et al., 1995; Shriki et al., 2006).

There are also methods in the literature that construct
networks of neurons with prescribed dynamics. For example,
spiking networks of leaky integrate-and-fire models have been
constructed that can display arbitrary linear dynamics with
weights that are seemingly unrelated to the NEF solution for
the synaptic weights (Boerlin et al., 2013). The solution obtained
in (Boerlin et al., 2013) is derived through minimizing the
time integral of the L2 norm of the decoded estimate of the
dynamics, x̂(t) and the intended dynamics in addition to other
terms intended to minimize the spiking, and distribute the spikes
equitably across the network. The end result is a network of
leaky integrate and fire neurons and weights that when coupled
together display the desired dynamics. While the solution is
very elegant, it is unknown if it can be extended to non-linear
dynamics.

4.3. Numerical Applications
We considered whether this work has practical applications
for neural simulations. As an example, we considered whether
(having found the weighted decoders for a given network) it
would be useful to adjust ρ in order to make the weights
uniform, thus avoiding large fluctuations associated with the
spiking of heavily weighted neurons. This sometimes led to
modest reductions in spike noise in simulations.
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As discussed above, scale-invariant decoders can serve as a
starting point for iterative optimization, quickly leading to highly
optimized weights for large networks. However, it should be
pointed out that since the optimization problem is convex, any
starting point can be used, and in our experience scale-invariant
decoders are only moderately better than other reasonable
choices.

It is possible that our approach could be applied to groups of
neurons that are so large as to be impractical even for efficient
iterative methods. The cortex consists of a fairly continuous sheet
of neurons with few distinct boundaries, suggesting that it may
be somehow useful to simultaneously consider the activity of
billions of neurons. On the other hand, if the goal is simply
to optimize synaptic weights, the degree of convergence onto
single neurons (< 200, 000) is within a practical range for
iterative methods. Furthermore, our solution for multivariable
functions requires encoder distributions that are separable in
hyper-spherical coordinates, which may be a limitation for
modeling extensive sheets of neurons with overlapping tuning.

In light of these experiences, we consider this work to be
valuable mainly as a source of new insights into network function
and dynamics, rather than as a basis for new numerical tools.

4.4. Analyzing Measured Synaptic Weights
Using experimental methods, it is possible to measure both the
synaptic weights (defined as the peak post-synaptic current)
in addition to fitting integrate-and-fire type neurons with
heterogeneity using the dynamic current-voltage curve approach
(Badel et al., 2008; Harrison, 2014; Harrison et al., 2015).
While there are typically many parameters for more complicated
integrate-and-fire models (such as the AdEx), one can always
reduce the number of heterogeneous parameters to a much
smaller set governing the properties of the tuning curves. We
refer to these generically as bi, a vector with the parameter values
for the ith neuron. Given these assumptions, and the work done
in this paper, one kind of analysis that can be conducted without
much effort is the construction of a non-linear regression model
of the weights:

ωij = F(bi, bj)+ ǫij (92)

where F(bi, bj) is either a non-linear or linear model with
a number of free coefficients and ωij are the experimentally
determined synaptic weights of a recurrently coupled neural
network. The coefficients can be estimated using optimization
techniques to minimize ǫij. For this weight analysis to be valid,
we require the following

|ǫij| ≪ |F(bi, bj)|,∀i, j

where F(bi, bj) = O(N−1). The core result of this paper is that
any dynamics are possible with synaptic weights of the form
(Equation 92), and their is no unique weight matrix that confers
specfic dynamics. Thus, a regression analysis of the synaptic
weights (Equation 92) is a reasonable analysis to conduct if
one knows the sources of heterogeneity for the neurons in the
network and provided that the residuals are sufficiently small.

4.5. Future Work
While the networks constructed here display the desired
macroscopic dynamics, this is not always the case. In particular, if
the time constants are too small, then the collective macroscopic
state can destabilize. For the weight solution we have determined
to be valid, one needs to prove that the macroscopic dynamics
form a stable attractor in the large network limit. Unfortunately,
resolution of this problem is well outside the scope of this
paper. While a great deal of work has been done in determing
the stability of asynchronous states in large network limits (for
example in Abbott and van Vreeswijk, 1993; van Vreeswijk,
1996), to our knowledge no work has been when the weights
have structure present here. The majority of work done on
large network stability analysis is devoted to weights that are
constant throughout the network, ωij = ω however there
is some work on non-constant, randomly distributed weights
(Hermann and Touboul, 2012). The authors of (Hermann and
Touboul, 2012) note that oscillations arise when considering
randomly distributed weights. Here, we demonstrate that with
a little bit more structure to the weights/network (the weights
are functions of the properties of the f (I) curves of the neurons),
arbitrary prescribed macroscopic dynamics can be generated by
the network.

Networks of heterogeneous theta oscillators have been
extensively analyzed in (Barreto et al., 2008; Luke et al., 2013;
So et al., 2014) by using the Ott-Antonsen Anzats initially
applied to networks of Kuramoto Oscillators (Martens et al.,
2009; Ott and Antonsen, 2009). Additionally, one of the weight
solutions for a network with one-dimensional dynamics that
arises from the scale-invariant decoders sets all the weights to
±ω by setting the density to ρ ∝ |P̂(a)| where the constant
of proportionality normalizes |P̂(a)|. Given that, it may be
possible to apply some of the existing literature on the stability
analysis of networks of heterogeneous theta neurons to this
network.

In addition to stability analysis of the large network, the
weight solutions were derived here under a pair of simplifying
assumptions. In particular the two strongest assumptions were
that the FI curves were constant in time, and that the
neurons were coupled using current-based synapses instead of
conductance based synapses. We intend to extend the approach
we have taken here with scale-invariant decoders to neurons
with conductance based synapses, and f (I) curves that vary due
to forces like spike frequency adaptation (Ermentrout, 2006).
Fortunately, some of the initial work on generating macroscopic
rate-equations (a necessary initial step) for conductance based
neurons has been done in (Ermentrout, 1994; Shriki et al., 2006),
in addition to work on rate equations for adapting neurons
(Nicola and Campbell, 2013b)
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APPENDIX

Determining the Decoder Surface
Here, we will make use of the Laplace transform to analytically
determine the functions one can represent and numerically invert
for the decoder surfaces in the NEF approach. In particular,
consider the operator L+(P̂) which is given by

ĝ+(x) = L+(P̂) =
∫ x

−1
P̂(a)

√
x− a da (A1)

Using a series of substitutions we can write the following:

ĝ+(x) =
∫ x+1

0
P̂(b− 1)

√

x+ 1− b db (A2)

=
∫ y

0
P̂(b− 1)

√

y− b db

=
∫ y

0
Q(b)R(y− b) db = m(y) (A3)

where Q(b) = P̂(b − 1) = P̂(a) and R(y − b) =
√

y− b =√
x+ 1− b =

√
x− a, andm(y) = ĝ(y− 1) = ĝ(x). In this case,

the expectation is a convolution when written in the appropriate
variables:

m(z) = (Q ⋆ R)(z) (A4)

where ⋆ denotes the convolution operator. Taking a Laplace
transform yields:

L(m(z)) = L(Q(z))L(R(z)) = L(Q(z))

√
π

2s3/2
(A5)

⇒ L(Q(z)) = 2√
π
L(m(z))s3/2 (A6)

= L(m(z))L(C(z)) (A7)

for some function C(z). Unfortunately L(C(z)) = 2√
π
s3/2 is not

invertible as we have:

L(
√
t) = 1

2

√
π

s3/2
L(f ′′(t)) = s2L(f (t))+ sf (0)+ f ′(0) (A8)

from the general properties of the Laplace transform. This
implies that if f (t) = −4

√
t, f ′′(t) = t−3/2 and the Laplace

transform is undefined as f ′(0) → ∞. Suppose instead that we
assume that m(z) is twice differentiable and that m(0) = 0 and
m′(0) = 0. Then we can write the following:

L(Q(z)) = 2√
π
s3/2L(m(z)) (A9)

= 2√
π
s−1/2

L(m′′(z))

= L

(

2

π
√
z

)

L(m′′(z))

⇒ Q(z) =
∫ z

0

2

π
√
t
m′′(z − t) dt (A10)

This is how to find Q(z) as a convolution with m′′(z), the second
derivative of the function you want to approximate and 1/

√
t.

Based on these assumptions, we require thatm(z) = bz2+O(z3).
Writing the convolution in terms of the original variables, we
have the following:

P̂(a) =
∫ a+1

0

2

π
√
t
ĝ′′(a− t) dt (A11)

This implies that we can approximate any function that vanishes
to two orders at x = −1 using the following decoder for the ON
neurons:

φ+i (ai) =
2

N

1

ρa(ai)

∫ ai+1

0

2

π
√
t
ĝ′′(ai − t) dt (A12)

Additionally, if one repeats this process for a population of OFF
neurons, then we can immediately write down the decoder for a
function g that vanishes to two orders at x = 1:

φ−i (ai) =
2

N

1

ρa(ai)

∫ ai+1

0

2

π
√
t
ĝ′′(−ai − t) dt (A13)

Given the constraints on the derivatives of ĝ, it is clear that using
a population of ON and OFF neurons, the resulting approximant
has the form:

ĝ(x) = ĝ+(x)+ ĝ−(x)

= 1

2

(

g(x)− g(−1)− (x+ 1)g′(−1)
)

+ 1

2

(

g(x)− g(1)− (x− 1)g′(1)
)

= g(x)− A− Bx (A14)

by using the ON and OFF populations, where g(x) is the function
we want to approximate. The remainder is a linear term, A+ Bx.
Thus, if we can approximate an arbitrary linear function with a
population of type-1 neurons with heterogeneity, then we can
accomodate the remainder term. Note the following:

2

π

∫ ±x

−1

√
±x− a√
a+ 1

da = 4

π

∫

√
x+1

0

√

x+ 1− u2 du

= 1± x (A15)

Thus, with the functions P̂+ = 2C
π
√
1+a

and P̂− = 2D
π
√
1−a

, for the

ON and OFF neurons respectively, we can approximate

C(x+ 1)+ D(1− x) = (C − D)x+ (C + D) = Bx+ A

with C = (A + B)/2 and D = (A − B)/2. Thus, to approximate
the function g(x), we can use the following P̂:

P̂+(a) = 2

π

(

g(−1)+ g(1)

2
+ g′(−1)

)

1√
1+ a

+
∫ a+1

0
g′′(a− t)

2

π
√
t
dt (A16)
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P̂−(a) = 2

π

(

g(−1)+ g(1)

2
− g′(1)

)

1√
1+ a

+
∫ a+1

0
g′′(−t − a)

2

π
√
t
dt (A17)

To remove the linear error, we used a linear combination of 1+ x
and 1− x. This choice is not unique. For example, we could have
used

g±(x) = (1± x)2

1+ x2
(A18)

to eliminate constant term and a separate linear combination of

g±(x) = 1± x2 (A19)

to eliminate the x term. The reason Equations (A18, A19) are not
used for type-I neurons is due to complexity in the associated
weighted decoders. However, these forms are simpler for Type-II
firing rates and hence they are used there.

The same process can be carried out with the type-II firing rate
form, which yields the operators:

L±(P̂±) =
∫ ±x

−1
P̂±(a)(±x− a+ c) da (A20)

with the resulting values for P̂± being

P̂±(a) = 2A+ 2Ba
(a2 − 3)

(a2 + 1)3
+ g′′(±a) (A21)

for c = 0. For c > 0, the inversion for functions that vanish to
second order at x = ±1 yields

P̂±(a) = 1

c

∫ a+1

0
exp

(

− t

c

)

g′′(±(a− t)) dt (A22)

One can use the convolution (A22) to compute the weighted
decoders for

ĝ±(x) = (1± x)2

1+ x2

the solution is lengthy and thus we do not include it
here.
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